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Abstract: In this work we present the extended work of the previously proposed scheme
for in-PIC temperature monitoring. This can be used in any photonic integrated circuitry
platform, allowing simplified temperature monitoring and improved independence of
the interrogating laser wavelength. Theoretically, power sensitivity was observed to be
0.77 dB/◦C and 0.98 dB/◦C for common mode and differential mode, respectively. The
experimentally noted sensitivity of common mode and differential mode are 1.45 dB/◦C
and 0.8 dB/◦C, respectively, at 1524 nm. The scheme allows the monitoring of the average
temperature on the surface of the chip, which results from the global effect that affects both
gratings (common mode) and the monitoring of the difference in temperature between
gratings (differential mode).
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1. Introduction
Bragg gratings are waveguides in which the effective refractive index varies peri-

odically, inducing a resonance in the mode traveling through it, which will result in the
reflection of a band centered on a specific wavelength that is related to periodicity. The
easiest way to vary the refractive index of a Bragg waveguide is by altering its geometry,
determining the grating strength, and the Bragg wavelength (i.e., the center wavelength of
the grating) [1].

Photonic integrated circuits (PICs), similar to integrated electronics, are the next-level
solution for photonic complexity and are important in handling photonic complexity and
availability. Permitting the integration of many components onto one chip provides a con-
cept such as a photonic system-on-chip. PICs have a number of key advantages compared
with conventional bulk free-space photonics, such as shorter optical path lengths between
devices and the availability of high-speed optoelectronic components with bandwidth
greater than 40 GHz [2]. Yet another major problem in PICs is a trade-off between chip
shrinking and a heat dissipation problem in active parts, due to miniaturization and high
component density. However, these highly active components also produce heat that
may deteriorate the performance of temperature-sensitive chip components and make
controlling the safe operation more complicated. Indium phosphide (InP) is the most
promising material chosen to fabricate an integration platform that integrates both active
and passive devices monolithically at the same time [3]. Thermal, RF, and optical crosstalk
also need to be mitigated in a scalable PIC [4,5]. Although RF and optical crosstalk is an old
and widely known problem occurring in electronic ICs, which can be avoided or at least
reduced through well-established design rules, optical crosstalk can also be handled via
foundry DRCs (design rule checks) that participate in automated detection of major flaws
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during the design phase. The situation is more complicated regarding thermal crosstalk,
as active components, such as lasers, are very sensitive to temperature and will have
detrimental interaction with other components on the chip [6]. As such, one of the keys
to a well-performing PIC is its thermal management. Global thermal stabilization of the
PIC in a photonic device is usually performed with a thermoelectric cooler (TEC), which
allows extending the operational temperature of the components in the chip and helps
prevent heat damage in the devices [7]. To close the temperature control loop, a thermistor
is normally used, placed close to the chip. However, the TEC controls the chip temperature
globally, but the temperature at the chip surface varies drastically with any heat source [6,7].
A state-of-the-art approach involves integrating Bragg grating sensors into photonic inte-
grated circuits (PICs) to monitor temperature fluctuations, which are common in optical
interconnect applications. The wavelength shift in Bragg gratings caused by temperature
changes serves as a precise and reliable method for detecting and compensating for such
fluctuations [8].

Research [5–7] has identified the presence of thermal crosstalk between neighboring
components even when thermal control is active, due to the distance between the sensor
(the thermistor) and the component generating the heat. The work we present has two
methods named common mode (average displacement of the grating caused by heating)
and differential mode (differential displacement caused by heating). A simplified schematic
of the common mode is shown in Figure 1, illustrating the electrical connection of a
photonic integrated circuit (PIC) that includes several active or heat-controlled building
blocks (BB). The block diagram for the differential mode was previously presented in our
earlier work [9], where a laser generates heat that affects the entire PIC. Most studies focus
on either enhancing the thermal flow or improving the sensitivity of the sensor [7].
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Figure 1. (a) Example diagram showing electrical connection of a PIC comprising several active or
heat-controlled building blocks (BB) (b) Contour of temperature over the surface of exemplary PIC
when LD2 is on biased at high current (TH: higher temperature; TL: lower temperature).

In this study, we extend our previous research [9], which provided a theoretical analy-
sis of the topic. This work introduces and defines a setup that leverages the conventional
temperature dependence of gratings, enhancing it to ensure compatibility with variations
in the interrogator laser wavelength. This technique is simple, and after calibration, it
can provide both differential and absolute temperature on the photonic chip’s surface [9].
This capability of having the differential temperature is the key strength of the method,
whereas absolute temperature can also be achieved through conventional grating-based
temperature sensors. This scheme is based on an interrogator laser, which in InP can be
built in, or in the other platforms can be externally or hybrid like integrated, and a set of
pairs of gratings designed in a very specific way such that their wavelengths are by design
very close to each other.
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2. Grating-Based Scheme
In Figure 2 it is the basis for the designed structure as well as the block diagram of

the scheme. The design structure is like our previous work [9]. Where two modes were
proposed theoretically: common mode and differential mode. The average displacement of
the two gratings caused by the heating of an active device laser diode (LD in our case is
DFB-L1) is called common mode. And the difference in the two displacements is termed
as differential mode. These two modes allow us to have an estimation of the average
temperature change and the effective local temperature.
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Figure 2. (a) Transmission spectrum of a grating with Bragg wavelength lB1 for different temper-
atures. (b) Two Bragg gratings with Bragg wavelengths λB1 and λB2. (c) Block diagram of the
scheme. LD—laser diode with wavelength λLD ∈ [λB1: λB2]; MMI—multimode interferometer
1:2 splitter/combiner configuration; PIN—Photodiode.

The scheme allows for monitoring the average temperature, which results from the
global effect that affects both gratings (common mode). For an example, if T0 is the
ambient temperature, then the average operating temperature could be considered as T0

+ ∆Tcm for the common mode operation, where ∆Tcm is the common mode temperature.
With turning ON the LD, the average temperature of grating, which is dependent on the
position/location from LD represented here as Gx, so the new temperature when LD is
ON can be represented as T0 + ∆Tcm + ∆TLD→Gx. The central wavelength of the grating is
dependent on the temperature locally and is represented as λG1(T) and λG2(T). Thus, with
everything OFF, we obtain λG1(T0) and λG2(T0). If we switch all other devices, the new λG1

(T0 + ∆Tcm) and λG2 (T0 + ∆Tcm). At last, by removing T0, we have ∆Tcm, i.e., the common
mode component.

In the case of differential mode, the effects of temperature on the Bragg wavelength
of G1 and the combination of the gratings, i.e., G1 & G2 are modeled and studied for
monitoring the differential temperature at PIC. One of the gratings suffers a negligible
wavelength shift because it is far from the heat source. In our case, this grating is G2. For
example, if we switch ON the LD, we will have ∆TLD→G1 and ∆TLD→G2 for G1 and G2,
respectively. Now, assuming that G1 is present close to LD, then ∆TLD→G1 >> ∆TLD→G2.
We obtain ∆TLD→G1 as the local temperature near G1 (operation in differential mode).

Each of the gratings presents a wavelength dependence on the temperature as depicted
in Figure 2a. The profile is shifting with temperature. Both gratings have similar behavior
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since they are designed to be very similar and on the same substrate. In the arrangement,
the two Bragg gratings with Bragg wavelengths λB1 (1522 nm) and λB2 (1529 nm) of length
300 µm are designed in such a way that the right slope of the transmission spectrum of
the lower Bragg wavelength overlaps with the left slope of the transmission spectrum of
the higher wavelength grating (as shown in Figure 2b). This design allows the overlap
spectrum to behave in a way that the full shape can be controlled by controlling each
Bragg wavelength design or temperature. The part in between the grating’s transmission
functions will change with the temperature and present a wider bandwidth than a simple
single grating structure, making the structure much more resilient to the interrogator laser
wavelength variations, making this method very insensitive to the offset temperature of the
chip or the laser fabrication tolerances. The gratings are placed very close to each other to be
similarly affected by the temperature of the heat-generating component. The full structure
may be very small since the gratings are almost unidimensional from the design point
of view. In the Heinrich Hertz Institute (HHI) InP platform, the LD’s present two facets;
therefore, without further insertion loss, a single laser can feed two of these structures
and, with that, have two sensors. Two sensors may be arranged to have a differential and
an offset measurement of the chip temperature if placing one structure close and another
far for the active components. When the two gratings are subject to temperature, the two
wavelengths shift and the shape changes, resulting in an interesting behavior. The next
section illustrates the experimental setup and methodology used for the measurements.

3. Methodology and Experimental Setup
Figure 3 shows the schematic of the experimental setup of the test chip and the

mapping of the PIC chip with the picture. In the presented case, and for the sake of
temperature independence, a tunable LD was used for common mode.
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with the InP chip for common mode testing and characterization.

PIN1 is used for monitoring the power that was arriving to the chip. The temperature
of the chip was changed through a commercial TEC controller that measured the tempera-
ture with a calibrated thermistor. With this setup, the wavelength of the LD was changed
from 1521 nm to 1530 nm to characterize the full range where the gratings were designed.

In the case of differential mode, the chip has G1 very close to the heating source. The
next section provides the experimental results of the test chip.

4. Results and Discussion
The temperature of the chip was varied (19 ◦C to 45 ◦C) by changing the parameters

at the TEC controller.
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The optical power, P, is estimated from the measurements in the current of the PIN1
for several temperatures in accordance with Figure 4. PIN1 is used to monitor power
transmitted, which is obtained by the measured voltage and converted as in Equation (1).

P(dBm) = 10log10(
1000 × V(Volt)

R(Ω)× RPIN

(
A
W

) ), (1)

where ‘V’ is the voltage measured across the PINs, ‘R’ is the resistor for the current conver-
sion (10 KΩ), and ‘RPIN’ is the PIN responsivity.
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In Figure 4 the behavior of the structure is presented for the overlapping section of
the response, showing an interesting behavior in the range from 1524 nm up to 1526.5 nm
with LD to be 2.5 nm with a measurement error of less than 0.5 dB, which corresponds
to less than 0.17 dB/◦C. The region is important as it clearly demonstrates the impact of
temperature on power. In Figure 5, a detail of the behavior in the most favorable range is
presented (the slope behavior is negative due to the impact of lower Bragg wavelength, i.e.,
1522 nm is closer to the heat source with more impact of heating compared to negligible
impact Bragg wavelength 1529 nm). The sensitivities at 1524 nm, 1525 nm, and 1526 nm are
1.45 dB/◦C, 1.62 dB/◦C, and 1.6 dB/◦C, respectively, for differential mode. Similarly, for
common mode, the behavior in the most favorable is illustrated in Figure 6. The sensitivity
noted for this case is 0.8 dB/◦C at 1524 nm.
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