Design and Analysis of Compact High–Performance Lithium–Niobate Electro–Optic Modulator Based on a Racetrack Resonator
<p>(<b>a</b>) A schematic diagram of the proposed racetrack resonator with a double-layer electrode. Inset: the cross-section of coupling area. (<b>b</b>) A top view of the racetrack microring resonator. (<b>c</b>) The optical mode field and intensity distribution of the Euler bend with a waveguide width of 0.8 µm, simulated by FDTD.</p> "> Figure 2
<p>(<b>a</b>) Lumerical MODE simulation of the fundamental TE<sub>0</sub> optical mode of the waveguide. (<b>b</b>) The calculated optical effective index of the waveguide.</p> "> Figure 3
<p>(<b>a</b>) The coupling coefficient <span class="html-italic">κ</span><sup>2</sup> and (<b>b</b>) the transmission coefficient <span class="html-italic">t</span><sup>2</sup> vary with w<sub>gap</sub> in the coupling region at the wavelength of 1550 nm.</p> "> Figure 4
<p>(<b>a</b>) The coupling coefficient <span class="html-italic">κ</span><sup>2</sup> and (<b>b</b>) the transmission coefficient <span class="html-italic">t</span><sup>2</sup> vary with w<sub>1</sub> in the coupling region at the wavelength of 1550 nm.</p> "> Figure 5
<p>The BW and <span class="html-italic">Q</span> factor performances with the variation in <span class="html-italic">Lc</span> of the resonator.</p> "> Figure 6
<p>(<b>a</b>) The coupling and transmission coefficients with a variation in wavelength, when w<sub>gap</sub> = 0.7 μm and w<sub>1</sub> = 0.6 μm. (<b>b</b>) Transmission spectrum of the resonator with different bends used in the coupling region at the wavelength of 1550 nm.</p> "> Figure 7
<p>(<b>a</b>) A top view of the proposed tunable racetrack resonator with double-layer electrodes. (<b>b</b>) The simulated TE optical mode field profile at 1550 nm and the electric field between the double-layer electrodes. Here, the TFLN waveguide was formed by a 300 nm × 0.8 µm LN loading ridge. (<b>c</b>) A schematic of a unit cell of the electrode structure. (<b>d</b>) The simulation result of the influence of h and d on metal loss.</p> "> Figure 8
<p>Metal loss analysis for different electrode designs. (<b>a</b>) Metal electrodes were placed directly on the waveguide. (<b>b</b>) A 2.8 μm-wide layer of SiO<sub>2</sub> was added between the double metal electrode and the waveguide.</p> "> Figure 9
<p>(<b>a</b>) The simulated transmission spectrum of the TE mode of the passive racetrack resonator. (<b>b</b>) The detailed spectrum at 1550.118 nm. (<b>c</b>) The spectrum under different voltages of the TE mode at 1550.118 nm. (<b>d</b>) Resonant wavelength shifts as a function of the applied voltage.</p> ">
Abstract
:1. Introduction
2. Structure Design
3. Theoretical MRM Model Analysis
3.1. Microring Resonator Optimization
3.2. Electrode Design and Optimization
4. Performance Analysis and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weis, R.S.; Gaylord, T.K. Lithium niobate: Summary of physical properties and crystal structure. Appl. Phys. A 1985, 37, 191–203. [Google Scholar] [CrossRef]
- Saravi, S.; Pertsch, T.; Setzpfandt, F. Lithium Niobate on Insulator: An Emerging Platform for Integrated Quantum Photonics. Adv. Opt. Mater. 2021, 9, 2100789. [Google Scholar] [CrossRef]
- Chen, G.; Gao, Y.; Lin, H.L.; Danner, A.J. Compact and Efficient Thin-Film Lithium Niobate Modulators. Adv. Photonics Res. 2023, 4, 2300229. [Google Scholar] [CrossRef]
- Kong, Y.; Bo, F.; Wang, W.; Zheng, D.; Liu, H.; Zhang, G.; Rupp, R.; Xu, J. Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On-Chip Devices. Adv. Mater. 2020, 32, e1806452. [Google Scholar] [CrossRef] [PubMed]
- Boes, A.; Corcoran, B.; Chang, L.; Bowers, J.; Mitchell, A. Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits. Laser Photonics Rev. 2018, 12, 1700256. [Google Scholar] [CrossRef]
- Xue, Y.; Gan, R.; Chen, K.; Chen, G.; Ruan, Z.; Zhang, J.; Liu, J.; Dai, D.; Guo, C.; Liu, L. Breaking the bandwidth limit of a high-quality-factor ring modulator based on thin-film lithium niobate. Optica 2022, 9, 1131–1137. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, K.; Sun, W.; Ren, Y.; Zhang, Y.; Zhang, W.; Wang, C. Ultra-high-linearity integrated lithium niobate electro-optic modulators. Photonics Res. 2022, 10, 2366–2373. [Google Scholar] [CrossRef]
- Ren, T.; Zhang, M.; Wang, C.; Shao, L.; Reimer, C.; Zhang, Y.; King, O.; Esman, R.; Cullen, T.; Loncar, M. An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator. IEEE Photonics Technol. Lett. 2019, 31, 889–892. [Google Scholar] [CrossRef]
- Ying, P.; Tan, H.; Zhang, J.; He, M.; Xu, M.; Liu, X.; Ge, R.; Zhu, Y.; Liu, C.; Cai, X. Low-loss edge-coupling thin-film lithium niobate modulator with an efficient phase shifter. Optics Lett. 2021, 46, 1478–1481. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhu, Y.; Pittalà, F.; Tang, J.; He, M.; Ng, W.C.; Wang, J.; Ruan, Z.; Tang, X.; Kuschnerov, M.; et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 2022, 9, 61–62. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Stern, B.; Lipson, M.; Lončar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 2018, 26, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.; Cai, L.; Bottenfield, C.; Piazza, G. Lithium Niobate Electro-Optic Racetrack Modulator Etched in Y-Cut LNOI Platform. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Li, M.; Ling, J.; He, Y.; Javid, U.A.; Xue, S.; Lin, Q. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 2020, 11, 4123. [Google Scholar] [CrossRef]
- Wooten, E.; Kissa, K.; Yi-Yan, A.; Murphy, E.; Lafaw, D.; Hallemeier, P.; Maack, D.; Attanasio, D.; Fritz, D.; McBrien, G.; et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 69–82. [Google Scholar] [CrossRef]
- Xie, Z.; Bo, F.; Lin, J.; Hu, H.; Cai, X.; Tian, X.-H.; Fang, Z.; Chen, J.; Wang, M.; Chen, F.; et al. Recent development in integrated Lithium niobate photonics. Adv. Phys. 2024, 9, 2322739. [Google Scholar] [CrossRef]
- Alam, M.S.; Li, X.; Jacques, M.; Xing, Z.; Samani, A.; El-Fiky, E.; Koh, P.C.; Plant, D.V. Net 220 Gbps/λ IM/DD Transmssion in O-Band and C-Band With Silicon Photonic Traveling-Wave MZM. J. Light. Technol. 2021, 39, 4270–4278. [Google Scholar] [CrossRef]
- Eppenberger, M.; Messner, A.; Bitachon, B.I.; Heni, W.; Blatter, T.; Habegger, P.; Destraz, M.; De Leo, E.; Meier, N.; Del Medico, N.; et al. Resonant plasmonic micro-racetrack modulators with high bandwidth and high temperature tolerance. Nat. Photonic 2023, 17, 360–367. [Google Scholar] [CrossRef]
- Han, C.; Jin, M.; Tao, Y.; Shen, B.; Wang, X. Recent Progress in Silicon-Based Slow-Light Electro-Optic Modulators. Micromachines 2022, 13, 400. [Google Scholar] [CrossRef]
- Han, C.; Zheng, Z.; Shu, H.; Jin, M.; Qin, J.; Chen, R.; Tao, Y.; Shen, B.; Bai, B.; Yang, F.; et al. Slow-light silicon modulator with 110-GHz bandwidth. Sci. Adv. 2023, 9, 5339. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.; Li, X.; Xiao, X.; Yu, S. Silicon intensity Mach Zehnder modulator for single lane 100 Gb/s applications. Photonics Res. 2018, 6, 109–116. [Google Scholar] [CrossRef]
- Yu, F.; Zeng, Z.; Ji, X.; Tang, K.; Xin, Y.; Wu, G.; Mao, D.; Gu, T.; Huang, Q.; Jiang, W. Silicon electro-optic modulators based on microscopic photonic structures: From principles to advanced modulation formats. J. Phys. D Appl. Phys. 2023, 56, 443002. [Google Scholar] [CrossRef]
- Mohammadi, M.; Soroosh, M.; Farmani, A.; Ajabi, S. Engineered FWHM enhancement in plasmonic nanoresonators for multiplexer/demultiplexer in visible and NIR range. Optik 2023, 274, 170583. [Google Scholar] [CrossRef]
- Ahmed, A.N.R.; Shi, S.; Mercante, A.J.; Prather, D.W. High-performance racetrack resonator in silicon nitride—Thin film lithium niobate hybrid platform. Opt. Express 2019, 27, 30741–30751. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.N.R.; Shi, S.; Zablocki, M.; Yao, P.; Prather, D.W. Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator. Opt. Lett. 2019, 44, 618–621. [Google Scholar] [CrossRef]
- Bahadori, M.; Yang, Y.; Hassanien, A.E.; Goddard, L.L.; Gong, S. Ultra-efficient and fully isotropic monolithic microring modulators in a thin-film lithium niobate photonics platform. Opt. Express 2020, 28, 29644–29661. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Hu, Y.; Li, Y.; Chen, H.; Liu, R.; Tian, G.; Qiu, W.; Yang, T.; Guan, H.; Lu, H. Versatile Tunning of Compact Microring Waveguide Resonator Based on Lithium Niobate Thin Films. Photonics 2023, 10, 424. [Google Scholar] [CrossRef]
- Tan, Y.; Niu, S.; Billet, M.; Singh, N.; Niels, M.; Vanackere, T.; Van Kerrebrouck, J.; Roelkens, G.; Kuyken, B.; Van Thourhout, D. Micro-transfer Printed Thin Film Lithium Niobate (TFLN)-on-Silicon Ring Modulator. ACS Photonics 2024, 11, 1920–1927. [Google Scholar] [CrossRef]
- Yu, H.; Ying, D.; Pantouvaki, M.; Van Campenhout, J.; Absil, P.; Hao, Y.; Yang, J.; Jiang, X. Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators. Opt. Express 2014, 22, 15178–15189. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, Y.; Wang, D.; Song, W.; Liu, X.; Pang, J.; Geng, D.; Sang, Y.; Liu, H. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci. Appl. 2020, 9, 197. [Google Scholar] [CrossRef]
- Sheng, Z.; Yue, L.; Zhao, Y.; Jin, G.; Zhang, Q.; Fu, S.; Wang, X.; Wang, X.; Wang, X. A high figure of merit of phonon-polariton waveguide modes with hbn/SiO2/graphene/hBN ribs waveguide in mid-infrared range. Heliyon 2024, 10, e26727. [Google Scholar] [CrossRef]
- Dong, P.; Liao, S.; Feng, D.; Liang, H.; Zheng, D.; Shafiiha, R.; Kung, C.-C.; Qian, W.; Li, G.; Zheng, X.; et al. Low V pp, ultralow-We added page number, please checkenergy, compact, high-speed silicon electro-optic modulator. Opt. Express 2009, 17, 22484–22490. [Google Scholar] [CrossRef] [PubMed]
- Mobini, E.; Espinosa, D.H.G.; Vyas, K.; Dolgaleva, K. AlGaAs Nonlinear Integrated Photonics. Micromachines 2022, 13, 991. [Google Scholar] [CrossRef]
- Wei, C.; Li, J.; Jia, Q.; Li, D.; Liu, J. Ultrahigh-Q lithium niobate microring resonator with multimode waveguide. Opt. Lett. 2023, 48, 2465–2467. [Google Scholar] [CrossRef]
- Zhang, L.; Jie, L.; Zhang, M.; Wang, Y.; Xie, Y.; Shi, Y.; Dai, D. Ultrahigh-Q silicon racetrack resonators. Photonics Res. 2020, 8, 684–689. [Google Scholar] [CrossRef]
- Son, S.J.; Kim, S.; Yu, N.E.; Ko, D.K. Bus-waveguide-width Dependence of Evanescent Wave Coupling in a Microring Resonator. Curr. Opt. Photon. 2021, 5, 538–543. [Google Scholar]
- Bahadori, M.; Goddard, L.L.; Gong, S. Fundamental electro-optic limitations of thin-film lithium niobate microring modulators. Opt. Express 2020, 28, 13731–13749. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, Z.; Jia, W.; Chen, S.; Yang, Y.; Li, Y. Design of Ultracompact High-Speed-Integrated Lithium–Niobate PeriodicDielectric Waveguide Modulator. Adv. Photonics Res. 2022, 3, 2200050. [Google Scholar] [CrossRef]
- Wu, R.; Gao, L.; Liang, Y.; Zheng, Y.; Zhou, J.; Qi, H.; Yin, D.; Wang, M.; Fang, Z.; Cheng, Y. High-Production-Rate Fabrication of Low-Loss Lithium Niobate Electro-Optic Modulators Using Photolithography Assisted Chemo-Mechanical Etching (PLACE). Micromachines 2022, 13, 378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, C.; Kharel, P.; Zhu, D.; Lončar, M. Integrated lithium niobate electro-optic modulators: When performance meets scalability. Optica 2021, 8, 652–667. [Google Scholar] [CrossRef]
w1 (μm) | w2 (μm) | wgap (μm) | Rmin (μm) | Electrode Gap (μm) | Lc (μm) |
---|---|---|---|---|---|
0.6 | 0.8 | 0.7 | 30 | 1.4 | 100 |
Fabrication Imperfections | Metal Loss (dB/cm) | Extinction Ratio (dB) | Bandwidth (GHz) | Tuning Efficiency (pm/V) |
---|---|---|---|---|
None (ideal value) | 1.58 | 38 | 29 | 8.24 |
ϕ varied from 70° to 75° | 1.682 | 39.124 | 29.336 | 8.436 |
h1 varied from 90 to 110 nm | 1.503 | 37.630 | 28.727 | 8.113 |
h2 varied from 290 to 310 nm | 1.667 | 39.001 | 29.009 | 8.327 |
h3 varied from 390 to 410 nm | 1.575 | 37.777 | 28.872 | 8.227 |
Reference | Platform | Cut | Type | Tuning Efficiency (pm/V) | Extinction Ratio (dB) | Footprint (μm2) | Bandwidth (GHz) |
---|---|---|---|---|---|---|---|
[11] | LNOI | X-cut | Racetrack | 7/7.82 * | 10 | 8.28 × 104 | 3.87 * |
[12] | LNOI | Y-cut | Racetrack | 0.32/0.61 * | >10 | 1.31 × 105 | 4/4.03 * |
[23] | Si3N4-LN | X-cut | Racetrack | 2.9 | 30 * | 1.32 × 106 | 2.98/2.61 * |
[24] | Si3N4-LN | X-cut | Ring | 1.78/1.79 * | 26.2/27 * | 2.83 × 105 | 1.07/1.05 * |
[25] | LNOI | Z-cut | Ring | 9/8.9 * | 20/22.5 * | 3.60 × 103 | 28/35.61 * |
[26] | LNOI | X-cut | Ring | 10.8/13.88 * | 11 | 2.54 × 104 | 17.5/9.52 * |
This work | LNOI | X-cut | Racetrack | 8.24 * | 38 * | 1.92 × 104 * | 29 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Li, J.; Zheng, W.; Liu, H.; Huang, Q.; Han, Y.; Qin, Y. Design and Analysis of Compact High–Performance Lithium–Niobate Electro–Optic Modulator Based on a Racetrack Resonator. Photonics 2025, 12, 85. https://doi.org/10.3390/photonics12010085
Chen Z, Li J, Zheng W, Liu H, Huang Q, Han Y, Qin Y. Design and Analysis of Compact High–Performance Lithium–Niobate Electro–Optic Modulator Based on a Racetrack Resonator. Photonics. 2025; 12(1):85. https://doi.org/10.3390/photonics12010085
Chicago/Turabian StyleChen, Zixin, Jianping Li, Weiqin Zheng, Hongkang Liu, Quandong Huang, Ya Han, and Yuwen Qin. 2025. "Design and Analysis of Compact High–Performance Lithium–Niobate Electro–Optic Modulator Based on a Racetrack Resonator" Photonics 12, no. 1: 85. https://doi.org/10.3390/photonics12010085
APA StyleChen, Z., Li, J., Zheng, W., Liu, H., Huang, Q., Han, Y., & Qin, Y. (2025). Design and Analysis of Compact High–Performance Lithium–Niobate Electro–Optic Modulator Based on a Racetrack Resonator. Photonics, 12(1), 85. https://doi.org/10.3390/photonics12010085