Computer Vision-Based Fire–Ice Ion Algorithm for Rapid and Nondestructive Authentication of Ziziphi Spinosae Semen and Its Counterfeits
<p>Sample information (<b>A</b>) and radar chart of colorimetric values (<b>B</b>) of ZSS, ZMS, and HAS. ZSS, Ziziphi Spinosae Semen; ZMS, Ziziphi Mauritianae Semen; HAS, Hovenia Acerba Semen.</p> "> Figure 2
<p>GLCM texture parameter histogram (<b>A</b>) and Law’s texture parameter heatmap (<b>B</b>) of ZSS, ZMS, and HAS. ZSS, Ziziphi Spinosae Semen; ZMS, Ziziphi Mauritianae Semen; HAS, Hovenia Acerba Semen.</p> "> Figure 3
<p>Fire–ice value box chart (<b>A</b>) and fire–ice chart (<b>B</b>) of ZSS, ZMS, and HAS. The letters (a–c) above the bars indicate significant differences as determined by Duncan’s multiple-range test (<span class="html-italic">p</span> < 0.05). ZSS, Ziziphi Spinosae Semen; ZMS, Ziziphi Mauritianae Semen; HAS, Hovenia Acerba Semen.</p> "> Figure 4
<p>Score plots of the PCA model for ZSS, ZMS, and HAS of raw color and texture characterization (<b>A</b>); score plots of the PLS-DA model for ZSS, ZMS, and HAS of raw color and texture characterization (<b>B</b>). ZSS, Ziziphi Spinosae Semen; ZMS, Ziziphi Mauritianae Semen; HAS, Hovenia Acerba Semen. PCA, principal component analysis; PLS-DA, partial least squares discrimination analysis.</p> "> Figure 5
<p>Cross-validation results with 200 calculations using a permutation test for ZSS, ZMS, and HAS of raw color and texture characterization (<b>A</b>); VIP plots for ZSS, ZMS, and HAS of raw color and texture characterization (<b>B</b>). ZSS, Ziziphi Spinosae Semen; ZMS, Ziziphi Mauritianae Semen; HAS, Hovenia Acerba Semen. VIP, variable importance for projecting.</p> "> Figure 6
<p>Score plots of the PCA model for ZSS, ZMS, and HAS of fire–ice ions dimensionality reduction data (<b>A</b>); score plots of the PLS-DA model for ZSS, ZMS, and HAS of fire–ice ions dimensionality reduction data (<b>B</b>). ZSS, Ziziphi Spinosae Semen; ZMS, Ziziphi Mauritianae Semen; HAS, Hovenia Acerba Semen. PCA, principal component analysis; PLS-DA, partial least squares discrimination analysis.</p> "> Figure 7
<p>Cross-validation results with 200 calculations using a permutation test for ZSS, ZMS, and HAS of fire–ice ions dimensionality reduction data (<b>A</b>); VIP plots for ZSS, ZMS, and HAS of fire–ice ions dimensionality reduction data (<b>B</b>). ZSS, Ziziphi Spinosae Semen; ZMS, Ziziphi Mauritianae Semen; HAS, Hovenia Acerba Semen. VIP, variable importance for projecting.</p> "> Figure 8
<p>Evaluation metrics of 4 machine learning algorithms (BP, SVM, DBN, and RF).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Computer Vision-Based Data Collection
2.2.1. Sample Color Value Extraction via the Python Algorithm
2.2.2. Sample Texture Extraction via the Python Algorithm
2.3. Fire–Ice Ion Dimension Reduction Algorithm
2.3.1. Fire-Ion Dimensionality Reduction Algorithm
2.3.2. Ice-Ion Dimensionality Reduction Algorithm
2.4. Discriminative Models
2.5. Data Analysis
3. Results and Discussion
3.1. Color Analysis of ZSS, ZMS and HAS
3.2. Texture Characterization of ZSS, ZMS, and HAS
3.2.1. GLCM Texture Characterization
3.2.2. Law’s Texture Characterization
3.3. Analysis of the Fire–Ice Ion Downscaling Results from ZSS, ZMS, and HAS
3.4. Multivariate Statistical Analysis
3.4.1. Raw Color and Texture Characterization of ZSS, ZMS, and HAS
3.4.2. Characterization Data Analysis After Dimensionality Reduction Processing of Fire–Ice Ions for ZSS, ZMS, and HAS
3.5. Reverse Validation Analysis Based on Machine Learning Classification Algorithms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Wang, D.; Ho, C.T.; Bai, N. Ziziphi Spinosae Semen: An updated review on pharmacological activity, quality control, and application. J. Food Biochem. 2022, 46, e14153. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; Chinese Medical Science and Technology Press: Beijing, China, 2020.
- Sun, X.Y.; Sun, F.Y. Shen Nong’s Herbal Classic; Commercial Press: Shanghai, China, 1995. [Google Scholar]
- Fang, X.S.; Hao, J.F.; Zhou, H.Y.; Zhu, L.X.; Wang, J.H.; Song, F.Q. Pharmacological studies on the sedative-hypnotic effect of Semen Ziziphi spinosae (Suanzaoren) and Radix et Rhizoma Salviae miltiorrhizae (Danshen) extracts and the synergistic effect of their combinations. Phytomedicine 2010, 17, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Yang, X.; Zhang, X.; Duan, H.; Jin, M.; Sun, Y.; Yuan, H.; Li, J.; Qi, Y.; Qiao, W. Antidepressant-like effect of the saponins part of ethanol extract from SHF. J. Ethnopharmacol. 2016, 191, 307–314. [Google Scholar] [CrossRef]
- Peng, W.H.; Hsieh, M.T.; Lee, Y.S.; Lin, Y.C.; Liao, J. Anxiolytic effect of seed of Ziziphus jujuba in mouse models of anxiety. J. Ethnopharmacol. 2000, 72, 435–441. [Google Scholar] [CrossRef]
- Zhao, J.; Li, S.P.; Yang, F.Q.; Li, P.; Wang, Y.T. Simultaneous determination of saponins and fatty acids in Ziziphus jujuba (Suanzaoren) by high-performance liquid chromatography-evaporative light scattering detection and pressurized liquid extraction. J. Chromatogr. A 2006, 1108, 188–194. [Google Scholar] [CrossRef]
- Li, H.; Ni, N.; Zhao, R.; Wang, H. Optimization of fermentation processing of spine date seed & tartary buck wheat yogurt using response surface methodology. China Dairy Ind. 2020, 48, 59–64. [Google Scholar] [CrossRef]
- Sun, S.; Liu, H.; Xu, S.; Yan, Y.; Xie, P. Quality analysis of commercial samples of Ziziphi spinosae semen (suanzaoren) by means of chromatographic fingerprinting assisted by principal component analysis. J. Pharm. Anal. 2014, 4, 217–222. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Zhang, Y.; Xie, J. Ziziphi Spinosae Semen: A Natural Herb Resource for Treating Neurological Disorders. Curr. Top. Med. Chem. 2022, 22, 1379–1391. [Google Scholar] [CrossRef] [PubMed]
- He, S.R.; Zhao, C.B.; Zhang, J.X.; Wang, J.; Wu, B.; Wu, C.J. Botanical and Traditional Uses and Phytochemical, Pharmacological, Pharmacokinetic, and Toxicological Characteristics of Ziziphi Spinosae Semen: A Review. Evid. Based Complement. Altern. Med. 2020, 2020, 5861821. [Google Scholar] [CrossRef]
- Li, M.X.; Shi, Y.B.; Zhang, J.B.; Wan, X.; Fang, J.; Wu, Y.; Fu, R.; Li, Y.; Li, L.; Su, L.L.; et al. Rapid evaluation of Ziziphi Spinosae Semen and its adulterants based on the combination of FT-NIR and multivariate algorithms. Food Chem. X 2023, 20, 101022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.B.; Li, M.X.; Zhang, Y.F.; Qin, Y.W.; Li, Y.; Su, L.L.; Li, L.; Bian, Z.H.; Lu, T.L. E-eye, flash GC E-nose and HS-GC–MS combined with chemometrics to identify the adulterants and geographical origins of Ziziphi Spinosae Semen. Food Chem. 2023, 424, 136270. [Google Scholar] [CrossRef]
- Islam, S.; Cullen, J.M. Food traceability: A generic theoretical framework. Food Control 2021, 123, 107848. [Google Scholar] [CrossRef]
- Ahmed, M.W.; Hossainy, S.J.; Khaliduzzaman, A.; Emmert, J.L.; Kamruzzaman, M. Nondestructive optical sensing technologies for advancing the egg industry toward Industry 4.0: A review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4378–4403. [Google Scholar] [CrossRef] [PubMed]
- Bhagya Raj, G.V.S.; Dash, K.K. Comprehensive study on applications of artificial neural network in food process modeling. Crit. Rev. Food Sci. Nutr. 2022, 62, 2756–2783. [Google Scholar] [CrossRef] [PubMed]
- Ekramirad, N.; Khaled, A.Y.; Doyle, L.E.; Loeb, J.R.; Donohue, K.D.; Villanueva, R.T.; Adedeji, A.A. Nondestructive Detection of Codling Moth Infestation in Apples Using Pixel-Based NIR Hyperspectral Imaging with Machine Learning and Feature Selection. Foods 2021, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Ladika, G.; Strati, I.F.; Tsiaka, T.; Cavouras, D.; Sinanoglou, V.J. On the Assessment of Strawberries’ Shelf-Life and Quality, Based on Image Analysis, Physicochemical Methods, and Chemometrics. Foods 2024, 13, 234. [Google Scholar] [CrossRef]
- Altaf, S.; Ahmad, S.; Zaindin, M.; Soomro, M.W. Xbee-Based WSN Architecture for Monitoring of Banana Ripening Process Using Knowledge-Level Artificial Intelligent Technique. Sensors 2020, 20, 4033. [Google Scholar] [CrossRef]
- Crichton SO, J.; Kirchner, S.M.; Porley, V.; Retz, S.; von Gersdorff, G.; Hensel, O.; Sturm, B. High pH thresholding of beef with VNIR hyperspectral imaging. Meat Sci. 2017, 134, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Kior, A.; Yudina, L.; Zolin, Y.; Sukhov, V.; Sukhova, E. RGB Imaging as a Tool for Remote Sensing of Characteristics of Terrestrial Plants: A Review. Plants 2024, 13, 1262. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Xu, G.; Jiang, C.; Li, J.; Zheng, J. Research Note: L*a*b* color space for prediction of eggshell pigment content in differently colored eggs. Poult. Sci. 2022, 101, 101942. [Google Scholar] [CrossRef]
- Wang, S.; Das, A.K.; Pang, J.; Liang, P. Real-time monitoring the color changes of large yellow croaker (Larimichthys crocea) fillets based on hyperspectral imaging empowered with artificial intelligence. Food Chem. 2022, 382, 132343. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Huang, W.; Zhang, X.; Li, X. GLCM: Global-Local Captioning Model for Remote Sensing Image Captioning. IEEE Trans. Cybern. 2023, 53, 6910–6922. [Google Scholar] [CrossRef]
- Qiongyan, L.; Cai, J.; Berger, B.; Okamoto, M.; Miklavcic, S.J. Detecting spikes of wheat plants using neural networks with Laws texture energy. Plant Methods 2017, 13, 83. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Fu, R.; Shi, Y.; Liu, C.; Yang, C.; Su, Y.; Lu, T.; Zhou, P.; He, W.; Guo, Q.; et al. Optimizing BP neural network algorithm for Pericarpium Citri Reticulatae (Chenpi) origin traceability based on computer vision and ultra-fast gas-phase electronic nose data fusion. Food Chem. 2024, 442, 138408. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Fei, C.; Fu, R.; Xiao, X.; Qin, Y.; Li, X.; Guo, Z.; Huang, J.; Ji, D.; Li, L.; et al. Polygonati Rhizoma varieties and origins traceability based on multivariate data fusion combined with an artificial intelligence classification algorithm. Food Chem. 2024, 460 Pt 1, 140350. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Wu, W.; Yu, T. Graph Random Forest: A Graph Embedded Algorithm for Identifying Highly Connected Important Features. Biomolecules 2023, 13, 1153. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Mumtaz, R.; Shafi, U.; Zaidi SM, H. Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms. PeerJ Comput. Sci. 2021, 7, e536. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhu, Y.; Song, L.; Su, X.; Li, J.; Zheng, J.; Zhu, X.; Ren, L.; Wang, W.; Li, X. Optimizing window size and directional parameters of GLCM texture features for estimating rice AGB based on UAVs multispectral imagery. Front. Plant Sci. 2023, 14, 1284235. [Google Scholar] [CrossRef]
- Dheepak, G.; Christaline, J.A.; Vaishali, D. Brain tumor classification: A novel approach integrating GLCM, LBP and composite features. Front. Oncol. 2024, 13, 1248452. [Google Scholar] [CrossRef]
- Ghodrati, S.; Kandi, S.G.; Mohseni, M. How accurately do different computer-based texture characterization methods predict material surface coarseness? A guideline for effective online inspection. J. Opt. Soc. America. A Opt. Image Sci. Vis. 2018, 35, 712–725. [Google Scholar] [CrossRef]
- Acharya, U.R.; Sree, S.V.; Krishnan, M.M.R.; Saba, L.; Molinari, F.; Shafique, S.; Nicolaides, A.; Suri, J.S. Carotid far wall characterization using LBP, Laws’ Texture Energy and wall variability: A novel class of Atheromatic systems. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August—1 September 2012; pp. 448–451. [Google Scholar] [CrossRef]
- Xu, J.-W.; Tian, T.-T.; Zhao, Y. Effect of extrusion processing on physicochemical and functional properties of water-soluble dietary fiber and water-insoluble dietary fiber of whole grain highland barley. Food Med. Homol. 2025, 2, 9420032. [Google Scholar] [CrossRef]
- Underhill, A.N.; Hirsch, C.D.; Clark, M.D. Evaluating and Mapping Grape Color Using Image-Based Phenotyping. Plant Phenomics 2020, 2020, 8086309. [Google Scholar] [CrossRef]
- Zhou, Z.R.; Li, J.L.; Wang, Y.X.; Wang, Z.Q.; Yu, Y.T. Raman identification of adulteration in poly-alpha-olefin synthetic lubricant using principal component analysis and two-dimensional correlation spectroscopy. J. Mol. Struct. 2024, 1295, 136677. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, L.; Yan, J.; Yan, X.; Chen, Z. Using optical coherence tomography to assess luster of pearls: Technique suitability and insights. Sci. Rep. 2024, 14, 11126. [Google Scholar] [CrossRef]
- Cao, Z.-X.; Li, Y.-X.; Ma, A.-J.; Tian, Y.-L. Analysis and comparison of staminate flowers components in five Chinese walnut varieties. Food Med. Homol. 2024, 1, 9420005. [Google Scholar] [CrossRef]
- Yang, S.B.; Liu, Z.M.; Wang, Y.Z. Improvement on the discrimination of Amomum tsao-ko origins using NIR combined with sequential preprocessing through orthogonalization (SPORT) and PLS-DA. Infrared Phys. Technol. 2023, 134, 104906. [Google Scholar] [CrossRef]
- Lu, Y.; Bao, T.; Mo, J.; Ni, J.; Chen, W. Research advances in bioactive components and health benefits of jujube (Ziziphus jujuba Mill.) fruit. J. Zhejiang Univ. Sci. B 2021, 22, 431–449. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.Y.; Bai, C.H.; Chen, Y.L.; Yu, L.L.; Wu, W.J.; Hu, K.F. Comparing univariate filtration preceding and succeeding PLS-DA analysis on the differential variables/metabolites identified from untargeted LC–MS metabolomics data. Anal. Chim. Acta 2024, 1287, 342103. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Shao, X.; Wen, G.; Song, Y.; Fu, R.; Xiao, X.; Lu, T.; Zhou, P.; Guo, Q.; Shi, H.; et al. Computer Vision-Based Fire–Ice Ion Algorithm for Rapid and Nondestructive Authentication of Ziziphi Spinosae Semen and Its Counterfeits. Foods 2025, 14, 5. https://doi.org/10.3390/foods14010005
Chen P, Shao X, Wen G, Song Y, Fu R, Xiao X, Lu T, Zhou P, Guo Q, Shi H, et al. Computer Vision-Based Fire–Ice Ion Algorithm for Rapid and Nondestructive Authentication of Ziziphi Spinosae Semen and Its Counterfeits. Foods. 2025; 14(1):5. https://doi.org/10.3390/foods14010005
Chicago/Turabian StyleChen, Peng, Xutong Shao, Guangyu Wen, Yaowu Song, Rao Fu, Xiaoyan Xiao, Tulin Lu, Peina Zhou, Qiaosheng Guo, Hongzhuan Shi, and et al. 2025. "Computer Vision-Based Fire–Ice Ion Algorithm for Rapid and Nondestructive Authentication of Ziziphi Spinosae Semen and Its Counterfeits" Foods 14, no. 1: 5. https://doi.org/10.3390/foods14010005
APA StyleChen, P., Shao, X., Wen, G., Song, Y., Fu, R., Xiao, X., Lu, T., Zhou, P., Guo, Q., Shi, H., & Fei, C. (2025). Computer Vision-Based Fire–Ice Ion Algorithm for Rapid and Nondestructive Authentication of Ziziphi Spinosae Semen and Its Counterfeits. Foods, 14(1), 5. https://doi.org/10.3390/foods14010005