The Race Against Time for the Enhancement of African National Strategic Plans in the Neuroblastoma Research Heterogeneity
<p>Diagram of Study Selection.</p> "> Figure 2
<p>The overall annual research publication on neuroblastoma and citation performance of African countries from the year of 2000 to 2024.</p> "> Figure 3
<p>Publication performance of African countries in the neuroblastoma research field from the year of 2000 to 2024, presented as: (<b>a</b>) research activity; (<b>b</b>) sustainable development goals.</p> "> Figure 3 Cont.
<p>Publication performance of African countries in the neuroblastoma research field from the year of 2000 to 2024, presented as: (<b>a</b>) research activity; (<b>b</b>) sustainable development goals.</p> "> Figure 4
<p>Overall performance of Africa’s neuroblastoma research publications based on different research areas from the year of 2000 to 2024.</p> "> Figure 5
<p>Dominant and less dominant research areas under the neuroblastoma research field in different African countries from the year 2000 to 2024.</p> "> Figure 6
<p>Declared and undeclared funding agencies and awarded funds for neuroblastoma research in active African countries from the year 2000 to 2024.</p> "> Figure 7
<p>Cooperation analysis among African countries with different international countries which are active in neuroblastoma research field from the year period of 2000 to 2024. Key: The thicker the line the greater the cooperation.</p> "> Figure 8
<p>Correlational data of neuroblastoma research Africa: (<b>a</b>) Trends of correlations between research publications and awarded funds per African country; (<b>b</b>) Pearson correlation of research publications and awarded funds. Key: * No awarded funding.</p> ">
Abstract
:1. Introduction
1.1. Historical Background
1.2. Epidemiology of Neuroblastoma
1.3. Classification of Neuroblastoma
1.4. Potential Therapeutic Targets and Treatments
2. Methods
2.1. Data Extraction
2.2. Data and Visualized Analysis
3. Results
3.1. Overall African Countries’ Publications, Citation Performance, and H-Index
3.2. African Countries’ Research Activity and Sustainable Development
3.3. African Countries Dominate Research Areas and Funds
3.4. Cooperation of African Countries/Regions
3.5. Correlational Data of African Neuroblastoma Research
4. Discussion
Limitations of the Study
5. Conclusions
Five-Point Plan
- Funding plan: To intensify the visibility of the African continent, neuroblastoma research must be a significant constituent of each national cancer control plan through Africa, allied to hypothesize federal funding. Moreover, African academic and research institutes need to develop independent sources of funding for both federal and philanthropic gestures. This will permit Africans to initiate their particular research agenda which will lead to less reliance on international research funders. Government, researchers and the public in general must engage with the philanthropic sector for significant contributions to neuroblastoma research funding.
- GDP plan: It is important to strengthen African countries’ national research provisional streams from governments and private funders. Moreover, African countries have devoted to use 1% of GDP for gross domestic expenditure in research and development. This percentage must not be partially utilized and 10% of this 1% should be allocated to cancer-related research areas. This is prompted by the prevalence, progression and complication of cancer prevention and treatment could be singled out for special consideration.
- Authors and Publications plan: Capacity building of neuroblastoma researchers must be encouraged to publish in trustworthy journals that are indexed, and fee waiver must be provided for low-income African countries. Publishing in such journals for researcher’s advancement will add positively to the research output of the African continent. Moreover, researchers must receive financial rewards for excellence in African research outputs as a form of encouragement to further pursue neuroblastoma-based research. An increase in African neuroblastoma research advocacy campaigns is essential for the elevation of African profile research and its significance worldwide.
- Collaboration plan: The pan-African cancer research repository has to reinforce the establishment and implement a different collaborative research model, comprising of capacity building, to improve international, intercontinental, and regional collaborations. In addition, implementation of the development of research through Africa which includes multi-linguistic collaborations that encourage research in Lusophone and Francophone countries of Africa, ensures that all African continents are represented.
- SDGs plan: African universities must also focus on quality research especially at a post-graduate level of Masters and Doctorate stages, combined with the economic impact of research and accomplishing sustainable development goals.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aygun, N. Biological and genetic features of neuroblastoma and their clinical importance. Curr. Pediatr. Rev. 2018, 14, 73–90. [Google Scholar] [CrossRef] [PubMed]
- Barker, L.M.; Pendergrass, T.W.; Sanders, J.E.; Hawkins, D.S. Survival after recurrence of Ewing’s sarcoma family of tumors. J. Clin. Oncol. 2005, 23, 4354–4362. [Google Scholar] [CrossRef] [PubMed]
- Leavey, P.J.; Mascarenhas, L.; Marina, N.; Chen, Z.; Krailo, M.; Miser, J.; Brown, K.; Tarbell, N.; Bernstein, M.L.; Granowetter, L.; et al. Prognostic factors for patients with Ewing sarcoma (EWS) at first recurrence following multi-modality therapy: A report from the Children’s Oncology Group. Pediatr. Blood Cancer 2008, 51, 334–338. [Google Scholar] [CrossRef]
- Dantonello, T.M.; Int-Veen, C.; Winkler, P.; Leuschner, I.; Schuck, A.; Schmidt, B.F.; Lochbuehler, H.; Kirsch, S.; Hallmen, E.; Veit-Friedrich, I.; et al. Initial patient characteristics can predict pattern and risk of relapse in localized rhabdomyosarcoma. J. Clin. Oncol. 2008, 26, 406–413. [Google Scholar] [CrossRef]
- Malempati, S.; Gaynon, P.S.; Sather, H.; La, M.K.; Stork, L.C. Children’s Oncology Group. Outcome after relapse among children with standard-risk acute lymphoblastic leukemia: Children’s Oncology Group study CCG-1952. J. Clin. Oncol. 2007, 25, 5800–5807. [Google Scholar] [CrossRef]
- Nguyen, K.; Devidas, M.; Cheng, S.C.; La, M.; Raetz, E.A.; Carroll, W.L.; Winick, N.J.; Hunger, S.P.; Gaynon, P.S.; Loh, M.L. Factors influencing survival after relapse from acute lymphoblastic leukemia: A Children’s Oncology Group study. Leukemia 2008, 22, 2142–2150. [Google Scholar] [CrossRef] [PubMed]
- London, W.B.; Castel, V.; Monclair, T.; Ambros, P.F.; Pearson, A.D.; Cohn, S.L.; Berthold, F.; Nakagawara, A.; Ladenstein, R.L.; Iehara, T.; et al. Clinical and biologic features predictive of survival after relapse of neuroblastoma: A report from the International Neuroblastoma Risk Group project. J. Clin. Oncol. 2011, 29, 3286–3292. [Google Scholar] [CrossRef]
- Hadley, G.P.; van Heerden, J. High-risk neuroblastoma in a sub-Saharan African country: Telling it like it is. Trop. Doct. 2017, 47, 370–374. [Google Scholar] [CrossRef]
- Kruger, M.; Hendricks, M.; Davidson, A.; Stefan, C.D.; van Eyssen, A.L.; Uys, R.; van Zyl, A.; Hesseling, P. Childhood cancer in Africa. Pediatr. Blood Cancer 2014, 61, 587–592. [Google Scholar] [CrossRef]
- Stefan, C.; Bray, F.; Ferlay, J.; Liu, B.; Maxwell Parkin, D. Cancer of childhood in sub-Saharan Africa. Ecancermedicalscience 2017, 11, 755. [Google Scholar] [CrossRef]
- Steliarova-Foucher, E.; Colombet, M.; Ries, L.A.; Moreno, F.; Dolya, A.; Bray, F.; Hesseling, P.; Shin, H.Y.; Stiller, C.A.; Bouzbid, S.; et al. International incidence of childhood cancer, 2001–2010: A population-based registry study. Lancet Onc. 2017, 18, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Park, J.R.; Bagatell, R.; London, W.B.; Maris, J.M.; Cohn, S.L.; Mattay, K.K.; Hogarty, M. COG Neuroblastoma Committee. Children’s Oncology Group’s 2013 blueprint for research: Neuroblastoma. Pediatr Blood Cancer 2013, 60, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Pinto, N.R.; Applebaum, M.A.; Volchenboum, S.L.; Matthay, K.K.; London, W.B.; Ambros, P.F.; Nakagawara, A.; Berthold, F.; Schleiermacher, G.; Park, J.R.; et al. Advances in Risk Classification and Treatment Strategies for Neuroblastoma. J. Clin. Oncol. 2015, 33, 3008–3017. [Google Scholar] [CrossRef] [PubMed]
- Martynov, I.; Klima-Frysch, J.; Schoenberger, J. A scientometric analysis of neuroblastoma research. BMC Cancer 2020, 20, 486. [Google Scholar] [CrossRef]
- Bray, F.; Soerjomataram, I. The Changing Global Burden of Cancer: Transitions in Human Development and Implications for Cancer Prevention and Control. In Cancer: Disease Control Priorities, 3rd ed.; Gelband, H., Jha, P., Sankaranarayanan, R., Horton, S., Eds.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2015; Volume 3, pp. 43–59. [Google Scholar] [CrossRef]
- Gouda, H.N.; Charlson, F.; Sorsdahl, K.; Ahmadzada, S.; Ferrari, A.J.; Erskine, H.; Leung, J.; Santamauro, D.; Lund, C.; Aminde, L.N.; et al. Burden of non-communicable diseases in sub-Saharan Africa, 1990–2017: Results from the Global Burden of Disease Study 2017. Lancet Glob Health 2019, 7, 1375–1387. [Google Scholar] [CrossRef]
- World Health Organization. National Cancer Control Programmes: Policies and Managerial Guidelines. 2002. Available online: https://www.afro.who.int/sites/default/files/2017-06/CC_DiagnosisTTT.pdf (accessed on 16 July 2024).
- Duncan, K.; Cira, M.K.; Barango, P.; Trimble, E.L. Challenges and opportunities in the creation and implementation of cancer-control plans in Africa. Ecancermedicalscience 2019, 13, 938. [Google Scholar] [CrossRef]
- Conradie, A.; Duys, R.; Forget, P.; Biccard, B.M. Barriers to clinical research in Africa: A quantitative and qualitative survey of clinical researchers in 27 African countries. Br. J. Anaesth. 2018, 121, 813–821. [Google Scholar] [CrossRef]
- McKenzie, F.; Zietsman, A.; Galukande, M.; Anele, A.; Adisa, C.; Cubasch, H.; Parham, G.; Anderson, B.O.; Abedi-Ardekani, B.; Schuz, J.; et al. African Breast Cancer-Disparities in Outcomes (ABC-DO): Protocol of a multicountry mobile health prospective study of breast cancer survival in sub-Saharan Africa. BMJ Open 2016, 6, 2–8. [Google Scholar] [CrossRef]
- Strother, R.M.; Asirwa, F.C.; Busakhala, N.B.; Njiru, E.; Orang’o, E.; Njuguna, F.; Carter, J.; Mega, A.; Mostert, S.; Kaspers, G.J.; et al. AMPATH-Oncology: A model for comprehensive cancer care in sub-Saharan Africa. J. Cancer Policy 2013, 1, 42–48. [Google Scholar] [CrossRef]
- Kingham, T.P.; Alatise, O.I.; Vanderpuye, V.; Casper, C.; Abantanga, F.A.; Kamara, T.B.; Olopade, O.I.; Habeebu, M.; Abdulkareem, F.B.; Denny, L. Treatment of cancer in sub-Saharan Africa. Lancet Oncol. 2013, 14, 158–167. [Google Scholar] [CrossRef]
- Mutebi, M.; Lewison, G.; Aggarwal, A.; Alatise, O.I.; Booth, C.; Cira, M.; Grover, S.; Ginsburg, O.; Gralow, J.; Gueye, S.; et al. Cancer research across Africa: A comparative bibliometric analysis. BMJ Glob. Health 2022, 7, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Virchow, R. Hyperplasie der zirbel und der nebennieren. In Die Krankhaften Geschwulste, 2nd ed.; A. Hirschwald: Berlin, Germany, 1864; pp. 49–152. [Google Scholar]
- Rothenberg, A.B.; Berdon, W.E.; D’Angio, G.J.; Yamashiro, D.J.; Cowles, R.A. The association between neuroblastoma and opsoclonus-myoclonus syndrome: A historical review. Pediatr. Radiol. 2009, 39, 723–726. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.H. Neurocytoma or neuroblastoma, a kind of tumor not generally recognized. J. Exp. Med. 1910, 12, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Colon, N.C.; Chung, D.H. Neuroblastoma. Adv. Pediatr. 2011, 58, 297–311. [Google Scholar] [CrossRef]
- Smith, M.A.; Altekruse, S.F.; Adamson, P.C.; Reaman, G.H.; Seibel, N.L. Declining childhood and adolescent cancer mortality. J. Cancer 2014, 120, 2497–2506. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute: (NCCR) Explorer: An Interactive Website for NCCR Cancer Statistics. 2023. Available online: https://nccrexplorer.ccdi.cancer.gov/ (accessed on 15 December 2023).
- Stiller, C.A. Epidemiology and genetics of childhood cancer. Oncogene 2004, 23, 6429–6444. [Google Scholar] [CrossRef]
- Baade, P.D.; Youlden, D.R.; Valery, P.C.; Hassall, T.; Ward, L.; Green, A.C.; Aitken, J.F. Trends in incidence of childhood cancer in Australia, 1983–2006. Br. J. Cancer 2010, 102, 620–626. [Google Scholar] [CrossRef]
- Xie, L.; Onysko, J.; Morrison, H. Childhood cancer incidence in Canada: Demographic and geographic variation of temporal trends (1992–2010). Health Promot. Chronic Dis. Prev. Can. 2018, 38, 79–115. [Google Scholar] [CrossRef]
- Parikh, N.S.; Howard, S.C.; Chantada, G.; Israels, T.; Khattab, M.; Alcasabas, P.; Lam, C.G.; Faulkner, L.; Park, J.R.; London, W.B.; et al. SIOP-PODC adapted risk stratification and treatment guidelines: Recommendations for neuroblastoma in low- and middle-income settings. Pediatr. Blood Cancer 2015, 62, 1305–1316. [Google Scholar] [CrossRef]
- Spix, C.; Pastore, G.; Sankila, R.; Stiller, C.A.; Steliarova-Foucher, E. Neuroblastoma incidence and survival in European children (1978–1997): Report from the Automated Childhood Cancer Information System project. Eur. J. Cancer 2006, 42, 2081–2091. [Google Scholar] [CrossRef]
- Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and adolescent cancer statistics, 2014. CA Cancer J. Clin. 2014, 64, 83–103. [Google Scholar] [CrossRef] [PubMed]
- van Heerden, J.; Kruger, M. Management of neuroblastoma in limited-resource settings. World J. Clin. Oncol. 2020, 11, 629–643. [Google Scholar] [CrossRef] [PubMed]
- Forouzani-Moghaddam, M.J.; Nabian, P.; Gholami, A.; Dehghanbaghi, N.; Azizipanah, M.; Jokar, K.; Eslami, M.; Kargarian, Z.; Tamehri, M.; Zare, N.; et al. A review of neuroblastoma: Prevalence, diagnosis, related genetic factors, and treatment. Iran. J. Ped Hematol. Oncol. 2018, 8, 237–246. [Google Scholar]
- Cao, Y.; Jin, Y.; Yu, J.; Wang, J.; Yan, J.; Zhao, Q. Research progress of neuroblastoma related gene variations. Oncotarget 2017, 8, 18444–18455. [Google Scholar] [CrossRef] [PubMed]
- van Heerden, J.; Abraham, N.; Schoeman, J.; Reynders, D.; Singh, E.; Kruger, M. Reporting Incidences of Neuroblastoma in Various Resource Settings. JCO Glob. Oncol. 2021, 7, 947–964. [Google Scholar] [CrossRef]
- Moreno, F.; Lopez Marti, J.; Palladino, M.; Lobos, P.; Gualtieri, A.; Cacciavillano, W. Childhood Neuroblastoma: Incidence and Survival in Argentina. Report from the National Pediatric Cancer Registry, ROHA Network 2000–2012. Pediatr. Blood Cancer 2016, 63, 1362–1367. [Google Scholar] [CrossRef]
- Fathi, A.; Bahadoram, M.; Amani, F. Epidemiology of Childhood Cancer in Northwest Iran. Asian Pac. J. Cancer Prev. 2015, 16, 5459–5462. [Google Scholar] [CrossRef]
- Mehrvar, A.; Sadeghi, Y.; Mehrvar, N.; Faranoush, M.; Alebouyeh, M.; Roozrokh, M.; Tashvighi, M. Prognosis, Survival and Management of Pediatric Patients with Neuroblastoma: A 12-Year Experience from a Single Center Study. Acta Med. Iran 2023, 61, 275–281. [Google Scholar] [CrossRef]
- Navalkele, P.; O’Dorisio, M.S.; O’Dorisio, T.M.; Zamba, G.K.; Lynch, C.F. Incidence, survival, and prevalence of neuroendocrine tumors versus neuroblastoma in children and young adults: Nine standard SEER registries, 1975–2006. Pediatr. Blood Cancer 2011, 56, 50–57. [Google Scholar] [CrossRef]
- Izbicki, T.; Mazur, J.; Izbicka, E. Epidemiology and etiology of neuroblastoma: An overview. Anticancer. Res. 2003, 23, 755–760. [Google Scholar]
- Vo, K.T.; Matthay, K.K.; Neuhaus, J.; London, W.B.; Hero, B.; Ambros, P.F.; Nakagawara, A.; Miniati, D.; Wheeler, K.; Pearson, A.D.; et al. Clinical, biologic, and prognostic differences on the basis of primary tumor site in neuroblastoma: A report from the international neuroblastoma risk group project. J. Clin. Oncol. 2014, 32, 3169–3176. [Google Scholar] [CrossRef] [PubMed]
- DuBois, S.G.; Kalika, Y.; Lukens, J.N.; Brodeur, G.M.; Seeger, R.C.; Atkinson, J.B.; Haase, G.M.; Black, C.T.; Perez, C.; Shimada, H.; et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J. Pediatr. Hematol. Oncol. 1999, 21, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Brodeur, G.M.; Bagatell, R. Mechanisms of neuroblastoma regression. Nat. Rev. Clin. Oncol. 2014, 11, 704–713. [Google Scholar] [CrossRef]
- Monclair, T.; Brodeur, G.M.; Ambros, P.F.; Brisse, H.J.; Cecchetto, G.; Holmes, K.; Kaneko, M.; London, W.B.; Matthay, K.K.; Nuchtern, J.G.; et al. INRG Task Force. The International Neuroblastoma Risk Group (INRG) staging system: An INRG Task Force report. J. Clin. Oncol. 2009, 27, 298–303. [Google Scholar] [CrossRef]
- Smith, V.; Foster, J. High-Risk Neuroblastoma Treatment Review. Children 2018, 5, 114. [Google Scholar] [CrossRef]
- Brodeur, G.M.; Pritchard, J.; Berthold, F.; Carlsen, N.L.; Castel, V.; Castelberry, R.P.; De Bernardi, B.; Evans, A.E.; Favrot, M.; Hedborg, F. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J. Clin. Oncol. 1993, 11, 1466–1477. [Google Scholar] [CrossRef]
- Hero, B.; Simon, T.; Spitz, R.; Ernestus, K.; Gnekow, A.K.; Scheel-Walter, H.G.; Schwabe, D.; Schilling, F.H.; Benz-Bohm, G.; Berthold, F. Localized infant neuroblastomas often show spontaneous regression: Results of the prospective trials NB95-S and NB97. J. Clin. Oncol. 2008, 26, 1504–1510. [Google Scholar] [CrossRef] [PubMed]
- Bénard, J.; Raguénez, G.; Kauffmann, A.; Valent, A.; Ripoche, H.; Joulin, V.; Job, B.; Danglot, G.; Cantais, S.; Robert, T.; et al. MYCN-non-amplified metastatic neuroblastoma with good prognosis and spontaneous regression: A molecular portrait of stage 4S. Mol. Oncol. 2008, 2, 261–271. [Google Scholar] [CrossRef]
- Nishio, N.; Mimaya, J.; Horikoshi, Y.; Okada, N.; Nara, T.; Takashima, Y.; Urushihara, N.; Hasegawa, S.; Aoki, K.; Hamasaki, M. Spontaneous regression of metastases including meningeal metastasis after gross resection of primary tumor in an infant with stage 4 neuroblastoma. J. Pediatr. Hematol. Oncol. 2006, 28, 537–539. [Google Scholar] [CrossRef]
- Louis, C.U.; Shohet, J.M. Neuroblastoma: Molecular pathogenesis and therapy. Annu. Rev. Med. 2015, 66, 49–63. [Google Scholar] [CrossRef]
- Cohn, S.L.; Pearson, A.D.; London, W.B.; Monclair, T.; Ambros, P.F.; Brodeur, G.M.; Faldum, A.; Hero, B.; Iehara, T.; Machin, D.; et al. The International Neuroblastoma Risk Group (INRG) classification system: An INRG task force report. J. Clin. Oncol. 2009, 27, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, J.I.; Dyberg, C.; Fransson, S.; Wickström, M. Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacol. Res. 2018, 131, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Valentino, L.; Moss, T.; Olson, E.; Wang, H.J.; Elashoff, R.; Ladisch, S. Shed tumor gangliosides and progression of human neuroblastoma. Blood 1990, 75, 1564–1567. [Google Scholar] [CrossRef]
- Adhikary, S.; Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol. 2005, 6, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Mossé, Y.P.; Laudenslager, M.; Longo, L.; Cole, K.A.; Wood, A.; Attiyeh, E.F.; Laquaglia, M.J.; Sennett, R.; Lynch, J.E.; Perri, P.; et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 2008, 455, 930–935. [Google Scholar] [CrossRef]
- Lock, R.; Carol, H.; Houghton, P.J.; Morton, C.L.; Kolb, E.A.; Gorlick, R.; Reynolds, C.P.; Maris, J.M.; Keir, S.T.; Wu, J.; et al. Initial testing (stage 1) of the BH3 mimetic ABT-263 by the pediatric preclinical testing program. Pediatr. Blood Cancer 2008, 50, 1181–1189. [Google Scholar] [CrossRef]
- Maris, J.M. Recent advances in neuroblastoma. N. Engl. J. Med. 2010, 362, 2202–2211. [Google Scholar] [CrossRef]
- Matthay, K.K.; George, R.E.; Yu, A.L. Promising therapeutic targets in neuroblastoma. Clin. Cancer Res. 2012, 18, 2740–2753. [Google Scholar] [CrossRef]
- Greengard, E.G. Molecularly Targeted Therapy for Neuroblastoma. Children 2018, 5, 142. [Google Scholar] [CrossRef]
- Nazha, B.; Inal, C.; Owonikoko, T.K. Disialoganglioside GD2 Expression in Solid Tumors and Role as a Target for Cancer Therapy. Front. Oncol. 2020, 10, 1000. [Google Scholar] [CrossRef]
- Campbell, K.; Naranjo, A.; Hibbitts, E.; Gastier-Foster, J.M.; Bagatell, R.; Irwin, M.S.; Shimada, H.; Hogarty, M.; Park, J.R.; DuBois, S.G. Association of heterogeneous MYCN amplification with clinical features, biological characteristics and outcomes in neuroblastoma: A report from the Children’s Oncology Group. Eur. J. Cancer 2020, 133, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Wulf, A.M.; Moreno, M.M.; Paka, C.; Rampasekova, A.; Liu, K.J. Defining Pathological Activities of ALK in Neuroblastoma, a Neural Crest-Derived Cancer. Int. J. Mol. Sci. 2021, 22, 11718. [Google Scholar] [CrossRef] [PubMed]
- Zafar, A.; Wang, W.; Liu, G.; Wang, X.; Xian, W.; McKeon, F.; Foster, J.; Zhou, J.; Zhang, R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med. Res. Rev. 2021, 41, 961–1021. [Google Scholar] [CrossRef] [PubMed]
- Takatori, A.; Hossain, M.S.; Ogura, A.; Akter, J.; Nakamura, Y.; Nakagawara, A. NLRR1 Is a Potential Therapeutic Target in Neuroblastoma and MYCN-Driven Malignant Cancers. Front. Oncol. 2021, 11, 669667. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Hao, X.; Yang, B.; Zhang, Y.; Sun, L.; Hua, Y.; Yang, L.; Yu, J.; Zhao, J.; Hou, L.; et al. MYCN-amplified neuroblastoma cell-derived exosomal miR-17-5p promotes proliferation and migration of non-MYCN amplified cells. Mol. Med. Rep. 2021, 23, 1. [Google Scholar] [CrossRef]
- Mossé, Y.P.; Lim, M.S.; Voss, S.D.; Wilner, K.; Ruffner, K.; Laliberte, J.; Rolland, D.; Balis, F.M.; Maris, J.M.; Weigel, B.J.; et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: A Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013, 14, 472–480. [Google Scholar] [CrossRef]
- Saulnier Sholler, G.L.; Gerner, E.W.; Bergendahl, G.; MacArthur, R.B.; VanderWerff, A.; Ashikaga, T.; Bond, J.P.; Ferguson, W.; Roberts, W.; Wada, R.K.; et al. A Phase I Trial of DFMO Targeting Polyamine Addiction in Patients with Relapsed/Refractory Neuroblastoma. PLoS ONE 2015, 10, 5. [Google Scholar] [CrossRef]
- Reed, D.R.; Mascarenhas, L.; Manning, K.; Hale, G.A.; Goldberg, J.; Gill, J.; Sandler, E.; Isakoff, M.S.; Smith, T.; Caracciolo, J.; et al. Pediatric phase I trial of oral sorafenib and topotecan in refractory or recurrent pediatric solid malignancies. Cancer Med. 2016, 5, 294–303. [Google Scholar] [CrossRef]
- Okada, K.; Nakano, Y.; Yamasaki, K.; Nitani, C.; Fujisaki, H.; Hara, J. Sorafenib treatment in children with relapsed and refractory neuroblastoma: An experience of four cases. Cancer Med. 2016, 5, 1947–1949. [Google Scholar] [CrossRef]
- Navid, F.; Christensen, R.; Inaba, H.; Li, L.; Chen, Z.; Cai, X.; Regel, J.; Baker, S.D. Alternative formulations of sorafenib for use in children. Pediatr. Blood Cancer 2013, 60, 1642–1646. [Google Scholar] [CrossRef]
- Yu, A.L.; Gilman, A.L.; Ozkaynak, M.F.; London, W.B.; Kreissman, S.G.; Chen, H.X.; Smith, M.; Anderson, B.; Villablanca, J.G.; Matthay, K.K.; et al. Children’s Oncology Group. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 2010, 363, 1324–1334. [Google Scholar] [CrossRef]
- Ladenstein, R.; Pötschger, U.; Valteau-Couanet, D.; Luksch, R.; Castel, V.; Yaniv, I.; Laureys, G.; Brock, P.; Michon, J.M.; Owens, C.; et al. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): A multicentre, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1617–1629. [Google Scholar] [CrossRef] [PubMed]
- Daw, N.C.; Furman, W.L.; Stewart, C.F.; Iacono, L.C.; Krailo, M.; Bernstein, M.L.; Dancey, J.E.; Speights, R.A.; Blaney, S.M.; Croop, J.M.; et al. Children’s Oncology Group. Phase I and pharmacokinetic study of gefitinib in children with refractory solid tumors: A Children’s Oncology Group Study. J. Clin. Oncol. 2005, 23, 6172–6180. [Google Scholar] [CrossRef]
- Furman, W.L.; McGregor, L.M.; McCarville, M.B.; Onciu, M.; Davidoff, A.M.; Kovach, S.; Hawkins, D.; McPherson, V.; Houghton, P.J.; Billups, C.A.; et al. A single-arm pilot phase II study of gefitinib and irinotecan in children with newly diagnosed high-risk neuroblastoma. Invest. New Drugs 2012, 30, 1660–1670. [Google Scholar] [CrossRef] [PubMed]
- Donfrancesco, A.; De Ioris, M.A.; McDowell, H.P.; De Pasquale, M.D.; Ilari, I.; Jenkner, A.; Castellano, A.; Cialfi, S.; De Laurentis, C.; Dominici, C. Gefitinib in combination with oral topotecan and cyclophosphamide in relapsed neuroblastoma: Pharmacological rationale and clinical response. Pediatr. Blood Cancer 2010, 54, 55–61. [Google Scholar] [CrossRef]
- Fouladi, M.; Park, J.R.; Stewart, C.F.; Gilbertson, R.J.; Schaiquevich, P.; Sun, J.; Reid, J.M.; Ames, M.M.; Speights, R.; Ingle, A.M.; et al. Pediatric phase I trial and pharmacokinetic study of vorinostat: A Children’s Oncology Group phase I consortium report. J. Clin. Oncol. 2010, 28, 3623–3629. [Google Scholar] [CrossRef] [PubMed]
- Jakacki, R.I.; Hamilton, M.; Gilbertson, R.J.; Blaney, S.M.; Tersak, J.; Krailo, M.D.; Ingle, A.M.; Voss, S.D.; Dancey, J.E.; Adamson, P.C. Pediatric phase I and pharmacokinetic study of erlotinib followed by the combination of erlotinib and temozolomide: A Children’s Oncology Group Phase I Consortium Study. J. Clin. Oncol. 2008, 26, 4921–49217. [Google Scholar] [CrossRef]
- Das, A.; Banik, N.L.; Ray, S.K. Mechanism of apoptosis with the involvement of calpain and caspase cascades in human malignant neuroblastoma SH-SY5Y cells exposed to flavonoids. Int. J. Cancer 2006, 119, 2575–2585. [Google Scholar] [CrossRef]
- Torkin, R.; Lavoie, J.F.; Kaplan, D.R.; Yeger, H. Induction of caspase-dependent, p53-mediated apoptosis by apigenin in human neuroblastoma. Mol. Cancer Ther. 2005, 4, 1–11. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, C.; Xiong, C.; Ruan, J. DEDC, a new flavonoid induces apoptosis via a ROS-dependent mechanism in human neuroblastoma SH-SY5Y cells. Toxicol In Vitro 2012, 26, 16–23. [Google Scholar] [CrossRef]
- Singhal, J.; Nagaprashantha, L.D.; Vatsyayan, R.; Ashutosh Awasthi, S.; Singhal, S.S. Didymin induces apoptosis by inhibiting N-Myc and upregulating RKIP in neuroblastoma. Cancer Prev. Res. 2012, 5, 473–483. [Google Scholar] [CrossRef]
- Escobar, S.J.M.; Fong, G.M.; Winnischofer, S.M.B.; Simone, M.; Munoz, L.; Dennis, J.M.; Rocha, M.E.M.; Witting, P.K. Anti-proliferative and cytotoxic activities of the flavonoid isoliquiritigenin in the human neuroblastoma cell line SH-SY5Y. Chem. Biol. Interact. 2019, 299, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Miao, Q.; Geng, M.; Liu, J.; Hu, Y.; Tian, L.; Pan, J.; Yang, Y. Anti-tumor effect of rutin on human neuroblastoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis. Sci. World J. 2013, 2013, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Sugantha Priya, E.; Selvakumar, K.; Bavithra, S.; Elumalai, P.; Arunkumar, R.; Raja Singh, P.; Brindha Mercy, A.; Arunakaran, J. Anti-cancer activity of quercetin in neuroblastoma: An in vitro approach. Neurol. Sci. 2014, 35, 163–170. [Google Scholar] [CrossRef]
- Chen, Y.H.; Yeh, C.W.; Lo, H.C.; Su, S.L.; Hseu, Y.C.; Hsu, L.S. Generation of reactive oxygen species mediates butein-induced apoptosis in neuroblastoma cells. Oncol. Rep. 2012, 27, 1233–1237. [Google Scholar] [CrossRef]
- Tsai, C.W.; Lin, C.Y.; Lin, H.H.; Chen, J.H. Carnosic acid, a rosemary phenolic compound, induces apoptosis through reactive oxygen species-mediated p38 activation in human neuroblastoma IMR-32 cells. Neurochem. Res. 2011, 36, 2442–2451. [Google Scholar] [CrossRef] [PubMed]
- Tomiyama, R.; Takakura, K.; Takatou, S.; Le, T.M.; Nishiuchi, T.; Nakamura, Y.; Konishi, T.; Matsugo, S.; Hori, O. 3,4-dihydroxybenzalacetone and caffeic acid phenethyl ester induce preconditioning ER stress and autophagy in SH-SY5Y cells. J. Cell Physiol. 2018, 233, 1671–1684. [Google Scholar] [CrossRef]
- George, J.; Banik, N.L.; Ray, S.K. Genistein induces receptor and mitochondrial pathways and increases apoptosis during BCL-2 knockdown in human malignant neuroblastoma SK-N-DZ cells. J. Neurosci. Res. 2010, 88, 877–886. [Google Scholar] [CrossRef]
- Alshangiti, A.M.; Togher, K.L.; Hegarty, S.V.; Sullivan, A.M.; O’Keeffe, G.W. The dietary flavonoid isoliquiritigenin is a potent cytotoxin for human neuroblastoma cells. Neuronal Signal. 2019, 3, 2–9. [Google Scholar] [CrossRef]
- Choi, A.Y.; Choi, J.H.; Yoon, H.; Hwang, K.Y.; Noh, M.H.; Choe, W.; Yoon, K.S.; Ha, J.; Yeo, E.J.; Kang, I. Luteolin induces apoptosis through endoplasmic reticulum stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells. Eur. J. Pharmacol. 2011, 668, 115–126. [Google Scholar] [CrossRef]
- Ye, Z.; Chen, D.; Zheng, R.; Chen, H.; Xu, T.; Wang, C.; Zhu, S.; Gao, X.; Zhang, J.; Li, D.; et al. Curcumin induced G2/M cycle arrest in SK-N-SH neuroblastoma cells through the ROS-mediated p53 signaling pathway. J. Food Biochem. 2021, 45, 2–7. [Google Scholar] [CrossRef]
- Rahman, M.A.; Kim, N.H.; Kim, S.H.; Oh, S.M.; Huh, S.O. Antiproliferative and cytotoxic effects of resveratrol in mitochondria-mediated apoptosis in rat b103 neuroblastoma cells. Korean J. Physiol. Pharmacol. 2012, 16, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.W.; Chen, J.T.; Hong, C.Y.; Lin, Y.L.; Wang, K.T.; Yao, C.J.; Lai, G.M.; Chen, R.M. Honokiol traverses the blood-brain barrier and induces apoptosis of neuroblastoma cells via an intrinsic bax-mitochondrion-cytochrome c-caspase protease pathway. Neuro Oncol. 2012, 14, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Sargolzaei, J.; Sadeghian, H.; Golahmadi, S.; Soukhtanloo, M. Cytotoxic Effects of Hydroxy Coumarin Derivatives on Mouse Neuroblastoma N2a Cell Line: Effects of Hydroxy Coumarin Derivations in N2A cell line. Iran. J. Pharm. Sci. 2020, 16, 95–106. [Google Scholar] [CrossRef]
- Pisano, M.; Pagnan, G.; Dettori, M.A.; Cossu, S.; Caffa, I.; Sassu, I.; Emionite, L.; Fabbri, D.; Cilli, M.; Pastorino, F.; et al. Enhanced anti-tumor activity of a new curcumin-related compound against melanoma and neuroblastoma cells. Mol. Cancer 2010, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- van Ginkel, P.R.; Sareen, D.; Subramanian, L.; Walker, Q.; Darjatmoko, S.R.; Lindstrom, M.J.; Kulkarni, A.; Albert, D.M.; Polans, A.S. Resveratrol inhibits tumor growth of human neuroblastoma and mediates apoptosis by directly targeting mitochondria. Clin. Cancer Res. 2007, 13, 5162–5169. [Google Scholar] [CrossRef]
- Chen, Y.; Tseng, S.H.; Lai, H.S.; Chen, W.J. Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery 2004, 136, 57–66. [Google Scholar] [CrossRef]
- Soto, B.L.; Hank, J.A.; Van De Voort, T.J.; Subramanian, L.; Polans, A.S.; Rakhmilevich, A.L.; Yang, R.K.; Seo, S.; Kim, K.; Reisfeld, R.A.; et al. The anti-tumor effect of resveratrol alone or in combination with immunotherapy in a neuroblastoma model. Cancer Immunol. Immunother. 2011, 60, 731–738. [Google Scholar] [CrossRef]
- SDG Center for Africa and Sustainable Development Solutions Network. Africa SDG Index and Dashboard Report. 2019. Available online: https://sdgcafrica.org/wp-content/uploads/2019/06/SDGS_INDEX_REPORT_2019WEB.pdf (accessed on 28 July 2024).
- Todaro, P.M.; Smith, C.S. Economic Development, 13th ed.; Pearson: New York, NY, USA, 2011; pp. 1–10. [Google Scholar]
- van Heerden, J.; Hendricks, M.; Geel, J.; Sartorius, B.; Hadley, G.P.; Du Plessis, J.; Büchner, A.; Naidu, G.; Van Emmenes, B.; Van Zyl, A.; et al. Overall survival for neuroblastoma in South Africa between 2000 and 2014. Pediatr. Blood Cancer 2019, 66, 27944. [Google Scholar] [CrossRef]
- World Health Organization. Global Initiative for Childhood Cancer. 2021. Available online: https://www.who.int/initiatives/the-global-initiative-for-childhood-cancer (accessed on 27 October 2024).
- DST. Department of Science and Innovation on South Africa’s Expenditure on Research and Development. 2009. Available online: http://www.gov.za/ (accessed on 28 July 2024).
- Galal, S. Value of gross domestic expenditure on R&D in Africa 2020–2022, by country. 2023. Available online: https://www.statista.com/ (accessed on 28 July 2024).
- United Nations (UN). Economic Commission for Africa Towards Achieving the African Union’s Recommendation of Expenditure of 1% of GDP on Research and Development. Addis Ababa. 2018. Available online: https://hdl.handle.net/10855/24306 (accessed on 28 July 2024).
- Simpkin, V.; Namubiru-Mwaura, E.; Clarke, L.; Mossialos, E. Investing in health R&D: Where we are, what limits us, and how to make progress in Africa. BMJ Glob. Health 2019, 4, 2. [Google Scholar] [CrossRef]
- Wachira, K. Countries Spend Less Than 1% of GDP on Research. University World News, African Edition. 2021. Available online: https://www.universityworldnews.com/post.php?story=20210616151534847 (accessed on 28 July 2024).
- Miles, S.; Renedo, A.; Marston, C. Reimagining authorship guidelines to promote equity in co-produced academic collaborations. Glob. Public Health 2022, 17, 2547–2559. [Google Scholar] [CrossRef]
- Manirakiza, A.V.C.; Rubagumya, F.; Mushonga, M.; Mutebi, M.; Lasebikan, N.; Kochbati, L.; Gwayali, B.; Booth, C.M.; Stefan, D.C. The current status of National Cancer Control Plans in Africa: Data from 32 countries. J. Cancer Policy 2023, 37, 2–5. [Google Scholar] [CrossRef] [PubMed]
Stage | Description |
---|---|
L1 | Localized tumour does not involve structures as defined by the list of image-defined risk factors and are confined to one body part. |
L2 | Loco-regional tumour with the presence of more image-defined risk factors. |
M | Distant metastatic disease (except stage MS). |
MS | Metastatic disease in children younger than 18 months with metastases confined to skin, liver, and/or bone marrow. |
Drugs in Clinical Trials (National Clinical Trial Number (NCT)) | |||
---|---|---|---|
Crizotinib [70] | DMFO (eflornithine) [71] | Sorafenib [72,73,74] | Vorinostat, 131I-metaiodobenzylguanidine (NCT02035137) |
Lorlatinib (NCT03107988) | Ceritinib, ribociclib, trametinib (NCT02780128) | Prexasertib (NCT02808650) | Anti-GD2, GM-CSF, IL-2 [75] |
Ceritinib (NCT01742286) | Trametinib, dabrafenib (NCT02124772) | Ribociclib (LEE001) (NCT01747876) | Dinutuximab, IL-2 [76] |
Entrectinib (NCT02650401; NCT02097810) | Gefitinib [77,78,79] | Vorinostat [80] | Erlotinib [81] |
Plant-based compounds-In Vitro Studies | |||
Flavonoids | |||
Genistein [82] | EGCG [21] | EGC [82] | Apigenin [82] |
Apigenin [83] | DEDC [84] | Didymin [85] | Isoliquiritigenin [86] |
Rutin [87] | Quercetin [88] | Butein [89] | Carnosic acid [90] |
3,4-dihydroxybenzalacetone Caffeic acid phenethyl ester [91] | Genistein [82,92] | Isoliquiritigenin [93] | Luteolin [94] |
Non-Flavonoid Polyphenols | |||
Curcumin [95] | Resveratrol [96] | Honokiol [97] | Prenyl hydroxy-coumarins [98] |
Plant-based compounds-In vivo studies | |||
Flavonoids | |||
Didymin [85] | Apigenin [83] | ||
Non-Flavonoid Polyphenols | |||
Curcumin [99] | Resveratrol [100,101,102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motshudi, M.C.; Naidoo, C.M.; Mkolo, N.M. The Race Against Time for the Enhancement of African National Strategic Plans in the Neuroblastoma Research Heterogeneity. Publications 2024, 12, 45. https://doi.org/10.3390/publications12040045
Motshudi MC, Naidoo CM, Mkolo NM. The Race Against Time for the Enhancement of African National Strategic Plans in the Neuroblastoma Research Heterogeneity. Publications. 2024; 12(4):45. https://doi.org/10.3390/publications12040045
Chicago/Turabian StyleMotshudi, Mmei Cheryl, Clarissa Marcelle Naidoo, and Nqobile Monate Mkolo. 2024. "The Race Against Time for the Enhancement of African National Strategic Plans in the Neuroblastoma Research Heterogeneity" Publications 12, no. 4: 45. https://doi.org/10.3390/publications12040045
APA StyleMotshudi, M. C., Naidoo, C. M., & Mkolo, N. M. (2024). The Race Against Time for the Enhancement of African National Strategic Plans in the Neuroblastoma Research Heterogeneity. Publications, 12(4), 45. https://doi.org/10.3390/publications12040045