
Received: 5 January 2025

Revised: 2 February 2025

Accepted: 4 February 2025

Published: 6 February 2025

Citation: Zhang, F.; Yu, X.; Li, L.;

Song, W.; Dong, D.; Yue, X.; Chen, S.;

Zeng, Q. Research on Rapid and

Non-Destructive Detection of Coffee

Powder Adulteration Based on

Portable Near-Infrared Spectroscopy

Technology. Foods 2025, 14, 536.

https://doi.org/10.3390/

foods14030536

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Research on Rapid and Non-Destructive Detection of Coffee
Powder Adulteration Based on Portable Near-Infrared
Spectroscopy Technology
Fujie Zhang, Xiaoning Yu, Lixia Li * , Wanxia Song, Defeng Dong, Xiaoxian Yue, Shenao Chen and Qingyu Zeng

Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology,
Kunming 650500, China; 20030031@kust.edu.cn (F.Z.); 15138169516@sohu.com (X.Y.);
songwanxia0721@163.com (W.S.); 15239738900@sohu.com (D.D.); 15171723513@163.com (X.Y.);
13358078882@163.com (S.C.); zqy18287495726@163.com (Q.Z.)
* Correspondence: lilixia2012@kust.edu.cn

Abstract: This study explores the feasibility of using portable near-infrared spectroscopy
for the rapid and non-destructive detection of coffee adulteration. Spectral data from
adulterated coffee samples in the 900–1700 nm range were collected and processed using
five preprocessing methods. For qualitative detection, the Support Vector Machine (SVM)
algorithm was applied. For quantitative detection, two optimization algorithms, Invasive
Weed Optimization (IWO) and Binary Chimp Optimization Algorithm (BChOA), were
used for the feature wavelength selection. The results showed that convolution smoothing
combined with multiple scattering correction effectively improved the signal-to-noise ratio.
SVM achieved 96.88% accuracy for qualitative detection. For the quantitative analysis, the
IWO algorithm identified key wavelengths, reducing data dimensionality by 82.46% and
improving accuracy by 10.96%, reaching 92.25% accuracy. In conclusion, portable near-
infrared spectroscopy technology can be used for the rapid and non-destructive qualitative
and quantitative detection of coffee adulteration and can serve as a foundation for the
further development of rapid, non-destructive testing devices. At the same time, this
method has broad application potential and can be extended to various food products
such as dairy, juice, grains, and meat for quality control, traceability, and adulteration
detection. Through the feature wavelength selection method, it can effectively identify
and extract spectral features associated with these food components (such as fat, protein,
or characteristic compounds), thereby improving the accuracy and efficiency of detection,
further ensuring food safety and enhancing the level of food quality control.

Keywords: invasive weed optimization; adulteration identification; qualitative and
quantitative detection; feature selection; machine learning

1. Introduction
In recent years, food adulteration has become an increasingly prevalent issue, where

unscrupulous merchants add inexpensive materials to food products in a manner that is
difficult for consumers to detect, with the aim of gaining higher profits [1]. High-value
products are often the primary targets of adulteration. Coffee, a beverage made from
roasted and ground coffee beans, is highly popular due to its unique flavor and stimulating
effects. It is currently one of the best-selling drinks worldwide [2]. According to data
from the International Coffee Organization, global coffee production has recently reached
approximately 172 million bags (60 kg/bag) [3]. According to the “2024 China Imported
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Coffee Industry Report”, the scale of China’s coffee market will have increased by CNY
313.3 billion in 2024 [4], highlighting the significant economic value of coffee, which makes
it highly susceptible to adulteration. Taking Arabica coffee beans as an example, their
price is approximately CNY 225 per kilogram, while the cost of adulterants is much lower;
for example, corn costs only CNY 8 per kilogram. Illegal traders profit greatly by mixing
in low-cost materials, causing significant economic losses to the coffee industry. After
roasting and grinding, the physical characteristics of coffee beans, such as particle size and
color, can be easily mimicked by low-cost materials (such as soybeans, corn, barley, chicory,
and brown sugar), making it difficult to detect adulteration [5]. Although some studies
have investigated the methods for detecting adulteration in ground coffee, these methods
are generally based on techniques such as chromatography [6], mass spectrometry [7],
electronic tongues [8], and DNA analysis [9]. These methods, however, tend to be complex,
time-consuming, or limited by the high cost of instruments, which makes them impractical
for routine analysis. Therefore, there is a pressing need to develop a rapid, non-destructive
detection method. Munyendo et al. [10] showed that spectroscopic techniques are rapid,
non-destructive, and easily integrable with other processes, possessing great potential
for widespread applications. Fourier-transform infrared spectroscopy (FTIR), Raman
spectroscopy, fluorescence spectroscopy, and other methods have been widely applied
in coffee adulteration detection, quality evaluation, and component analysis, achieving
significant progress. While these methods have certain advantages in component analysis,
near-infrared (NIR) spectroscopy, by comparison, offers faster detection speed, lower
equipment costs, and is more suitable for large-scale, on-site applications.

Near-infrared (NIR) spectroscopy is a form of electromagnetic spectrum, with wave-
lengths ranging from 780 nm to 2526 nm [11]. The stretching and bending vibrations of
each chemical bond (such as C-H, O-H, N-H) have a specific vibration frequency (wave
number), so they absorb light energy in a specific wavelength range of the near-infrared
spectrum. When near-infrared light is directed onto a sample, the light waves interact with
the hydrogen-containing groups in the molecules of the sample. If the frequency of the light
matches the vibrational frequencies of these groups, the sample will absorb light at that
frequency [12]. Therefore, the NIR spectral characteristics differ depending on the chemical
composition of the substance [13]. NIR spectroscopy leverages this principle to analyze the
spectral data of a sample, enabling the identification of compositional differences. This tech-
nique has been widely applied in various fields of food adulteration detection. For instance,
Antoine et al. [14] developed a model for detecting peanut powder adulteration in cocoa
powder by collecting NIR spectral data and applying chemometrics, yielding promising
results. Khamsopha et al. [15] used NIR spectroscopy combined with Partial Least Squares
Regression (PLSR) to develop a model for detecting cassava starch adulteration, with a
prediction set correlation coefficient (R2) of 0.996. Zhang et al. [16] performed the quantita-
tive detection of adulteration in Sanqi powder by analyzing NIR spectral data, achieving a
prediction set correlation coefficient (R2) of 0.9667 using a Support Vector Regression (SVR)
model. Guo Wenchuan et al. [17] utilized NIR spectroscopy combined with a random forest
model to detect adulterated camellia seed oil, achieving an accuracy rate of 99.34%. These
studies have demonstrated the feasibility of using NIR spectroscopy for food adulteration
detection. However, there is limited research on the rapid, non-destructive detection of
coffee adulteration using portable NIR spectroscopy technology.

To address the above-mentioned issue, this study explores the rapid, non-destructive
detection capability of coffee adulteration using portable near-infrared (NIR) spectroscopy.
The impact of various pre-processing methods on spectral curves and modeling accuracy
was compared. Additionally, the effectiveness of two novel intelligent optimization algo-
rithms in selecting key wavelengths was evaluated. The information represented by the
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selected key wavelengths was analyzed, and its influence on the modeling results was
assessed. The findings aim to provide a theoretical basis for the further development of
portable detection devices for coffee adulteration.

2. Materials and Methods
2.1. Sample Preparation

The coffee beans selected for this study were of the Caturra variety (medium roast),
belonging to the Arabica species, which is a small-bean coffee. The beans were sourced from
Pu’er City, Yunnan Province, China, and have a market price of CNY 225 per kilogram. Due
to the difficulty in visually distinguishing adulterants such as soybeans, barley, chicory, and
corn after they have been roasted and ground into powder, these materials are commonly
used in coffee adulteration. Therefore, they were chosen as adulterants for this study. Basic
information on the four adulterants and their roasting methods is shown in Table 1.

Table 1. Basic Information of Adulterants.

Adulterants Origin Price
(CNY/kg)

Temperature
(◦C) Time (min)

Soybean Harbin, Heilongjiang Province, China 11 190 45
Barley Harbin, Heilongjiang Province, China 9 180 40

Chicory Changchun, Jilin Province, China 35 170 35
Corn Handan, Hebei Province, China 7.92 180 45

The coffee beans, along with the roasted soybean, barley, chicory, or corn, were
ground into powder, sift through a 200-mesh sieve to ensure consistent particle size,
then placed into sealed bags and stored in a dry, room temperature environment (15 ◦C)
away from direct sunlight. In this study, 20 blank samples were prepared for each of the
five materials, resulting in a total of 100 samples for the spectral analysis. Additionally,
adulterated samples were prepared by mixing soybean, barley, chicory, and corn with
coffee at four different adulteration levels—10%, 20%, 30%, and 40%. This resulted in
16 groups of samples with different types of adulteration. Each group contained 50 sam-
ples, each weighing 10 g. The samples were then sealed in bags and labeled, yielding a
total of 800 coffee adulteration samples, which were also stored in a dry, room temper-
ature environment (15 ◦C) away from direct sunlight. These 800 adulterated samples
were categorized into four groups based on the type of adulterant, with each group
containing 200 samples for qualitative analysis. Furthermore, they were divided into
16 groups based on both the type and proportion of adulterant for both the qualitative and
quantitative analysis.

2.2. Experimental Instruments

A portable near-infrared spectrometer (YCNIR-1, Yunnan Xiaobao Technology Co., Ltd.,
Shenzhen, China) was used for data acquisition of the 100 blank samples and
800 adulterated samples. The device can detect spectral wavelengths ranging from 900
to 1700 nm, with a spectral resolution of 10.53 nm, and an exposure time of 2.54 ms during
data collection; the average number of scans is 3, and the number of wavelength points
is 228. A multifunctional grinder (Model: 1500A, Yongkang Hongtai Electromechanical
Co., Ltd., Jinhua, China) was used for sample preparation, and a Leqi electronic balance
(accuracy: 0.01 g, Kunshan Youkewite Electronics Technology Co., Ltd., Kunshan, China)
was employed for sample weighing.
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2.3. Spectral Data Collection

The spectral data of the adulterated samples were collected according to the numbered
labels on the sealed bags. The samples were transferred into PP sample trays (Polypropy-
lene Reagent Trays), ensuring a smooth surface for spectral collection. Before scanning the
spectral data, the portable near-infrared spectrometer was preheated for 15 min, and the
ambient temperature in the laboratory was maintained at 25 ◦C. It was then connected to
a mobile phone via Bluetooth, and the data were collected from the samples. In order to
reduce errors, each sample was scanned three times, and the average spectrum was taken
as the original spectral data. The acquired spectral data were subsequently transferred
from the mobile phone to a computer via USB for further modeling and analysis.

2.4. Data Processing Methods
2.4.1. Spectral Data Preprocessing

During the spectral data collection process, the instrument may be affected by noise,
background light, environmental conditions, and other factors, leading to baseline drift,
scattering, and other phenomena. Therefore, it is necessary to preprocess the raw spectral
data to enhance the signal-to-noise ratio [18]. In this study, the following preprocessing
methods were applied to the raw spectral data of the coffee adulteration samples: Savitzky–
Golay smoothing (SG), Standard Normal Variate Transformation (SNV), Multiplicative
Scatter Correction (MSC), and two combinations of preprocessing methods (SG-SNV, SG-
MSC). The process was carried out using the Unscrambler X 10.4 (64-bit) software, which is a
versatile statistical analysis and modeling tool suitable for preprocessing high-dimensional
and complex spectral data to help improve data quality.

2.4.2. Spectral Data Dimensionality Reduction

Near-infrared spectral data typically have high dimensionality, containing a large
amount of redundant information that does not directly contribute to the chemical charac-
terization of the samples, as well as high correlations between the different wavelengths.
These factors can negatively impact the accuracy of the model [19]. Dimensionality reduc-
tion of the spectral data can simplify the data structure, eliminate redundant information
and noise, and retain the characteristic wavelengths that can best distinguish the differ-
ences between the samples, thereby improving the generalization and performance of
the model. In this study, two novel intelligent algorithms were employed for the feature
wavelength extraction from the coffee adulteration spectral data, namely the Invasive Weed
Optimization (IWO) algorithm and the Binary Chimp Optimization Algorithm (BChOA).

The Invasive Weed Optimization (IWO) [20] algorithm is a population-based intelli-
gent optimization algorithm that mimics the process of weeds finding suitable locations
for growth. In the feature wavelength selection for the full spectrum of near-infrared
spectroscopy data, the Classification Error Rate (CER) is used as a fitness function. The
process begins by initializing a weed population and calculating its fitness values, setting a
threshold to determine whether the feature wavelength corresponding to a variable will
be selected. Weeds randomly propagate in the search space based on a normal distribu-
tion, and new subsets of variables are generated according to their fitness values. Weeds
with better fitness continue to survive and reproduce, while those with poorer fitness are
eliminated. The algorithm iterates to update the optimal variable combination until the
maximum number of iterations is reached, ultimately identifying the best feature subset,
that is, the optimal combination of feature variables.

The Binary Chimpanzee Optimization (BChOA) [21] algorithm is a feature selection
method based on the collective behavior of chimpanzee groups. During feature wavelength
selection, the algorithm randomly divides the population into four groups—breakthrough,
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blockade, pursuit, and attack—to simulate the role division during chimpanzee hunting.
The fitness function values of the initial feature variables are then calculated. A transfer
function is used to map the continuous search space to a binary space, allowing the
chimpanzees to search for feature variables within the binary environment. In each iteration,
the variable subsets are evaluated based on the fitness function CER, and the optimal
variable set and positions are updated until the iteration ends. The best feature subset
obtained at this point is the optimal combination of feature variables.

2.4.3. Detection Model Construction

After preprocessing the raw spectral data, three classification algorithms were chosen
to model the raw and preprocessed spectral data, namely Support Vector Machine (SVM),
Backpropagation Neural Network (BP), and Random Forest (RF). In this study, the training
set and prediction set were randomly divided in an 8:2 ratio, so the number of samples
in the training set was 640, and the number of samples in the prediction set was 160. For
the qualitative detection of coffee adulteration, the SVM algorithm was selected as the
discriminative model. For the more complex task of both the qualitative and quantitative
detection of coffee adulteration, the SVM, BP, and RF algorithms were used for model
construction, with the best model being selected through comparison. SVM uses cross-
validation to adjust key parameters C and gamma. The values selected in this study were
C: [1, 10, 100, 1000] and gamma: [0.001, 0.01, 0.1, 1].

2.4.4. Model Evaluation Metric

In this study, the evaluation metrics used to assess the performance of the models are
accuracy, precision, and specificity. These metrics are calculated using four indicators from
the confusion matrix, as follows: True Positives (TPs): The number of samples correctly
predicted as belonging to the current class; False Positives (FPs): The number of samples
incorrectly predicted as belonging to the current class; False Negatives (FNs): The number
of samples that actually belong to the current class but are not correctly identified by the
model; True Negatives (TNs): The number of samples correctly identified as belonging to
other classes [22]. The calculation formulas for the above indicators are as follows (1)–(3):

Accurary =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Speci f icity =
TN

TN + FP
(3)

Accuracy measures the proportion of samples that are correctly classified by the
model, reflecting the overall discriminative ability of the model. Precision evaluates
the proportion of correctly predicted positive samples among those predicted as posi-
tive, reflecting the model’s overall prediction capability. Specificity assesses the propor-
tion of correctly classified negative samples, reflecting the model’s ability to distinguish
negative classes.

3. Results and Analysis
3.1. Spectral Analysis of Samples

Near-infrared (NIR) spectroscopy operates by absorbing electromagnetic radiation,
which excites specific chemical bonds (such as C-H, N-H, O-H) within molecules, resulting
in characteristic absorption peaks [23]. The types and quantities of organic compounds in
different substances vary significantly, leading to different absorbances or reflectances in
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the near-infrared spectral range [24]. In this study, the reflectance spectra of the samples
were analyzed to enable the rapid, non-destructive detection of coffee adulteration. After
roasting and grinding, soybeans, barley, chicory, and corn exhibit physical properties similar
to those of coffee, making it difficult to visually distinguish between them. However, their
inherent chemical compositions differ significantly. Soybeans are primarily composed of
proteins and fats [25]; barley is rich in carbohydrates and proteins; chicory contains high
levels of carotenoids and vitamins [26]; and corn is composed mainly of carbohydrates
(primarily starch), dietary fibers, and vitamins. These nutrients have relatively simple
chemical structures, typically consisting of carbon, hydrogen, and oxygen, resulting in
weak absorption and high reflectance in the near-infrared spectral range. In contrast, coffee
contains compounds such as caffeine, chlorogenic acid, and trigonelline [27], and roasted
coffee also contains certain amounts of oils, which exhibit strong absorption in the near-
infrared spectrum. As a result, the near-infrared spectral curves of soybeans, barley, chicory,
corn, and coffee show distinct differences. The average spectral curves of the five materials
are shown in Figure 1 below, where the significant differences are evident, particularly
at wavelengths of 920 nm, 945 nm, 1070 nm, 1210 nm, 1257 nm, 1462 nm, 1660 nm, and
1686 nm. These differences are mainly observed in the 1400 nm to 1650 nm range, which
corresponds to the absorption caused by the O-H vibrations of water molecules.

Foods 2025, 14, x FOR PEER REVIEW 6 of 15 
 

 

3. Results and Analysis 
3.1. Spectral Analysis of Samples 

Near-infrared (NIR) spectroscopy operates by absorbing electromagnetic radiation, 
which excites specific chemical bonds (such as C-H, N-H, O-H) within molecules, result-
ing in characteristic absorption peaks [23]. The types and quantities of organic compounds 
in different substances vary significantly, leading to different absorbances or reflectances 
in the near-infrared spectral range [24]. In this study, the reflectance spectra of the samples 
were analyzed to enable the rapid, non-destructive detection of coffee adulteration. After 
roasting and grinding, soybeans, barley, chicory, and corn exhibit physical properties sim-
ilar to those of coffee, making it difficult to visually distinguish between them. However, 
their inherent chemical compositions differ significantly. Soybeans are primarily com-
posed of proteins and fats [25]; barley is rich in carbohydrates and proteins; chicory con-
tains high levels of carotenoids and vitamins [26]; and corn is composed mainly of carbo-
hydrates (primarily starch), dietary fibers, and vitamins. These nutrients have relatively 
simple chemical structures, typically consisting of carbon, hydrogen, and oxygen, result-
ing in weak absorption and high reflectance in the near-infrared spectral range. In con-
trast, coffee contains compounds such as caffeine, chlorogenic acid, and trigonelline [27], 
and roasted coffee also contains certain amounts of oils, which exhibit strong absorption 
in the near-infrared spectrum. As a result, the near-infrared spectral curves of soybeans, 
barley, chicory, corn, and coffee show distinct differences. The average spectral curves of 
the five materials are shown in Figure 1 below, where the significant differences are evi-
dent, particularly at wavelengths of 920 nm, 945 nm, 1070 nm, 1210 nm, 1257 nm, 1462 
nm, 1660 nm, and 1686 nm. These differences are mainly observed in the 1400 nm to 1650 
nm range, which corresponds to the absorption caused by the O-H vibrations of water 
molecules. 

 

Figure 1. Average Spectral Curves of Soybean (blue solid line), Barley (red solid line), Chicory (yel-
low solid line), Coffee (purple solid line), and Corn (green solid line). 

3.2. Data Preprocessing 

In this study, five preprocessing methods—SG, SNV, MSC, SG-MSC, and SG-SNV—
were applied to preprocess the raw spectral data of adulterated coffee. The raw spectral 
curves and the preprocessed spectral curves are shown in Figure 2. 

Figure 1. Average Spectral Curves of Soybean (blue solid line), Barley (red solid line), Chicory
(yellow solid line), Coffee (purple solid line), and Corn (green solid line).

3.2. Data Preprocessing

In this study, five preprocessing methods—SG, SNV, MSC, SG-MSC, and SG-SNV—were
applied to preprocess the raw spectral data of adulterated coffee. The raw spectral curves
and the preprocessed spectral curves are shown in Figure 2.

By comparing Figure 2, it is evident that the raw near-infrared spectral curve (a) is sig-
nificantly different from the preprocessed near-infrared spectral curve. The spectral curve
after SG preprocessing (b) is much smoother, and noise spikes are notably reduced [18]. The
spectral curve after MSC preprocessing (c) and the spectral curve after SNV preprocessing
(e) are more focused, with a noticeable reduction in the spacing between spectral lines,
indicating that these two preprocessing methods significantly improve the scattering and
spectral drift phenomena in the near-infrared spectral data acquisition process. Consid-
ering the different effects of SG, SNV, and MSC, a combination of two methods is chosen
to improve the signal-to-noise ratio of the raw spectral data [28]. The spectral curves
after SG-MSC and SG-SNV preprocessing are shown in (d) and (f), respectively. It can be
observed that the noise spikes are notably reduced, and the spacing between spectral lines
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is also significantly smaller. By preprocessing the near-infrared spectral data, the quality
of the spectral data can be effectively enhanced, improving the accuracy of subsequent
classification models.
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3.3. Qualitative Detection of Coffee Adulteration

SVM (Support Vector Machine) is a supervised learning algorithm with strong capa-
bility in handling high-dimensional data, demonstrating excellent performance in classi-
fication tasks. The core idea of SVM is to find a hyperplane that separates the samples
of different classes while maximizing the classification margin [29]. Therefore, SVM was
chosen for the qualitative detection of coffee adulteration, specifically for distinguishing
between the four types of adulterants in coffee, namely soybean, barley, chicory, and corn.
To explore the most suitable data preprocessing method for qualitative adulteration de-
tection in coffee, this study performed modeling on the raw spectral data as well as data
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preprocessed using the SG, SNV, MSC, SG-MSC, and SG-SNV methods. The results are
shown in Table 2.

Table 2. Modeling Results of Spectral Data Based on Different Preprocessing Methods.

Preprocessing
Method

Training Set Prediction Set

Accuracy/% Precision Specificity Accuracy/% Precision Specificity

RAW 98.13 98.13 99.38 93.75 93.78 97.92
MSC 96.72 96.75 98.91 96.25 96.48 98.75
SG 97.81 97.81 99.27 96.25 96.39 98.75

SNV 96.09 96.08 98.70 95.63 95.79 98.54
SG-SNV 98.75 98.75 99.58 95.01 95.07 98.33
SG-MSC 97.03 97.03 99.01 96.88 96.86 98.96

As shown in Table 2, the SVM model established using the raw spectral data achieved
an accuracy of 93% for the qualitative detection of coffee adulteration. However, the
models built with spectral data preprocessed by the five different methods showed further
improvements in accuracy, all reaching over 95%. Although the adulterant was added
to the coffee in varying proportions, a change in the adulterant ratio had little impact
on the detection of the adulterant type. The model was able to accurately identify the
type of adulterant present in the samples, indicating that the combination of near-infrared
spectroscopy and the SVM algorithm can effectively detect the different types of materials
adulterating coffee. Comparing the modeling results, it was found that the SG-MSC
preprocessing method yielded the best model accuracy, as shown in Figure 3, with only
four samples being misclassified. The classification accuracy reached 96.88%. Compared
with the results of Chen Xiuming et al. [2], more adulterated species can be detected in
this study, which has strong generalization ability and can adapt to different inputs and
tasks. Therefore, SG-MSC-SVM was chosen as the model for the qualitative detection of
coffee adulteration.
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3.4. Qualitative and Quantitative Detection of Coffee Adulteration
3.4.1. Spectral Data Preprocessing and Modeling

To address the complex detection problem that requires both the identification of the
adulterant types in coffee and the determination of their adulteration ratios (qualitative and
quantitative detection), this study employed three algorithms—SVM, BP neural network,
and RF—on the data preprocessed using the following five methods: SG, SNV, MSC, SG-
MSC, and SG-SNV. These models were compared with the results obtained from the raw
spectral data, as shown in Table 3. Compared with Table 2, it can be observed that as
the detection requirements increase, the overall model accuracy decreases. A comparison
of the modeling results in Table 3 for different preprocessing methods and algorithms
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shows that the combination of SG-MSC preprocessing and the SVM model yields the best
performance, with a classification accuracy of 83.13%. Therefore, for subsequent studies,
the SG-MSC preprocessing method was chosen, and SVM was selected as the model for
both the qualitative and quantitative detection of coffee adulteration.

Table 3. Modeling Results of Spectral Data Based on Different Preprocessing Methods.

Model Preprocessing
Method

Training Set Prediction Set

Accuracy/% Precision Specificity Accuracy/% Precision Specificity

SVM

RAW 73.43 74.13 98.23 69.38 70.86 97.96
MSC 67.68 69.53 97.85 65.42 67.30 97.69
SG 75 75.18 98.33 74.38 75.71 98.29

SNV 76.41 77.79 97.88 68.13 97.88 72.24
SG-SNV 83.44 84.36 98.90 77.5 78.10 98.5
SG-MSC 86.09 86.92 99.07 83.13 84.26 98.88

BP

RAW 72.03 63.83 97.17 72.5 58.33 96.67
MSC 82.97 82.93 98.83 77.5 75 98
SG 70.94 56.86 96.33 71.88 58.82 95.33

SNV 78.91 63.64 96.67 77.5 55.56 94.67
SG-SNV 77.19 69.57 97.67 75.63 58.33 96.67
SG-MSC 85.31 88.37 99.17 81.25 66.67 96.67

RF

RAW 74.53 63.41 97.5 66.25 66.67 98
MSC 84.38 86.37 99 78.13 63.64 97.33
SG 76.56 71.43 98 70.13 63.33 96

SNV 79.84 68.09 97.5 76.25 63.64 97.33
SG-SNV 81.41 75.56 98.17 76.88 72.73 98
SG-MSC 82.34 75.56 98.17 76.88 60 97.33

3.4.2. Feature Wavelength Selection of Spectral Data

To further improve the classification accuracy, it is necessary to perform feature
wavelength selection on the spectral data preprocessed by SG-MSC. This process helps to
eliminate redundant information in the near-infrared spectral data and retain the feature
wavelengths that can effectively differentiate between the samples. In this study, the IWO
algorithm and BChOA algorithm were employed for feature wavelength selection.

During the feature wavelength selection process using the IWO algorithm on the
preprocessed full spectral data, the number of iterations was set to 10, with 15% of the
data used as a validation set. The process of selecting feature wavelengths for the different
coffee adulterant types using the IWO algorithm is illustrated in the left panel of Figure 4.
As shown, with the increase in iteration number, the Classification Error Rate (CER) value
gradually decreased and reached a local minimum during the fourth to eighth iteration.
Subsequently, at the ninth iteration, the CER value reached its lowest point of 0.1819 and
stabilized. At this point, a total of 40 feature wavelengths associated with the different
coffee adulterant types were selected, and their distribution is shown in the right panel of
Figure 4.

During the feature wavelength selection process using the BChOA algorithm on
the preprocessed full spectral data, the number of iterations was set to 100, with 20%
of the data used as a validation set. The process of selecting feature wavelengths for
the different coffee adulterant types using the BChOA algorithm is illustrated in the left
panel of Figure 5. In the first 19 iterations, the Classification Error Rate (CER) value
continuously decreased. However, at the 20th iteration, the CER value stabilized at 0.1937
and remained unchanged. This indicates that the feature variable combination obtained
at this point was not the optimal solution. It was not until the 60th iteration that the CER
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value continued to decrease, reaching 0.1875, after which it remained stable. Finally, a total
of 20 feature wavelengths related to the different coffee adulterant types were selected, and
their distribution is shown in the right panel of Figure 5.
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By comparing the feature wavelengths selected by the two feature selection algorithms
shown in the right panels of Figures 4 and 5, it can be observed that the feature wavelengths
selected by the IWO algorithm are primarily distributed in the 970 nm, 1165–1213 nm,
1289–1394 nm, 1448–1576 nm, and 1637 nm regions. In contrast, the BChOA algorithm
selected feature wavelengths primarily in the 1202–1239 nm, 1332 nm, and 1435–1525 nm
regions. In these regions, the frequency bands around 900–1000 nm correspond to the third
overtone of the CH, CH2, and CH3 groups, which can be attributed to the influence of the
C-H groups in phenolic compounds [30]. The frequency band around 1150 nm corresponds
to the second overtone of the C-H group, which is related to the presence of trigonelline and
caffeine in coffee, as well as starch and lipid compounds such as fatty acids and triglycerides
found in these materials. This frequency band also corresponds to the stretching vibration
of C-O groups in starch [31,32]. The frequency bands around 1200–1300 nm are related to
the stretching vibration of the C-O group, which is associated with alcohol compounds [31].
The frequency bands between 1350 and 1600 nm correspond to the first overtone of the O-H
and N-H groups, which are associated with trigonelline, chlorogenic acid, and caffeine in
coffee, as well as carbohydrates present in these materials. The vibrations around 1540 nm
in this region are associated with the C-H stretching vibration in amide compounds [31]. To
more directly compare the effectiveness of the two feature selection algorithms, this study
constructed SVM models based on the feature wavelengths selected by each algorithm, and
the results are shown in Table 4.
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Table 4. SVM Model Results Based on Different Feature Extraction Algorithms.

Feature
Selection

Data
Dimensions

Training Set Prediction Set

Accuracy/% Precision Specificity Accuracy/% Precision Specificity

FULL 228 86.09 86.92 99.07 83.13 84.26 98.88
IWO 40 96.88 96.93 99.80 92.25 92.61 99.42

BChOA 20 89.06 89.29 99.27 87.5 88.78 99.17

By comparing the results of the classification models built with the full-spectrum data,
the feature wavelengths selected by the IWO algorithm, as well as those selected by the
BChOA algorithm in Table 3, it is evident that the SVM models constructed using the feature
wavelengths from both the IWO and BChOA algorithms achieved better results compared
to the full-spectrum data. The dimensionality of the data was reduced by 82.46% and
91.23%, respectively, while the classification accuracy improved by 10.96% and 5.26%. This
demonstrates that both feature wavelength selection methods effectively retain useful in-
formation that can characterize the differences between adulterated samples. These results
suggest that feature wavelength selection can reduce model complexity while enhanc-
ing classification accuracy, which is consistent with the conclusions of Sun Jun et al. [33].
Among them, the model built using the feature wavelengths selected by the IWO algo-
rithm achieved the best classification result, with an accuracy of 92.25%. In contrast, the
model constructed using the wavelengths selected by the BChOA algorithm only reached
an accuracy of 87.5%, indicating a less optimal outcome. This is because the BChOA
algorithm selected only 20 feature wavelengths, which led to the loss of the effects of
phenolic compounds in the 900–1000 nm region, the stretching vibrations of C-O and C-C
groups in starch around 1150 nm, as well as the C-H groups in characteristic compounds
in coffee, and the lack of the 1600 nm region, which corresponds to chlorogenic acid in
coffee. Therefore, during the feature wavelength selection process, the BChOA algorithm
missed some important wavelengths relevant to the qualitative and quantitative detection
of coffee adulteration, which resulted in a slightly lower classification accuracy (by 4.75%)
compared to the model built with the feature wavelengths selected by the IWO algorithm.
As a result, IWO-SVM was selected as the model for coffee adulteration detection, with the
classification results shown in Figure 6. The IWO-SVM model only needs 40 characteristic
wavelengths to realize the qualitative and quantitative detection of coffee adulteration,
which makes up for the limitation of the qualitative or quantitative analyses in previous
studies. Compared with the traditional methods (chromatography, mass spectrometry),
the model can not only quickly and nondestructively determine whether coffee sam-
ples are adulterated (qualitative detection) but also quantitatively analyze the proportion
of adulterants.

Foods 2025, 14, x FOR PEER REVIEW 12 of 15 
 

 

Jun et al. [33]. Among them, the model built using the feature wavelengths selected by the 
IWO algorithm achieved the best classification result, with an accuracy of 92.25%. In con-
trast, the model constructed using the wavelengths selected by the BChOA algorithm only 
reached an accuracy of 87.5%, indicating a less optimal outcome. This is because the 
BChOA algorithm selected only 20 feature wavelengths, which led to the loss of the effects 
of phenolic compounds in the 900–1000 nm region, the stretching vibrations of C-O and 
C-C groups in starch around 1150 nm, as well as the C-H groups in characteristic com-
pounds in coffee, and the lack of the 1600 nm region, which corresponds to chlorogenic 
acid in coffee. Therefore, during the feature wavelength selection process, the BChOA al-
gorithm missed some important wavelengths relevant to the qualitative and quantitative 
detection of coffee adulteration, which resulted in a slightly lower classification accuracy 
(by 4.75%) compared to the model built with the feature wavelengths selected by the IWO 
algorithm. As a result, IWO-SVM was selected as the model for coffee adulteration detec-
tion, with the classification results shown in Figure 6. The IWO-SVM model only needs 40 
characteristic wavelengths to realize the qualitative and quantitative detection of coffee 
adulteration, which makes up for the limitation of the qualitative or quantitative analyses 
in previous studies. Compared with the traditional methods (chromatography, mass spec-
trometry), the model can not only quickly and nondestructively determine whether coffee 
samples are adulterated (qualitative detection) but also quantitatively analyze the propor-
tion of adulterants. 

 

Figure 6. IWO-SVM Quantitative Classification Results for Coffee Adulteration Detection. 

4. Conclusions 
This study proposes a rapid, non-destructive detection method for coffee adultera-

tion based on portable near-infrared spectroscopy technology and establishes both the 
qualitative and quantitative detection models for coffee adulteration. The results demon-
strate that preprocessing near-infrared spectral data can significantly improve model per-
formance, with the combination of SG-MSC yielding better results than the SG, MSC, 
SNV, SG-SNV, and raw spectral data. In the identification of adulterant types in coffee, 
the SVM model achieved a classification accuracy of 96.88%, a precision of 96.86%, and a 
specificity of 98.96%, with only four samples misclassified. When determining both the 
type and corresponding proportion of adulterants, the SVM model performed better than 
BP and RF using different preprocessing methods. Feature wavelengths selected by the 
IWO algorithm were more effective in representing the differences between the samples. 
Compared to the full-spectrum data and wavelengths selected by the BChOA algorithm, 
the model based on the IWO algorithm showed a significant advantage in accuracy. The 

Figure 6. IWO-SVM Quantitative Classification Results for Coffee Adulteration Detection.



Foods 2025, 14, 536 12 of 14

4. Conclusions
This study proposes a rapid, non-destructive detection method for coffee adulteration

based on portable near-infrared spectroscopy technology and establishes both the qualita-
tive and quantitative detection models for coffee adulteration. The results demonstrate that
preprocessing near-infrared spectral data can significantly improve model performance,
with the combination of SG-MSC yielding better results than the SG, MSC, SNV, SG-SNV,
and raw spectral data. In the identification of adulterant types in coffee, the SVM model
achieved a classification accuracy of 96.88%, a precision of 96.86%, and a specificity of
98.96%, with only four samples misclassified. When determining both the type and cor-
responding proportion of adulterants, the SVM model performed better than BP and RF
using different preprocessing methods. Feature wavelengths selected by the IWO algorithm
were more effective in representing the differences between the samples. Compared to the
full-spectrum data and wavelengths selected by the BChOA algorithm, the model based
on the IWO algorithm showed a significant advantage in accuracy. The IWO-SVM model
achieved a classification accuracy of 92.25%, precision of 92.61%, and specificity of 99.42%.
Thus, the method proposed in this study enables the rapid, non-destructive detection of
coffee adulteration, providing a theoretical foundation for the further development of
portable coffee adulteration detection devices. It also addresses the time-consuming and
costly issues of the traditional detection methods, while offering valuable insights for the
rapid, non-destructive detection of adulteration in other food products.

Although this study has yielded positive results, there is still room for further research
and optimization. The current study is based solely on Arabica coffee beans, which, while
cultivated worldwide, do not encompass all possible real-world scenarios or different
varieties. Therefore, future research could involve collecting data from a broader range of
coffee bean varieties, particularly spectral data under different adulteration conditions, to
increase the diversity of the data and enhance the model’s generalization ability. Addition-
ally, future work could consider integrating the model into a smartphone app, connecting
it via Bluetooth to portable near-infrared spectrometers for on-site, or real-time coffee
adulteration detection. This approach would not only improve quality control efficiency
in the coffee industry but also provide consumers with convenient and reliable tools for
ensuring product authenticity and safety. Moreover, the application of this method is not
limited to coffee adulteration detection but can also be extended to other food sectors, such
as dairy products, juices, and grains. This would help improve the accuracy and efficiency
of food quality control, product traceability, and supply chain management, offering more
effective and reliable technological support for food safety.
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