Non-Invasive Optoacoustic Imaging for In-Depth Cultural Heritage Diagnostics
<p>OA imaging apparatus and performance characterization. (<b>a</b>) Schematical representation of the developed non-invasive, reflection-mode OA imaging apparatus for artworks diagnosis. (<b>b</b>) Time-domain OA signal from a graphite spot with a diameter of ~180 μm. (<b>c</b>) Amplitude spectrum of the waveform shown in (<b>b</b>), which peaked at 950 kHz (dotted red line). (<b>d</b>) OA image of the graphite spot. Scalebar is equal to 400 μm. (<b>e</b>) Pixel intensity profile extracted from (<b>d</b>). The data points (black dots) have been fitted (R<sup>2</sup> = 0.995) with a gaussian function (red curve), yielding a FWHM value equal to 772 μm.</p> "> Figure 2
<p>OA amplitude measurements of artificially aged paint samples. (<b>a</b>) Non-aged yellow ochre paint sample. (<b>b</b>–<b>d</b>) Thermally aged ochre yellow paint samples for 2, 4 and 6 h, respectively. (<b>e</b>) Typical OA signals arising from the aforementioned yellow ochre paints following the averaging of 32 waveforms. A fixed temporal delay of 1 μs has been inserted among the four signals to facilitate the visualization of OA pressure perturbations. (<b>f</b>) Mean OA amplitude versus thermal-ageing time. Error bars correspond to ± one standard deviation out of 10 consecutive measurements. The red curve corresponds to an exponential fitting with R<sup>2</sup> approximately equal to 0.999. (<b>g</b>–<b>j</b>) Similar images for thermally aged Prussian blue paint samples. (<b>k</b>) Typical OA signals arising from the Prussian blue paints. (<b>l</b>) Respective graph showing the mean OA amplitude versus thermal ageing time. The data points have been fitted (red line) using a linear regression model (R<sup>2</sup> = 0.989).</p> "> Figure 3
<p>OA and NIR imaging of painted canvas mock-ups. (<b>a</b>) Photo of a titanium white canvas mock-up covered with shellac varnish. The red square indicates a 2 by 2 cm<sup>2</sup> area which is scanned using the OA imaging modality. (<b>b</b>) Photo of the pencil underdrawing before the application of the paint for the mock-up shown in (<b>a</b>). (<b>c</b>) OA image of the underdrawing. (<b>d</b>) Respective NIR image of the same region as in (<b>c</b>). Scalebar corresponds to 5 mm. (<b>e</b>–<b>h</b>) Similar results for the case of an ultramarine blue mock-up. (<b>i</b>–<b>l</b>) Similar results for a mixed titanium white and ultramarine blue mock-up. (<b>m</b>–<b>p</b>) Similar results for an ultramarine blue mock-up which is not covered with shellac varnish.</p> "> Figure 4
<p>OA and NIR imaging of painted gypsum mock-ups. (<b>a</b>) Photo of 5 by 5 cm<sup>2</sup> region depicting a titanium white gypsum mock-up with no applied varnish. The red square indicates a 2.6 by 2.6 cm<sup>2</sup> area which is scanned using the OA imaging modality. (<b>b</b>) Photo of the pencil underdrawing before the application of the paint for the mock-up shown in (<b>a</b>). (<b>c</b>) OA image of the underdrawing. (<b>d</b>) Respective NIR image of the same region as in (<b>c</b>). Scalebar corresponds to 5 mm. (<b>e</b>–<b>h</b>) Similar results for an ultramarine blue mock-up. (<b>i</b>–<b>l</b>) Similar results for a mixed titanium white and ultramarine blue mock-up. In this case, the red square shown in (<b>i</b>) delineates an area of 3.2 by 3.2 cm<sup>2</sup> corresponding to the OA scanning region.</p> "> Figure 5
<p>Investigation of potential alterations following the application and removal of the gelatin layer. (<b>a</b>) Photo of the titanium white gypsum mock-up covered with a thin gelatin layer. The red arrow shows one of the areas that was further inspected by means of digital microscopy. (<b>b</b>) Photo of the same mock-up directly after gelatin layer removal. (<b>c</b>) 2 by 2 mm<sup>2</sup> digital microscopy image of the region indicated with the red arrow in (<b>a</b>) prior the gelatin application. (<b>d</b>) Digital microscopy image of the same region as in (<b>c</b>) directly after the gelatin layer removal. Scalebar is equal to 0.5 mm. (<b>e</b>–<b>h</b>) Similar results for an ultramarine blue mock-up. (<b>i</b>–<b>l</b>) Similar results for a mixed titanium white and ultramarine blue mock-up.</p> "> Figure 6
<p>OA and NIR imaging of titanium white gypsum mock-ups with gradually increasing paint layer thickness. (<b>a</b>) Circular mock-up covered with 60 μm thick titanium white paint (5 by 5 cm<sup>2</sup> region is shown). The red square indicates a 2 by 2 cm<sup>2</sup> area which is subsequently imaged using both OA and NIR modalities. (<b>b</b>) Charcoal X-shaped sketch before the paint application. (<b>c</b>) OA image of the hidden “X” pattern. (<b>d</b>) Respective NIR image of the same region. Similar results are shown for gypsum mock-ups covered with 120 μm (<b>e</b>–<b>h</b>), 180 μm (<b>i</b>–<b>l</b>) and finally 240 μm (<b>m</b>–<b>p</b>) thick titanium white paint layers.</p> "> Figure 7
<p>SNR and imaging contrast quantification as a function of paint layer thickness. (<b>a</b>) Graph of OA image SNR versus paint layer thickness estimated from the data presented in <a href="#photonics-11-00902-f006" class="html-fig">Figure 6</a>. Error bars represent the ± one standard error of the mean value out of the four measurements in the same image. The red curve corresponds to an exponential decay fitting of the data points (R<sup>2</sup> = 0.990). (<b>b</b>) A graph of the Michelson contrast values for the OA and NIR images presented in <a href="#photonics-11-00902-f005" class="html-fig">Figure 5</a>. Error bars represent the ± one standard error of the mean values out of the four measurements in the same image. The data have been similarly fitted with exponential decay functions (red and blue curves) with R<sup>2</sup> > 0.994 in both cases.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diagnostic Methods and Instruments
2.1.1. OA Imaging Apparatus
2.1.2. NIR Imaging
2.1.3. Digital Microscopy
2.1.4. Digital Profilometry
2.1.5. Spectral Measurements of Paint Layers
2.2. Mock-Ups Preparation Procedures
2.2.1. Canvas and Gypsum Mock-Ups
2.2.2. Artificially Aged Paint Samples
2.2.3. Gelatin Layer Preparation
3. Results
3.1. Characterization of the OA Imaging Apparatus
3.2. OA Detection of Paint Ageing
3.3. OA Imaging of Painted Canvas Mock-Ups with Varnish
3.4. OA Imaging of Gypsum Mock-Ups without Varnish
3.5. Imaging Performance Evaluation as a Function of Paint Layer Thickness
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Sensitivity Comparison between OA Detection and Absorption Spectroscopy
- for μ = 1/L, R becomes approximately equal to 1.718;
- for μ = 5/L, R becomes approximately equal to 29.48;
- for μ = 7/L, R becomes approximately equal to 156.5;
- for μ = 10/L, R becomes approximately equal to 2203.
References
- Pironti, C.; Ricciardi, M.; Proto, A.; Cucciniello, R.; Fiorentino, A.; Fiorillo, R.; Motta, O. New analytical approach to monitoring air quality in historical monuments through the isotopic ratio of CO2. Environ. Sci. Pollut. Res. 2022, 29, 29385–29390. [Google Scholar] [CrossRef] [PubMed]
- Faggiano, A.; Pironti, C.; Motta, O.; Miele, Y.; Fiorentino, A.; Marchettini, N.; Ricciardi, M.; Proto, A. Insight on the deterioration of cultural objects: A multi-analytical approach to characterize degradation products of lead weights from a Steinway & sons piano. Environ. Sci. Pollut. Res. 2023, 30, 104633–104639. [Google Scholar]
- Anglos, D.; Georgiou, S.; Fotakis, C. Lasers in the analysis of cultural heritage materials. Nano Res. 2009, 8, 47–60. [Google Scholar] [CrossRef]
- Jones, C.; Duffy, C.; Gibson, A.; Terras, M. Understanding multispectral imaging of cultural heritage: Determining best practice in MSI analysis of historical artefacts. J. Cult. Herit. 2020, 45, 339–350. [Google Scholar] [CrossRef]
- Es Sebar, L.; Lombardo, L.; Buscaglia, P.; Cavaleri, T.; Lo Giudice, A.; Re, A.; Borla, M.; Aicardi, S.; Grassini, S. 3D Multispectral Imaging for Cultural Heritage Preservation: The Case Study of a Wooden Sculpture of the Museo Egizio di Torino. Heritage 2023, 6, 2783–2795. [Google Scholar] [CrossRef]
- Liang, H. Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl. Phys. A 2012, 106, 309–323. [Google Scholar] [CrossRef]
- Targowski, P.; Iwanicka, M.; Rouba, B.J.; Frosinini, C. OCT for Examination of Artwork; Springer: Cham, Switzerland; Vero Beach, FL, USA, 2020; pp. 2473–2495. [Google Scholar]
- Targowski, P.; Iwanicka, M. Optical Coherence Tomography: Its role in the non-invasive structural examination and conservation of cultural heritage objects—A review. Appl. Phys. A 2012, 106, 265–277. [Google Scholar] [CrossRef]
- Liang, H.; Cid, M.G.; Dobre, G.M.; Podoleanu, A.G.; Pedro, J.; Saunders, D. En-face optical coherence tomography—A novel application of non-invasive imaging to art conservation. Opt. Express 2005, 13, 6133–6144. [Google Scholar] [CrossRef]
- Dal Fovo, A.; Castillejo, M.; Fontana, R. Nonlinear optical microscopy for artworks physics. Riv. Nuovo Cim. 2021, 44, 453–498. [Google Scholar] [CrossRef]
- Mari, M.; Filippidis, G. Non-Linear Microscopy: A Well-Established Technique for Biological Applications towards Serving as a Diagnostic Tool for in situ Cultural Heritage Studies. Sustainability 2020, 12, 1409. [Google Scholar] [CrossRef]
- Bersani, D.; Lottici, P.P. Raman spectroscopy of minerals and mineral pigments in archaeometry. J. Raman Spectrosc. 2016, 47, 499–530. [Google Scholar] [CrossRef]
- Candeias, A.; Madariaga, J.M. Applications of Raman spectroscopy in art and archaeology. J. Raman Spectrosc. 2019, 50, 137–142. [Google Scholar] [CrossRef]
- Edwards, H.; Colomban, P.; Vandenabeele, P. Raman Spectroscopy in Cultural Heritage Preservation; Springer International Publishing: Berlin, Germany, 2023. [Google Scholar]
- Liu, G.L.; Kazarian, S.G. Recent advances and applications to cultural heritage using ATR-FTIR spectroscopy and ATR-FTIR spectroscopic imaging. Analyst 2022, 147, 1777–1797. [Google Scholar] [CrossRef] [PubMed]
- Poliszuk, A.; Ybarra, G. Analysis of cultural heritage materials by infrared spectroscopy. In Infrared Spectroscopy: Theory, Developments and Applications; Nova Science Publishers: Hauppauge, NY, USA, 2014; pp. 519–536. [Google Scholar]
- Volpi, F.; Vagnini, M.; Vivani, R.; Malagodi, M.; Fiocco, G. Non-invasive identification of red and yellow oxide and sulfide pigments in wall-paintings with portable ER-FTIR spectroscopy. J. Cult. Herit. 2023, 63, 158–168. [Google Scholar] [CrossRef]
- Tserevelakis, G.J.; Pouli, P.; Zacharakis, G. Listening to laser light interactions with objects of art: A novel photoacoustic approach for diagnosis and monitoring of laser cleaning interventions. Herit. Sci. 2020, 8, 98. [Google Scholar] [CrossRef]
- Liu, H.; Wang, M.; Ji, F.; Jiang, Y.; Yang, M. Mini review of photoacoustic clinical imaging: A noninvasive tool for disease diagnosis and treatment evaluation. J. Biomed. Opt. 2024, 29, S11522. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Han, S.; Kye, H.; Kim, T.-K.; Choi, W.; Kim, J. A Review on the Roles of Photoacoustic Imaging for Conventional and Novel Clinical Diagnostic Applications. Photonics 2023, 10, 904. [Google Scholar] [CrossRef]
- Tserevelakis, G.J.; Mavrakis, K.G.; Pantazopoulou, D.; Lagoudaki, E.; Detorakis, E.; Zacharakis, G. Hybrid autofluorescence and photoacoustic label-free microscopy for the investigation and identification of malignancies in ocular biopsies. Opt. Lett. 2020, 45, 5748–5751. [Google Scholar] [CrossRef]
- Wang, L.V.; Wu, H.-I. Biomedical Optics: Principles and Imaging; John Wiley and Sons: Hoboken, NJ, USA, 2012; pp. 283–293. [Google Scholar]
- Yao, J.; Wang, L.V. Sensitivity of photoacoustic microscopy. Photoacoustics 2014, 2, 87–101. [Google Scholar] [CrossRef]
- Hui, J.; Li, R.; Phillips, E.H.; Goergen, C.J.; Sturek, M.; Cheng, J.-X. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves. Photoacoustics 2016, 4, 11–21. [Google Scholar] [CrossRef]
- Tserevelakis, G.J.; Chaban, A.; Klironomou, E.; Melessanaki, K.; Striova, J.; Zacharakis, G. Revealing Hidden Features in Multilayered Artworks by Means of an Epi-Illumination Photoacoustic Imaging System. J. Imaging 2021, 7, 183. [Google Scholar] [CrossRef] [PubMed]
- Tserevelakis, G.J.; Tsagkaraki, M.; Siozos, P.; Zacharakis, G. Uncovering the hidden content of layered documents by means of photoacoustic imaging. Strain 2019, 55, e12289. [Google Scholar] [CrossRef]
- Dal Fovo, A.; Tserevelakis, G.J.; Papanikolaou, A.; Zacharakis, G.; Fontana, R. Combined photoacoustic imaging to delineate the internal structure of paintings. Opt. Lett. 2019, 44, 919–922. [Google Scholar] [CrossRef] [PubMed]
- Tserevelakis, G.J.; Tsafas, V.; Melessanaki, K.; Zacharakis, G.; Filippidis, G. Combined multiphoton fluorescence microscopy and photoacoustic imaging for stratigraphic analysis of paintings. Opt. Lett. 2019, 44, 1154–1157. [Google Scholar] [CrossRef]
- Dal Fovo, A.; Tserevelakis, G.J.; Klironomou, E.; Zacharakis, G.; Fontana, R. First combined application of photoacoustic and optical techniques to the study of an historical oil painting. Eur. Phys. J. Plus 2021, 136, 757. [Google Scholar] [CrossRef]
- Seves, A.M.; Sora, S.; Scicolone, G.; Testa, G.; Bonfatti, A.M.; Rossi, E.; Seves, A. Effect of thermal accelerated ageing on the properties of model canvas paintings. J. Cult. Herit. 2000, 1, 315–322. [Google Scholar] [CrossRef]
- Bacci, M.; Picollo, M.; Porcinai, S.; Radicati, B. Evaluation of the museum environmental risk by means of tempera-painted dosimeters. Thermochim. Acta. 2000, 365, 25–34. [Google Scholar] [CrossRef]
- Farmakalidis, H.V.; Douvas, A.M.; Karatasios, I.; Sotiropoulou, S.; Boyatzis, S.; Argitis, P.; Chryssoulakis, Y.; Kilikoglou, V. Accelerated thermal ageing of acrylic copolymers, cyclohexanone-based and urea-aldehyde resins used in paintings conservation. Mediterr. Archaeol. Archaeom. 2016, 16, 213–228. [Google Scholar]
- Gervais, C.; Languille, M.-A.; Reguer, S.; Garnier, C.; Gillet, m. Light and anoxia fading of Prussian blue dyed textiles. Herit. Sci. 2014, 2, 26. [Google Scholar] [CrossRef]
- Amanatiadis, S.; Apostolidis, G.; Karagiannis, G. Consistent characterization of color degradation due to artificial aging procedures at popular pigments of byzantine iconography. Minerals 2021, 11, 782. [Google Scholar] [CrossRef]
- De France, K.J.; D’Emilio, E.; Cranston, E.D.; Geiger, T.; Nyström, G. Dual physically and chemically crosslinked regenerated cellulose—Gelatin composite hydrogels towards art restoration. Carbohydr. Polym. 2020, 234, 115885. [Google Scholar] [CrossRef] [PubMed]
- Giraud, T.; Gomez, A.; Lemoine, S.; Pelé-Meziani, C.; Raimon, A.; Guilminot, E. Use of gels for the cleaning of archaeological metals. Case study of silver-plated copper alloy coins. J. Cult. Herit. 2021, 52, 73–83. [Google Scholar] [CrossRef]
- Biqin, D.; Sun, C.; Zhang, H.F. Optical Detection of Ultrasound in Photoacoustic Imaging. IEEE Trans. Biomed. Eng. 2017, 64, 4–15. [Google Scholar]
- Wissmeyer, G.; Pleitez, M.A.; Rosenthal, A.; Ntziachristos, V. Looking at sound: Optoacoustics with all-optical ultrasound detection. Light Sci. Appl. 2018, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Pleitez, M.A.; Khan, A.A.; Soldà, A.; Chmyrov, A.; Reber, J.; Gasparin, F.; Seeger, M.R.; Schätz, B.; Herzig, S.; Scheideler, M.; et al. Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells. Nat. Biotechnol. 2020, 38, 293–296. [Google Scholar] [CrossRef]
- Visscher, M.; Pleitez, M.A.; Van Gaalen, K.; Nieuwenhuizen-Bakker, I.M.; Ntziachristos, V.; Van Soest, G. Label-free analytic histology of carotid atherosclerosis by mid-infrared optoacoustic microscopy. Photoacoustics 2022, 26, 100354. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tserevelakis, G.J.; Pirgianaki, E.; Melessanaki, K.; Zacharakis, G.; Fotakis, C. Non-Invasive Optoacoustic Imaging for In-Depth Cultural Heritage Diagnostics. Photonics 2024, 11, 902. https://doi.org/10.3390/photonics11100902
Tserevelakis GJ, Pirgianaki E, Melessanaki K, Zacharakis G, Fotakis C. Non-Invasive Optoacoustic Imaging for In-Depth Cultural Heritage Diagnostics. Photonics. 2024; 11(10):902. https://doi.org/10.3390/photonics11100902
Chicago/Turabian StyleTserevelakis, George J., Eleanna Pirgianaki, Kristalia Melessanaki, Giannis Zacharakis, and Costas Fotakis. 2024. "Non-Invasive Optoacoustic Imaging for In-Depth Cultural Heritage Diagnostics" Photonics 11, no. 10: 902. https://doi.org/10.3390/photonics11100902
APA StyleTserevelakis, G. J., Pirgianaki, E., Melessanaki, K., Zacharakis, G., & Fotakis, C. (2024). Non-Invasive Optoacoustic Imaging for In-Depth Cultural Heritage Diagnostics. Photonics, 11(10), 902. https://doi.org/10.3390/photonics11100902