Performance Enhancement of Planar GaAs Photoconductive Semiconductor Switches by Introducing p-Type Epitaxial Layer
<p>Device structure of GaAs PCSS with p-type epitaxial layer (P-PCSS).</p> "> Figure 2
<p>The fabrication process of P-PCSS.</p> "> Figure 3
<p>Dynamic test circuit of GaAs PCSS; inset: the relative spectral intensity and far-field beam.</p> "> Figure 4
<p>Test results of specific contact resistivity of P-PCSS.</p> "> Figure 5
<p>Metal–p-type GaAs ohmic contact band diagram.</p> "> Figure 6
<p>Leakage current of three types of GaAs PCSSs; inset: the AFM image of the GaAs surface after the wet etching process.</p> "> Figure 7
<p>The optical absorption of PCSS.</p> "> Figure 8
<p>The relationship between biased voltage and amplitude.</p> "> Figure 9
<p>The output waveform of three PCSSs: (<b>a</b>) P-PCSS, (<b>b</b>) SI-PCSS with Ni/Ge/Au electrode, and (<b>c</b>) SI-PCSS with Ti/Pt/Au electrode.</p> "> Figure 10
<p>The relationship between biased voltage and pulse width/rise time for P-PCSS.</p> "> Figure 11
<p>The damage situation for different switches: (<b>a</b>) SI-PCSS with Ni/Ge/Au; inset: damage details of this PCSS; (<b>b</b>) P-PCSS.</p> "> Figure 12
<p>The damage situation for different electrodes in P-PCSS: (<b>a</b>) anode and (<b>b</b>) cathode.</p> ">
Abstract
:1. Introduction
2. Device Fabrication and Measurement
2.1. Device Structure
2.2. Fabrication Process
2.3. Test Circuit of GaAs PCSS
3. Results and Discussion
3.1. Dark-State Characteristics of GaAs PCSS
3.2. Light-Triggered Characteristics of GaAs PCSS
3.3. Damage Characteristics of GaAs PCSS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mankowski, J.; Kristiansen, M. A review of short pulse generator technology. IEEE Trans. Plasma Sci. 2000, 28, 102–108. [Google Scholar] [CrossRef]
- Ranjan, A.; Abhishek, A.; Kumar, N.; Verma, B.K. Review of Nanosecond Pulse Generator with High-Power Switching Devices. IEEE Trans. Electron Devices 2024, 71, 5165–5176. [Google Scholar] [CrossRef]
- Majda-Zdancewicz, E.; Suproniuk, M.; Pawłowski, M.; Wierzbowski, M. Current state of photoconductive semiconductor switch engineering. Opto-Electron. Rev. 2018, 26, 92–102. [Google Scholar] [CrossRef]
- Meyers, V.; Voss, L.; Flicker, J.D.; Rodriguez, L.G.; Hjalmarson, H.P.; Lehr, J.; Gonzalez, N.; Pickrell, G.; Ghandiparsi, S.; Kaplar, R. Photoconductive Semiconductor Switches: Materials, Physics, and Applications. Appl. Sci. 2025, 15, 645. [Google Scholar] [CrossRef]
- Chowdhury, A.R.; Ness, R.; Joshi, R.P. Assessing Lock-On Physics in Semi-Insulating GaAs and InP Photoconductive Switches Triggered by Subbandgap Excitation. IEEE Trans. Electron Devices 2018, 65, 3922–3929. [Google Scholar] [CrossRef]
- Loubriel, G.; Zutavern, F.; Baca, A.; Hjalmarson, H.; Plut, T.; Helgeson, W.; O’Malley, M.; Ruebush, M.; Brown, D. Photoconductive semiconductor switches. IEEE Trans. Plasma Sci. 1997, 25, 124–130. [Google Scholar] [CrossRef]
- Hu, L.; Su, J.; Qiu, R.; Fang, X. Ultra-Wideband Microwave Generation Using a Low-Energy-Triggered Bulk Gallium Arsenide Avalanche Semiconductor Switch with Ultrafast Switching. IEEE Trans. Electron Devices 2018, 65, 1308–1313. [Google Scholar] [CrossRef]
- Zhu, L.; Hu, L.; Shen, X.; Dang, X.; Sun, Y.; Li, X.; Han, C.; Liu, W. Investigation of Delay Jitter of Avalanche GaAs PCSS for Triggering High-Voltage Gas Switch. IEEE Trans. Electron Devices 2023, 70, 2255–2261. [Google Scholar] [CrossRef]
- Oicles, J.A.; Grant, J.R.; Herman, M.H. Realizing the potential of photoconductive switching for HPM applications. In Proceedings of the SPIE’s 1995 International Symposium on Optical Science, Engineering, and Instrumentation, San Diego, CA, USA, 8 September 1995; pp. 225–236. [Google Scholar]
- Zutavern, F.J.; Loubriel, G.M.; Hjalmarson, H.P.; Mar, A.; Helgeson, W.D.; O’Malley, M.W.; Ruebush, M.H.; Falk, R.A. Properties of High Gain GaAs Switches for Pulsed Power Applications. In Proceedings of the Digest of Technical Papers. 11th IEEE International Pulsed Power Conference (Cat. No.97CH36127), Baltimore, MD, USA, 29 July 1997; Volume 2, pp. 959–964. [Google Scholar]
- Loubriel, G.; Zutavern, F.; Mar, A.; Hjalmarson, H.; Baca, A.; O’Malley, M.; Helgeson, W.; Falk, R.; Brown, D. Longevity of optically activated, high gain GaAs photoconductive semiconductor switches. IEEE Trans. Plasma Sci. 1998, 26, 1393–1402. [Google Scholar] [CrossRef]
- Davanloo, F.; Iosif, M.C.; Camase, D.T.; Collins, C.B. Development of High Power Photoconductive Semiconductor Switches Treated with Amorphic Diamond Coatings. In Proceedings of the PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No.01CH37251), Las Vegas, NV, USA, 17 June 2001; Volume 1, pp. 337–340. [Google Scholar]
- Shen, Y.; Liu, Y.; Wang, W.; Ye, M.; Zhang, H.; Xia, L. Anode Failure Mechanism of GaAs Photoconductive Semiconductor Switch Triggered by Laser Diode. IEEE Trans. Plasma Sci. 2019, 47, 4584–4587. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, L.; Yang, X.; Zhu, Z.; Huang, J.; Yang, M.; Li, X.; Ni, L.; Zhou, Y.; Geng, L. Improved Lifetime for Kilovolts Class Avalanche GaAs PCSS by Surface Passivation of Composite Dielectric Films. In IEEE Transactions on Dielectrics and Electrical Insulation; IEEE: Piscataway, NJ, USA, 2024; p. 1. [Google Scholar] [CrossRef]
- Ma, C.; Wu, M.; Wang, W.; Jia, Y.; Shi, W. Electrical Characterizations of 35-kV Semi-Insulating Gallium Arsenide Photoconductive Switch. Photonics 2021, 8, 385. [Google Scholar] [CrossRef]
- Zhu, L.; Hu, L.; Shen, X.; Sun, Y.; Li, X.; Liu, W. Improved Current and Jitter Performances of Photoconductive Semiconductor Switch Based on Reduced Graphene Oxide/Metal Electrode. IEEE Electron Device Lett. 2023, 44, 289–292. [Google Scholar] [CrossRef]
- Yang, H.; Cui, H.; Sun, Y.; Zeng, G.; Wu, M. High power, longevity gallium arsenide photoconductive semiconductor switches. Chin. Sci. Bull. 2010, 55, 1331–1337. [Google Scholar] [CrossRef]
- Mohiuddin, M.; Arshad, S.; Bouloukou, A.; Missous, M. 2-D Physical Modelling of 6-Doped GaAs/AlGaAs HEMT. In Proceedings of the 2008 International Conference on Advanced Semiconductor Devices and Microsystems, Smolenice, Slovakia, 12 October 2008; pp. 207–210. [Google Scholar]
- Lin, T.; Xie, J.-N.; Ning, S.-H.; Li, Q.-M.; Li, B. Study on the p-type ohmic contact in GaAs-based laser diode. Mater. Sci. Semicond. Process. 2021, 124, 105622. [Google Scholar] [CrossRef]
- Baraskar, A. Development of Ultra-Low Resistance Ohmic Contacts for Indium Gallium Arsenide/Indium Phosphide HBTs. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 2011. [Google Scholar]
- Ressel, P.; Strusny, H.; Vogel, K.; Würfl, J.; Fritzsche, D.; Kräutle, H.; Kuphal, E.; Mause, K.; Trapp, M.; Richter, U. Ohmic contacts on p-In0.53Ga0.47As prepared by Zn implantation into Pd-based metallizations. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 1995, 13, 2297–2305. [Google Scholar] [CrossRef]
- Culpepper, J.; Miller, A.; Neuber, A.; Dickens, J. Packaging and Evaluation of 100 kV Photoconductive Switches. In Proceedings of the 2019 IEEE Pulsed Power & Plasma Science (PPPS), Orlando, FL, USA, 23 June 2019; pp. 1–3. [Google Scholar]
- Browder, M.K.; Nunnally, W.C. Investigation of Optically Induced Avalanching in GaAs. In Proceedings of the 7th Pulsed Power Conference, Monterey, CA, USA, 11–14 June 1989; pp. 433–436. [Google Scholar]
- Sturge, M.D. Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV. Phys. Rev. B 1962, 127, 768–773. [Google Scholar] [CrossRef]
- Yuan, J.; Xie, W.; Liu, H.; Liu, J.; Li, H.; Wang, X.; Jiang, W. High-Power Semi-Insulating GaAs Photoconductive Semiconductor Switch Employing Extrinsic Photoconductivity. IEEE Trans. Plasma Sci. 2009, 37, 1959–1963. [Google Scholar] [CrossRef]
- Xu, M.; Dong, H.; Liu, C.; Wang, Y.; Hu, L.; Lan, C.; Luo, W.; Schneider, H. Investigation of an Opposed-Contact GaAs Photoconductive Semiconductor Switch at 1-kHz Excitation. IEEE Trans. Electron Devices 2021, 68, 2355–2359. [Google Scholar] [CrossRef]
- Si, X.; Xu, M.; Wang, W.; Chang, J.; Wang, C. Carrier Transport and Thermal Failure Mechanism of GaAs Photoconductive Semiconductor Switch at Low Optical Excitation. Diangong Jishu Xuebao/Trans. China Electrotech. Soc. 2024, 39, 2153–2160. [Google Scholar]
- Welsch, M.; Singh, A.; Winnerl, S.; Pashkin, A.; Xu, M.; Li, M.; Helm, M.; Schneider, H. High–Bias–Field Operation of GaAs Photoconductive Terahertz Emitters. J. Infrared Millim. Terahertz Waves 2021, 42, 537–546. [Google Scholar] [CrossRef]
- Xu, M.; Liu, C.; Luo, W.; Wang, C.; Chang, J.; Liu, R.; Liu, Q.; Jia, W.; Qu, G. Pulse Compression Characteristics of an Opposed-Electrode Nonlinear GaAs Photoconductive Semiconductor Switch at 2 μJ Excitation. IEEE Electron Device Lett. 2022, 43, 753–756. [Google Scholar] [CrossRef]
- Shi, W.; Wu, M.; Ma, C.; Chen, Z. Pulsewidth Control of Nonlinear GaAs Photoconductive Semiconductor Switch. IEEE Trans. Electron Devices 2022, 69, 4396–4400. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, L.; Yang, X.; Zhu, Z.; Huang, J.; Yang, M.; Li, X.; Ni, L.; Zhou, Y.; Geng, L. Enhanced Durability of High-Power Avalanche GaAs Photoconductive Semiconductor Switch Utilizing Advanced Double-Sided Cooling Configuration. IEEE Trans. Electron Devices 2024, 71, 5275–5279. [Google Scholar] [CrossRef]
- Shi, W.; Ma, C.; Li, M. Research on the Failure Mechanism of High-Power GaAs PCSS. IEEE Trans. Power Electron. 2015, 30, 2427–2434. [Google Scholar] [CrossRef]
- Luo, W.; Xu, M.; Gao, R.; Liu, C.; Si, X.; Liu, R. Evolution of Current Filament with Electron-Hole Plasma in High-Gain GaAs Photoconductive Switches with Opposed Electrodes. IEEE J. Sel. Top. Quantum Electron. 2023, 29, 8500908. [Google Scholar] [CrossRef]
- Sun, Q.; Sun, Q.; Guo, H.; Guo, H.; Zheng, Z.; Zheng, Z.; Zhang, F.; Zhang, F.; Hong, F.; Hong, F.; et al. Influence of Pinch Effect on the Lifetime of a 2MW Silicon Carbide Photoconductive Semiconductor Switch. IEEE Trans. Electron Devices 2024, 71, 2018–2023. [Google Scholar] [CrossRef]
Doping Concentration | Mobility | Sheet Resistance |
---|---|---|
3 × 1018 cm−3 | 148 cm2/(V·s) | 1700 Ω/sq |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, J.; Shi, Y.; Qian, G.; Wang, J.; Wei, Z.; Kong, Y.; Zhang, J.; Chen, T. Performance Enhancement of Planar GaAs Photoconductive Semiconductor Switches by Introducing p-Type Epitaxial Layer. Photonics 2025, 12, 152. https://doi.org/10.3390/photonics12020152
Zong J, Shi Y, Qian G, Wang J, Wei Z, Kong Y, Zhang J, Chen T. Performance Enhancement of Planar GaAs Photoconductive Semiconductor Switches by Introducing p-Type Epitaxial Layer. Photonics. 2025; 12(2):152. https://doi.org/10.3390/photonics12020152
Chicago/Turabian StyleZong, Jiawei, Yating Shi, Guang Qian, Jinpeng Wang, Zelu Wei, Yuechan Kong, Jingwen Zhang, and Tangsheng Chen. 2025. "Performance Enhancement of Planar GaAs Photoconductive Semiconductor Switches by Introducing p-Type Epitaxial Layer" Photonics 12, no. 2: 152. https://doi.org/10.3390/photonics12020152
APA StyleZong, J., Shi, Y., Qian, G., Wang, J., Wei, Z., Kong, Y., Zhang, J., & Chen, T. (2025). Performance Enhancement of Planar GaAs Photoconductive Semiconductor Switches by Introducing p-Type Epitaxial Layer. Photonics, 12(2), 152. https://doi.org/10.3390/photonics12020152