Structural, Antioxidant, and Protein/DNA-Binding Properties of Sulfate-Coordinated Ni(II) Complex with Pyridoxal-Semicarbazone (PLSC) Ligand
<p>Different binding modes of PLSC ligand.</p> "> Figure 2
<p>(<b>a</b>) Molecular diagram of [Ni(PLSC)(SO<sub>4</sub>)(H<sub>2</sub>O)<sub>2</sub>], with non-hydrogen atoms represented by 50% displacement ellipsoids and hydrogen atoms as spheres of arbitrary size. (<b>b</b>) The ball and stick representation shows part of the hydrogen bonding between the molecules. (Hydrogen-white, carbon-gray, nitrogen-blue, oxygen-red, sulfur-lilac, nickel-light blue).</p> "> Figure 3
<p>Cell packing is viewed down the b-axis, and the 3D hydrogen-bonded network is shown as comprising parallel layers of the Ni(PLSC) structural units.</p> "> Figure 4
<p>(<b>a</b>) Hirshfeld surface and (<b>b</b>) optimized structure (hydrogen atoms are omitted for clarity) at the B3LYP/6-311++G(d,p)(H,C,N,O,S)/LanL2DZ(Ni) level of theory of [Ni(PLSC)(SO<sub>4</sub>)(H<sub>2</sub>O)<sub>2</sub>]. (Hydrogen—white, carbon—gray, nitrogen—blue, oxygen—red, sulfur—yellow, nickel—light blue).</p> "> Figure 5
<p>The EPR spectra of the (<b>a</b>) DEPMPO-HO<sup>•</sup> adduct and (<b>b</b>) ascorbyl radical in the absence (black line) and presence of different concentrations of [Ni(PLSC)(SO<sub>4</sub>)(H<sub>2</sub>O)<sub>2</sub>].</p> "> Figure 6
<p>The fluorescence emission spectra of HSA for the titration with various concentrations of [Ni(PLSC)(SO<sub>4</sub>)(H<sub>2</sub>O)<sub>2</sub>] at (<b>a</b>) 27°, (<b>b</b>) 32°, and (<b>c</b>) 37 °C, and (<b>d</b>) the van ’t Hoff plot for the binding process.</p> "> Figure 7
<p>HSA molecule (PDB ID: 1AO6) with bound ligands: [Ni(PLSC)(H<sub>2</sub>O)<sub>2</sub>(SO<sub>4</sub>)] complex and HPO<sub>4</sub><sup>2−</sup> anion, occupying FA9 and FA8 binding sites, respectively. Ligands and tryptophane are depicted using ball representation; each is colored distinctly. HPO<sub>4</sub><sup>2−</sup> ion from buffer solution is colored by element, Ni(II) complex is shown in light green, and Trp213 is represented in dark grey.</p> "> Figure 8
<p>A 3D representation of the supramolecular interactions of [Ni(PLSC)(H<sub>2</sub>O)<sub>2</sub>(SO<sub>4</sub>)] located in the FA8 binding site. Only the interacting parts of the amino acids are shown, with colors corresponding to their respective regions of the HSA molecule: yellow for subdomain IB, green for subdomain IIA, interdomain region between subdomains IIA and IIB is light grey, and subdomain IA is violet. For the representation of nickel(II), complex sticks colored by the element were used. Supramolecular interactions are represented by dashed lines colored according to the type of interaction denoted in the figure’s legend.</p> "> Figure 9
<p>Fluorescence emission spectra of [Ni(PLSC)(H<sub>2</sub>O)<sub>2</sub>(SO<sub>4</sub>)] for the titration with various concentrations of CT-DNA at (<b>a</b>) 27°, (<b>b</b>) 32°, and (<b>c</b>) 37 °C, and (<b>d</b>) the van ’t Hoff plot for the binding process.</p> "> Figure 10
<p>Fluorescence emission spectra of [Ni(PLSC)(H<sub>2</sub>O)<sub>2</sub>(SO<sub>4</sub>)] without CT-DNA (<b>a</b>) and with CT-DNA (<b>b</b>) in the presence of different concentrations of KI, and (<b>c</b>) the Stern–Volmer plots for the complex fluorescence quenching by KI.</p> "> Figure 11
<p>(<b>a</b>) Fluorescence emission spectra of CT-DNA-EB for the titration with the complex at 27 °C and (<b>b</b>) the double-log Stern–Volmer dependency of intensity on the concentration of [Ni(PLSC)(H<sub>2</sub>O)<sub>2</sub>(SO<sub>4</sub>)].</p> "> Figure 12
<p>Binding of square planar Ni(II) complex with PLSC ligand at two distinct sites: intercalation site (depicted in dark green, ball-and-stick representation) and minor groove (shown in pink, ball-and-stick representation). DNA molecule is colored yellow. Experimentally determined binding energy (ΔG<sub>exp</sub>), best-calculated binding energy (ΔG1), and fifth calculated binding energy value (ΔG<sub>5</sub>) are also indicated.</p> "> Figure 13
<p>The supramolecular interactions of the square planar Ni(II) complex in (<b>a</b>) the intercalation site and (<b>b</b>) the major groove. Only the interacting parts of the nucleobases are shown colored in yellow. For the representation of the square planar Ni(II) complex, sticks colored by element were used. Supramolecular interactions are represented by dashed lines colored according to the type of interaction denoted in the figure’s legend. The experimentally determined binding energy (ΔG<sub>exp</sub>) and the calculated binding energy values are also indicated.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Analysis
2.2. Characterization
2.3. Hirshfeld Surface Analysis
2.4. Theoretical Structural Analysis
2.5. Antioxidant Activity Determination
2.6. Experimental and Theoretical Protein-Binding Affinity
2.7. Experimental and Theoretical DNA Binding Affinity
2.7.1. Spectrofluorimetric Titration of [Ni(PLSC)(H2O)2(SO4)] by CT-DNA
2.7.2. Ethidium Bromide Displacement Studies
2.7.3. Molecular Docking Simulations of the Binding Mechanism to DNA
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of PLSC
3.3. Synthesis of [Ni(PLSC)(SO4)(H2O)2]
3.4. Characterization
3.5. X-Ray Crystallographic Analysis
3.6. Hirshfeld Surface Analysis
3.7. Quantum Chemical Analysis
3.8. Antioxidant Activity
3.9. Spectrofluorimetric Determination of HSA Binding Affinity
3.10. Spectrofluorimetric Determination of DNA Binding Affinity
3.11. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knežević, N.Ž.; Leovac, V.M.; Jevtović, V.S.; Grgurić-Šipka, S.; Sabo, T.J. Platinum(IV) complex with pyridoxal semicarbazone. Inorg. Chem. Commun. 2003, 6, 561–564. [Google Scholar] [CrossRef]
- Cordes, E.H.; Jencks, W.P. Semicarbazone Formation from Pyridoxal, Pyridoxal Phosphate, and Their Schiff Bases. Biochemistry 1962, 1, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Vidovic, D.; Radulovic, A.; Jevtovic, V. Synthesis, characterization and structural analysis of new copper(II) complexes incorporating a pyridoxal-semicarbazone ligand. Polyhedron 2011, 30, 16–21. [Google Scholar] [CrossRef]
- Poleti, D.; Karanović, L.; Leovac, V.M.; Jevtović, V.S. Dibromo(pyridoxal semicarbazone-κ 3N1,O3,O3′)copper(II). Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2003, 59, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Vojinović-Ješić, L.S.; Jovanović, L.S.; Leovac, V.M.; Radanović, M.M.; Rodić, M.V.; Barta Holló, B.; Mészásaros Szécsényi, K.; Ivković, S.A. Transition metal complexes with thiosemicarbazide-based ligands. Part 63. Syntheses, structures and physicochemical characterization of the first chromium(III) complexes with pyridoxal semi- and thiosemicarbazones. Polyhedron 2015, 101, 196–205. [Google Scholar] [CrossRef]
- Leovac, V.M.; Jovanović, L.S.; Divjaković, V.; Pevec, A.; Leban, I.; Armbruster, T. Transition metal complexes with thiosemicarbazide-based ligands. Part LIV. Nickel(II) complexes with pyridoxal semi- (PLSC) and thiosemicarbazone (PLTSC). Crystal and molecular structure of [Ni(PLSC)(H2O)3](NO3)2 and [Ni(PLTSC-H)py]NO3. Polyhedron 2007, 26, 49–58. [Google Scholar] [CrossRef]
- Leovac, V.M.; Jovanović, L.S.; Jevtović, V.S.; Pelosi, G.; Bisceglie, F. Transition metal complexes with thiosemicarbazide-based ligand—Part LV: Synthesis and X-ray structural study of novel Ni(II) complexes with pyridoxal semicarbazone and pyridoxal thiosemicarbazone. Polyhedron 2007, 26, 2971–2978. [Google Scholar] [CrossRef]
- Leovac, V.M.; Marković, S.; Divjaković, V.; Szécsényi, K.M.; Joksović, M.D.; Lebanc, I. Structural and DFT studies on molecular structure of Ni(II) chloride complex with pyridoxal semicarbazone (PLSC). Unusual coordination mode of PLSC. Acta Chim. Slov. 2008, 55, 850–860. [Google Scholar]
- Jevtovic, V.; Alshammari, N.; Latif, S.; Alsukaibi, A.K.D.; Humaidi, J.; Alanazi, T.Y.A.; Abdulaziz, F.; Matalka, S.I.; Pantelić, N.Đ.; Marković, M.; et al. Synthesis, Crystal Structure, Theoretical Calculations, Antibacterial Activity, Electrochemical Behavior, and Molecular Docking of Ni(II) and Cu(II) Complexes with Pyridoxal-Semicarbazone. Molecules 2022, 27, 6322. [Google Scholar] [CrossRef]
- Pharma, D.; Aduri, S.; Ramana, V.; Ch, R. Synthesis, Characterization, DNA binding, DNA Cleavage and Antibacterial Studies of Ni(II) and Cu(II) Complexes of Pyridoxal Semicarbazone. Der Pharma Chem. 2017, 9, 90–98. [Google Scholar]
- Rufino-Felipe, E.; Valdés, H.; Morales-Morales, D. C-S Cross-Coupling Reactions Catalyzed by Well-Defined Copper and Nickel Complexes. Eur. J. Org. Chem. 2022, 2022, e202200654. [Google Scholar] [CrossRef]
- Zhang, W.; Hong, J.; Zheng, J.; Huang, Z.; Zhou, J.; Xu, R. Nickel–Thiolate Complex Catalyst Assembled in One Step in Water for Solar H 2 Production. J. Am. Chem. Soc. 2011, 133, 20680–20683. [Google Scholar] [CrossRef]
- Gan, L.; Groy, T.L.; Tarakeshwar, P.; Mazinani, S.K.S.; Shearer, J.; Mujica, V.; Jones, A.K. A Nickel Phosphine Complex as a Fast and Efficient Hydrogen Production Catalyst. J. Am. Chem. Soc. 2015, 137, 1109–1115. [Google Scholar] [CrossRef]
- Meinhard, D.; Wegner, M.; Kipiani, G.; Hearley, A.; Reuter, P.; Fischer, S.; Marti, O.; Rieger, B. New Nickel(II) Diimine Complexes and the Control of Polyethylene Microstructure by Catalyst Design. J. Am. Chem. Soc. 2007, 129, 9182–9191. [Google Scholar] [CrossRef] [PubMed]
- Derafa, W.; Aggoun, D.; Messasma, Z.; Houchi, S.; Bouacida, S.; Ourari, A. An unexpected single crystal structure of nickel(II) complex: Spectral, DFT, NLO, magnetic and molecular docking studies. J. Mol. Struct. 2022, 1264, 133190. [Google Scholar] [CrossRef]
- Atasever Arslan, B.; Kaya, B.; Şahin, O.; Baday, S.; Saylan, C.C.; Ülküseven, B. The iron(III) and nickel(II) complexes with tetradentate thiosemicarbazones. Synthesis, experimental, theoretical characterization, and antiviral effect against SARS-CoV-2. J. Mol. Struct. 2021, 1246, 131166. [Google Scholar] [CrossRef] [PubMed]
- Bhandarkar, S.E.; Pathare, P.P.; Khobragade, B.P. New Nickel (II), Copper (II) and Cobalt (II) Complexes Based Salicyaldehyde Schiff Base: Synthesis, Characterisation, and Antiviral Activity. Mater. Today Proc. 2023, 92, 807–816. [Google Scholar] [CrossRef]
- Heng, M.P.; Sinniah, S.K.; Teoh, W.Y.; Sim, K.S.; Ng, S.W.; Cheah, Y.K.; Tan, K.W. Synthesis of a DNA-targeting nickel (II) complex with testosterone thiosemicarbazone which exhibits selective cytotoxicity towards human prostate cancer cells (LNCaP). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 150, 360–372. [Google Scholar] [CrossRef]
- Ay, B.; Gönül, İ.; Demir, B.S.; Saygıdeğer, Y.; Kani, İ. Synthesis, structural characterization, and in vitro anticancer activity of two new nickel complexes bearing imine bonds. Inorg. Chem. Commun. 2020, 114, 107824. [Google Scholar] [CrossRef]
- Bakr, E.A.; Al-Hefnawy, G.B.; Awad, M.K.; Abd-Elatty, H.H.; Youssef, M.S. New Ni(II), Pd(II) and Pt(II) complexes coordinated to azo pyrazolone ligand with a potent anti-tumor activity: Synthesis, characterization, DFT and DNA cleavage studies. Appl. Organomet. Chem. 2018, 32, e4104. [Google Scholar] [CrossRef]
- Zhong, X.; Yi, J.; Sun, J.; Wei, H.-L.; Liu, W.-S.; Yu, K.-B. Synthesis and crystal structure of some transition metal complexes with a novel bis-Schiff base ligand and their antitumor activities. Eur. J. Med. Chem. 2006, 41, 1090–1092. [Google Scholar] [CrossRef] [PubMed]
- Perontsis, S.; Hatzidimitriou, A.G.; Papadopoulos, A.N.; Psomas, G. Nickel-diflunisal complexes: Synthesis, characterization, in vitro antioxidant activity and interaction with DNA and albumins. J. Inorg. Biochem. 2016, 162, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Bano, S.; Xu, X.; Zhang, R.X.; Khalid, H.; Iqbal, F.M.; Xia, C.; Tang, J.; Ouyang, Z. Rutin–Nickel Complex: Synthesis, Characterization, Antioxidant, DNA Binding, and DNA Cleavage Activities. Biol. Trace Elem. Res. 2017, 178, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Venkateswarlu, K.; Ganji, N.; Daravath, S.; Kanneboina, K.; Rangan, K. Shivaraj Crystal structure, DNA interactions, antioxidant and antitumor activity of thermally stable Cu(II), Ni(II) and Co(III) complexes of an N,O donor Schiff base ligand. Polyhedron 2019, 171, 86–97. [Google Scholar] [CrossRef]
- Osman, U.M.; Silvarajoo, S.; Kamarudin, K.H.; Tahir, M.I.M.; Kwong, H.C. Ni(II) complex containing a thiosemicarbazone ligand: Synthesis, spectroscopy, single-crystal X-ray crystallographic and conductivity studies. J. Mol. Struct. 2021, 1223, 128994. [Google Scholar] [CrossRef]
- Devi, J.; Yadav, M.; Jindal, D.K.; Kumar, D.; Poornachandra, Y. Synthesis, spectroscopic characterization, biological screening and in vitro cytotoxic studies of 4-methyl-3-thiosemicarbazone derived Schiff bases and their Co (II), Ni (II), Cu (II) and Zn (II) complexes. Appl. Organomet. Chem. 2019, 33, e5154. [Google Scholar] [CrossRef]
- Ferrari Belicchi, M.; Fava Gasparri, G.; Leporati, E.; Pelizzi, C.; Tarasconi, P.; Tosi, G. Structure of PyridoxaI Thiosemicarbazone Trihydrate and Spectroscopic Properties of its Metal Complexes t. J. Chem. Soc. Dalt. Trans. 1986, 3, 2455–2461. [Google Scholar] [CrossRef]
- Beraldo, H.; Nacif, W.F.; Teixeira, L.R.; Rebouças, J.S. Cobalt(II) and nickel(II) complexes of N(4′) substituted 3- and 4-acetylpyridine thiosemicarbazones. Transit. Met. Chem. 2002, 27, 85–88. [Google Scholar] [CrossRef]
- Geary, W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 1971, 7, 81–122. [Google Scholar] [CrossRef]
- Jevtovic, V.; Alhar, M.S.O.; Milenković, D.; Marković, Z.; Dimitrić Marković, J.; Dimić, D. Synthesis, Structural Characterization, Cytotoxicity, and Protein/DNA Binding Properties of Pyridoxylidene-Aminoguanidine-Metal (Fe, Co, Zn, Cu) Complexes. Int. J. Mol. Sci. 2023, 24, 14745. [Google Scholar] [CrossRef]
- Jevtovic, V.; Alshamari, A.K.; Milenković, D.; Dimitrić Marković, J.; Marković, Z.; Dimić, D. The Effect of Metal Ions (Fe, Co, Ni, and Cu) on the Molecular-Structural, Protein Binding, and Cytotoxic Properties of Metal Pyridoxal-Thiosemicarbazone Complexes. Int. J. Mol. Sci. 2023, 24, 1910. [Google Scholar] [CrossRef] [PubMed]
- Gak Simić, K.; Đorđević, I.; Lazić, A.; Radovanović, L.; Petković-Benazzouz, M.; Rogan, J.; Trišović, N.; Janjić, G. On the supramolecular outcomes of fluorination of cyclohexane-5-spirohydantoin derivatives. CrystEngComm 2021, 23, 2606–2622. [Google Scholar] [CrossRef]
- Sciortino, G.; Lihi, N.; Czine, T.; Maréchal, J.; Lledós, A.; Garribba, E. Accurate prediction of vertical electronic transitions of Ni(II) coordination compounds via time dependent density functional theory. Int. J. Quantum Chem. 2018, 118, e25655. [Google Scholar] [CrossRef]
- Sağlam, E.G.; Zeyrek, C.T.; Dal, H.; Ünver, H.; Ebinç, A. New {bis-pyridine-bis-[3-methyl-1-butoxy-(p-methoxyphenyl)phosphonodithioato]}nickel(II) complex: Synthesis, characterization, single crystal structure and theoretical studies. J. Mol. Struct. 2020, 1201, 127185. [Google Scholar] [CrossRef]
- Chai, L.; Xu, L.; Zhang, X.; Li, Y. Two dinuclear copper (II) and nickel (II) complexes based on 4-(diethylamino)salicylaldehyde: X-ray structures, spectroscopic, electrochemical, antibacterial, Hirshfeld surfaces analyses, and time-dependent density functional theory calculations. Appl. Organomet. Chem. 2021, 35, e6068. [Google Scholar] [CrossRef]
- Kasalović, M.P.; Jelača, S.; Milanović, Ž.; Maksimović-Ivanić, D.; Mijatović, S.; Lađarević, J.; Božić, B.; Marković, Z.; Dunđerović, D.; Rüffer, T.; et al. Novel triphenyltin(iv) compounds with carboxylato N-functionalized 2-quinolones as promising potential anticancer drug candidates: In vitro and in vivo evaluation. Dalt. Trans. 2024, 53, 8298–8314. [Google Scholar] [CrossRef]
- Soliman, S.M.; Albering, J.; Abu-Youssef, M.A.M. Structural analyses of two new highly distorted octahedral copper(II) complexes with quinoline-type ligands; Hirshfeld, AIM and NBO studies. Polyhedron 2017, 127, 36–50. [Google Scholar] [CrossRef]
- Bianchi, R.; Gervasio, G.; Marabello, D. Experimental Electron Density Analysis of Mn2(CO)10: Metal-Metal and Metal-Ligand Bond Characterization. Inorg. Chem. 2000, 39, 2360–2366. [Google Scholar] [CrossRef] [PubMed]
- Jevtovic, V.; Rakić, A.; Alshammari, O.A.O.; Alhar, M.S.; Alenezi, T.; Rakic, V.; Dimić, D. Theoretical Study of the Effects of Different Coordination Atoms (O/S/N) on Crystal Structure, Stability, and Protein/DNA Binding of Ni(II) Complexes with Pyridoxal-Semi, Thiosemi, and Isothiosemicarbazone Ligand Systems. Inorganics 2024, 12, 251. [Google Scholar] [CrossRef]
- Eichhorn, T.; Kolbe, F.; Mišić, S.; Dimić, D.; Morgan, I.; Saoud, M.; Milenković, D.; Marković, Z.; Rüffer, T.; Dimitrić Marković, J.; et al. Synthesis, Crystallographic Structure, Theoretical Analysis, Molecular Docking Studies, and Biological Activity Evaluation of Binuclear Ru(II)-1-Naphthylhydrazine Complex. Int. J. Mol. Sci. 2023, 24, 689. [Google Scholar] [CrossRef]
- Galano, A.; Mazzone, G.; Alvarez-Diduk, R.; Marino, T.; Alvarez-Idaboy, J.R.; Russo, N. Food Antioxidants: Chemical Insights at the Molecular Level. Annu. Rev. Food Sci. Technol. 2016, 7, 335–352. [Google Scholar] [CrossRef] [PubMed]
- Sathyadevi, P.; Krishnamoorthy, P.; Butorac, R.R.; Cowley, A.H.; Bhuvanesh, N.S.P.; Dharmaraj, N. Effect of substitution and planarity of the ligand on DNA/BSA interaction, free radical scavenging and cytotoxicity of diamagnetic Ni(ii) complexes: A systematic investigation. Dalt. Trans. 2011, 40, 9690. [Google Scholar] [CrossRef] [PubMed]
- El-Gammal, O.A.; Abd Al-Gader, I.M.; El-Asmy, A.A. Synthesis, characterization, biological activity of binuclear Co(II), Cu(II) and mononuclear Ni(II) complexes of bulky multi-dentate thiosemicarbazide. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 128, 759–772. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.N.; Singh, Y.; Singh, Y.P.; Butcher, R.J.; Kamal, A.; Tripathi, I.P. Copper(II) and nickel(II) complexes with N′-[(Z)-phenyl(pyridin-2-yl)methylidene]acetohydrazide: Synthesis, crystal structures, DFT calculations and antioxidant effects. Polyhedron 2016, 117, 20–34. [Google Scholar] [CrossRef]
- Barma, A.; Ghosh, D.; Karmakar, P.; Roy, P. Synthesis and characterization of a mononuclear nickel(II) complex with N,O-donor ligand: Its DNA/HSA protein binding properties and tumor suppressive function. J. Mol. Struct. 2022, 1250, 131687. [Google Scholar] [CrossRef]
- Nithya, P.; Helena, S.; Simpson, J.; Ilanchelian, M.; Muthusankar, A.; Govindarajan, S. New cobalt(II) and nickel(II) complexes of benzyl carbazate Schiff bases: Syntheses, crystal structures, in vitro DNA and HSA binding studies. J. Photochem. Photobiol. B Biol. 2016, 165, 220–231. [Google Scholar] [CrossRef]
- Hu, K.; Liu, C.; Li, J.; Liang, F. Copper(II) complexes based on quinoline-derived Schiff-base ligands: Synthesis, characterization, HSA/DNA binding ability, and anticancer activity. Medchemcomm 2018, 9, 1663–1672. [Google Scholar] [CrossRef]
- Sun, J.; Huang, Y.; Zheng, C.; Zhou, Y.; Liu, Y.; Liu, J. Ruthenium (II) Complexes Interact with Human Serum Albumin and Induce Apoptosis of Tumor Cells. Biol. Trace Elem. Res. 2015, 163, 266–274. [Google Scholar] [CrossRef]
- Wu, S.-S.; Yuan, W.-B.; Wang, H.-Y.; Zhang, Q.; Liu, M.; Yu, K.-B. Synthesis, crystal structure and interaction with DNA and HSA of (N,N′-dibenzylethane-1,2-diamine) transition metal complexes. J. Inorg. Biochem. 2008, 102, 2026–2034. [Google Scholar] [CrossRef]
- Ouyang, Y.; Zhao, X.-F.; Qiao, X.; Zhang, R.; Bao, W.-G.; Xie, C.-Z.; Xu, J.-Y. A mononuclear nickel(II) complex based on polypyridyl ligand: Synthesis, characterization, and biological activity. J. Coord. Chem. 2016, 69, 475–484. [Google Scholar] [CrossRef]
- Kumar, M.; Lal, N.; Luthra, P.M.; Masram, D.T. Exploring the binding and cleavage activities of nickel II complexes towards DNA and proteins. New J. Chem. 2021, 45, 6693–6708. [Google Scholar] [CrossRef]
- Abdalla, E.M.; Al-Sulami, A.I.; Aly, S.A.; Abd-Allah, M.T.; Nasr, G.M.; Albohy, S.A.H.; Hosny, S. Synthesis, characterization, DNA binding, DFT, anticancer, antibacterial, and the effect of gamma irradiation of novel Co(II), Ag (I), and Cd (II) complexes with hydrazone derivatives. J. Saudi Chem. Soc. 2023, 27, 101770. [Google Scholar] [CrossRef]
- Palchaudhuri, R.; Hergenrother, P.J. DNA as a target for anticancer compounds: Methods to determine the mode of binding and the mechanism of action. Curr. Opin. Biotechnol. 2007, 18, 497–503. [Google Scholar] [CrossRef]
- Shahabadi, N.; Kashanian, S.; Mahdavi, M.; Sourinejad, N. DNA Interaction and DNA Cleavage Studies of a New Platinum(II) Complex Containing Aliphatic and Aromatic Dinitrogen Ligands. Bioinorg. Chem. Appl. 2011, 2011, 525794. [Google Scholar] [CrossRef] [PubMed]
- Shahabadi, N.; Kashanian, S.; Khosravi, M.; Mahdavi, M. Multispectroscopic DNA interaction studies of a water-soluble nickel(II) complex containing different dinitrogen aromatic ligands. Transit. Met. Chem. 2010, 35, 699–705. [Google Scholar] [CrossRef]
- Shahabadi, N.; Moradi Fili, S.; Shahlaei, M. Synthesis, characterization and comparative DNA interaction studies of new copper(II) and nickel(II) complexes containing mesalamine drug using molecular modeling and multispectroscopic methods. J. Coord. Chem. 2015, 68, 3667–3684. [Google Scholar] [CrossRef]
- Indumathy, R.; Radhika, S.; Kanthimathi, M.; Weyhermuller, T.; Unni Nair, B. Cobalt complexes of terpyridine ligand: Crystal structure and photocleavage of DNA. J. Inorg. Biochem. 2007, 101, 434–443. [Google Scholar] [CrossRef]
- Kashanian, S.; Khodaei, M.M.; Roshanfekr, H.; Shahabadi, N.; Mansouri, G. DNA binding, DNA cleavage and cytotoxicity studies of a new water soluble copper(II) complex: The effect of ligand shape on the mode of binding. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 86, 351–359. [Google Scholar] [CrossRef]
- Parsekar, S.U.; Haldar, P.; Antharjanam, P.K.S.; Kumar, M.; Koley, A.P. Synthesis, characterization, crystal structure, DNA and human serum albumin interactions, as well as antiproliferative activity of a Cu(II) complex containing a Schiff base ligand formed in situ from the Cu(II)-induced cyclization of 1,5-bis(salicylidene). Appl. Organomet. Chem. 2021, 35, e6152. [Google Scholar] [CrossRef]
- Psomas, G. Mononuclear metal complexes with ciprofloxacin: Synthesis, characterization and DNA-binding properties. J. Inorg. Biochem. 2008, 102, 1798–1811. [Google Scholar] [CrossRef]
- Ramesh, G.; Daravath, S.; Ganji, N.; Rambabu, A.; Venkateswarlu, K. Shivaraj Facile synthesis, structural characterization, DNA binding, incision evaluation, antioxidant and antimicrobial activity studies of Cobalt(II), Nickle(II) and Copper(II) complexes of 3-amino-5-(4-fluorophenyl)isoxazole derivatives. J. Mol. Struct. 2020, 1202, 127338. [Google Scholar] [CrossRef]
- Zaki, M.; Hairat, S.; Kamaal, S.; Aljarba, N.H.; AL–Johani, N.S.; Alkahtani, S. Synthesis, crystal structure elucidation and DNA/HSA binding profile of Ni(II) complex of Schiff base derived from 3–ethoxy salicylaldehyde and o–phenylenediamine. J. Mol. Struct. 2022, 1265, 133351. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.H.; Basha, M.T.; Al-Farhan, B.S.; Shehata, M.R.; Abdalla, E.M. Synthesis, characterization, potential antimicrobial, antioxidant, anticancer, DNA binding, and molecular docking activities and DFT on novel Co(II), Ni(II), VO(II), Cr(III), and La(III) Schiff base complexes. Appl. Organomet. Chem. 2022, 36, e6484. [Google Scholar] [CrossRef]
- Jevtovic, V. Cu, Fe, Ni and V complexes with Pyridoxal Semicarbazones, Synthesis, Physical and Chemical Properties, Structural Analyses and Biological Activities; Lambert Academic Publishing: Saarbrücken, Germany, 2010. [Google Scholar]
- Oxford Diffraction/Agilent Technologies UK Ltd. CrysAlisPRO; Oxford Diffraction/Agilent Technologies UK Ltd.: Yarnton, UK, 2017. [Google Scholar]
- Sheldrick, G.M. IUCr Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer17 2017; University of Western Australia: Perth, Australia, 2017. [Google Scholar]
- Spackman, M.A.; Byrom, P.G. A novel definition of a molecule in a crystal. Chem. Phys. Lett. 1997, 267, 215–220. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648. [Google Scholar] [CrossRef]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitale. J. Chem. Phys. 1985, 82, 299–310. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057. [Google Scholar] [CrossRef] [PubMed]
- Bader, R.F.W. Atoms in molecules. Acc. Chem. Res. 1985, 18, 9–15. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Caramori, G.F.; Parreira, R.L.T.; Ferreira, A.M.D.C. Isatin-Schiff base copper(II) complexes—A DFT study of the metal-ligand bonding situation. Int. J. Quantum Chem. 2012, 112, 625–646. [Google Scholar] [CrossRef]
- Todd, A. AIMAll, Version 19.10.12; Keith, T.K., Ed.; Gristmill Software: Overland Park, KS, USA, 2019. [Google Scholar]
- Savić, A.G.; Mojović, M. Free Radicals Identification from the Complex EPR Signals by Applying Higher Order Statistics. Anal. Chem. 2012, 84, 3398–3402. [Google Scholar] [CrossRef] [PubMed]
- Nakarada, Đ.; Pejin, B.; Tommonaro, G.; Mojović, M. Liposomal integration method for assessing antioxidative activity of water insoluble compounds towards biologically relevant free radicals: Example of avarol. J. Liposome Res. 2020, 30, 218–226. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, G.; Pan, J.; Wang, Y. α-Glucosidase inhibition by luteolin: Kinetics, interaction and molecular docking. Int. J. Biol. Macromol. 2014, 64, 213–223. [Google Scholar] [CrossRef]
- Suo, Z.; Sun, Q.; Yang, H.; Tang, P.; Gan, R.; Xiong, X.; Li, H. Combined spectroscopy methods and molecular simulations for the binding properties of trametinib to human serum albumin. RSC Adv. 2018, 8, 4742–4749. [Google Scholar] [CrossRef]
- Zazeri, G.; Povinelli, A.P.R.; Lima, M.d.F.; Cornélio, M.L. Detailed Characterization of the Cooperative Binding of Piperine with Heat Shock Protein 70 by Molecular Biophysical Approaches. Biomedicines 2020, 8, 629. [Google Scholar] [CrossRef]
- Zazeri, G.; Povinelli, A.; Lima, M.; Cornélio, M. Experimental Approaches and Computational Modeling of Rat Serum Albumin and Its Interaction with Piperine. Int. J. Mol. Sci. 2019, 20, 2856. [Google Scholar] [CrossRef]
- Wu, D.; Liu, D.; Zhang, Y.; Zhang, Z.; Li, H. Unravelling the binding mechanism of benproperine with human serum albumin: A docking, fluorometric, and thermodynamic approach. Eur. J. Med. Chem. 2018, 146, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Bakar, K.A.; Feroz, S.R. A critical view on the analysis of fluorescence quenching data for determining ligand–protein binding affinity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 223, 117337. [Google Scholar] [CrossRef] [PubMed]
- Jevtovic, V.; Golubović, L.; Alshammari, O.A.O.; Alhar, M.S.; Alanazi, T.Y.A.; Rakic, V.; Ganguly, R.; Dimitrić Marković, J.; Rakić, A.; Dimić, D. The Counterion (SO42− and NO3−) Effect on Crystallographic, Quantum-Chemical, Protein-, and DNA-Binding Properties of Two Novel Copper(II)–Pyridoxal-Aminoguanidine Complexes. Crystals 2024, 14, 814. [Google Scholar] [CrossRef]
- Sugio, S.; Kashima, A.; Mochizuki, S.; Noda, M.; Kobayashi, K. Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng. Des. Sel. 1999, 12, 439–446. [Google Scholar] [CrossRef]
- Baruah, H.; Wright, M.W.; Bierbach, U. Solution Structural Study of a DNA Duplex Containing the Guanine-N7 Adduct Formed by a Cytotoxic Platinum-Acridine Hybrid Agent. Biochemistry 2005, 44, 6059–6070. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. AMDock: A versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4. Biol. Direct 2020, 15, 12. [Google Scholar] [CrossRef]
D-H...A | d(D-H) | d(H...A) | d(D...A) | <(DHA) |
---|---|---|---|---|
O(2)-H(2)...O(6)#1 | 0.893(18) | 1.772(18) | 2.662(2) | 174(3) |
N(1)-H(1N)...O(7)#2 | 0.899(18) | 1.912(19) | 2.791(2) | 165(3) |
N(3)-H(3N)...O(5)#3 | 0.870(18) | 1.961(19) | 2.819(2) | 169(3) |
N(4)-H(4N)...O(6)#3 | 0.895(18) | 2.21(2) | 2.987(2) | 145(2) |
N(4)-H(5N)...O(4)#4 | 0.879(18) | 2.24(2) | 3.062(2) | 155(3) |
O(8)-H(8D)...O(7) | 0.863(18) | 1.85(2) | 2.695(2) | 164(3) |
O(8)-H(8E)...O(2)#5 | 0.855(18) | 1.925(19) | 2.771(2) | 170(3) |
O(9)-H(9D)...O(5)#6 | 0.858(18) | 1.84(2) | 2.671(2) | 162(4) |
O(9)-H(9E)...O(1)#6 | 0.851(19) | 2.00(2) | 2.813(2) | 160(4) |
Compound | T [K] | KSV [M−1] | Kb [M−1] | n | ΔHb [kJ mol−1] | ΔSb [J mol−1 K−1] | ΔGb [kJ mol−1] |
---|---|---|---|---|---|---|---|
1 | 300 | 1.95 × 104 | 3.87 × 104 | 1.08 | 170.5 | 655.9 | −26.3 |
305 | 1.87 × 104 | 1.08 × 105 | 1.18 | −29.5 | |||
310 | 1.84 × 104 | 3.51 × 105 | 1.28 | −32.8 |
Compound | T [K] | KSV [M−1] | Kb [M−1] | n | ΔHb [kJ mol−1] | ΔSb [J mol−1 K−1] | ΔGb [kJ mol−1] |
---|---|---|---|---|---|---|---|
1 | 300 | 1.71 × 104 | 8.23 × 102 | 0.77 | 270.4 | 955.5 | −16.2 |
305 | 1.86 × 104 | 2.64 × 103 | 0.83 | −21.0 | |||
310 | 1.89 × 104 | 2.74 × 104 | 1.03 | −25.8 |
Empirical Formula | [Ni(PLSC)(SO4)(H2O)2] C9H16NiNO9S |
---|---|
Formula weight | 415.03 |
Temperature (K) | 123 (2) |
Crystal system | monoclinic |
Space group | P21/n |
Radiation/Wavelength [Å] | CuKα/1.54184 Å |
Volume (Å3) | 1442.02(3) |
Unit cell dimension (Å/°) | a = 8.96650(10) b = 9.28740(10) c = 17.6603(3) β = 101.327(2) |
Z | 4 |
Volume | 1442.02(3) Å3 |
Calculated density | 1.912 g cm−3 |
Goodness-of-fit on F2 | 856 |
h, k, lmax | 11, 11, 22 |
Nref | 3087 |
Bond precision: C-C | 0.0030 Å |
Data Completeness | 0.978 |
Θ max [°] | 80.075 |
R1 [I > 2s(I)], R1 (all) | 0.0350 |
wR2 [I > 2s(I)], wR2 (all) | 0.1009 |
CCDC no. | 2348551 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jevtovic, V.; Golubović, L.; Alshammari, O.A.O.; Alhar, M.S.; Alanazi, T.Y.A.; Radulović, A.; Nakarada, Đ.; Dimitrić Marković, J.; Rakić, A.; Dimić, D. Structural, Antioxidant, and Protein/DNA-Binding Properties of Sulfate-Coordinated Ni(II) Complex with Pyridoxal-Semicarbazone (PLSC) Ligand. Inorganics 2024, 12, 280. https://doi.org/10.3390/inorganics12110280
Jevtovic V, Golubović L, Alshammari OAO, Alhar MS, Alanazi TYA, Radulović A, Nakarada Đ, Dimitrić Marković J, Rakić A, Dimić D. Structural, Antioxidant, and Protein/DNA-Binding Properties of Sulfate-Coordinated Ni(II) Complex with Pyridoxal-Semicarbazone (PLSC) Ligand. Inorganics. 2024; 12(11):280. https://doi.org/10.3390/inorganics12110280
Chicago/Turabian StyleJevtovic, Violeta, Luka Golubović, Odeh A. O. Alshammari, Munirah Sulaiman Alhar, Tahani Y. A. Alanazi, Aleksandra Radulović, Đura Nakarada, Jasmina Dimitrić Marković, Aleksandra Rakić, and Dušan Dimić. 2024. "Structural, Antioxidant, and Protein/DNA-Binding Properties of Sulfate-Coordinated Ni(II) Complex with Pyridoxal-Semicarbazone (PLSC) Ligand" Inorganics 12, no. 11: 280. https://doi.org/10.3390/inorganics12110280
APA StyleJevtovic, V., Golubović, L., Alshammari, O. A. O., Alhar, M. S., Alanazi, T. Y. A., Radulović, A., Nakarada, Đ., Dimitrić Marković, J., Rakić, A., & Dimić, D. (2024). Structural, Antioxidant, and Protein/DNA-Binding Properties of Sulfate-Coordinated Ni(II) Complex with Pyridoxal-Semicarbazone (PLSC) Ligand. Inorganics, 12(11), 280. https://doi.org/10.3390/inorganics12110280