Simultaneous Detection of Gas Concentration and Light Intensity Based on Dual-Quartz-Enhanced Photoacoustic-Photothermal Spectroscopy
<p>Schematic diagram of the experimental setup. AOM: acousto-optic modulator; OA: fiber optic attenuator; and FC: fiber collimator.</p> "> Figure 2
<p>Response frequency curve of two QTFs measured by the electrical excitation method.</p> "> Figure 3
<p>The amplitude of the 2<span class="html-italic">f</span> photoacoustic signal relative to the modulation depth of the laser.</p> "> Figure 4
<p>QEPAS system measurements at different light intensities. (<b>a</b>) The 2<span class="html-italic">f</span> photoacoustic signal at different light intensities; and (<b>b</b>) linear fitting curve of the amplitude of the 2<span class="html-italic">f</span> photoacoustic signal at different light intensities.</p> "> Figure 5
<p>QEPTS system measurements at different light intensities. (<b>a</b>) The 1<span class="html-italic">f</span> photothermal signal at different light intensities; and (<b>b</b>) linear fitting curve of the amplitude of the 1<span class="html-italic">f</span> photothermal signal at different light intensities.</p> "> Figure 6
<p>The amplitude of normalized the 2<span class="html-italic">f</span> photoacoustic signal relative to light intensities.</p> "> Figure 7
<p>The system measured different concentrations of target gases. (<b>a</b>) The 2<span class="html-italic">f</span> photoacoustic signal at different gas concentrations; (<b>b</b>) the 1<span class="html-italic">f</span> photothermal signal at different gas concentrations; and (<b>c</b>) the relationship between the amplitude of the normalized 2<span class="html-italic">f</span> photoacoustic signal and target gas concentrations.</p> "> Figure 8
<p>Allan deviation analysis of the amplitude of normalized 2<span class="html-italic">f</span> photoacoustic signal.</p> ">
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
3.1. Frequency Response of QTF
3.2. Modulation Signal Optimization
3.3. Investigation on Light Intensity Correction
3.4. Concentration Calibration
3.5. Allan Deviation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Wang, Z.; Zhang, H.; Jiang, S.; Wang, Y.; Jin, W.; Ren, W. Dual-comb Photothermal Spectroscopy. Nat. Commun. 2021, 13, 2181. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, H.; Wang, J.; Jiang, S.; Gao, S.; Wang, Y.; Jin, W.; Wang, Q.; Ren, W. Photothermal multi-species detection in a hollow-core fiber with frequency-division multiplexing. Sens. Actuators B Chem. 2022, 369, 132333. [Google Scholar] [CrossRef]
- Chen, X.; Yang, C.G.; Hu, M.; Shen, J.-K.; Niu, E.-C.; Xu, Z.-Y.; Fan, X.-L.; Wei, M.; Yao, L.; He, Y.-B. Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy. Chin. Phys. B 2018, 27, 040701. [Google Scholar] [CrossRef]
- Xia, H.-H.; Kan, R.-F.; Liu, J.-G.; Xu, Z.-Y.; He, Y.-B. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy. Chin. Phys. B 2016, 25, 064205. [Google Scholar] [CrossRef]
- Milde, T.; Hoppe, M.; Tatenguem, H.; Mordmüller, M.; O’Gorman, J.; Willer, U.; Schade, W.; Sacher, J. QEPAS sensor for breath analysis: A behavior of pressure. Appl. Opt. 2018, 57, C120–C127. [Google Scholar] [CrossRef]
- Bradshaw, J.L.; Bruno, J.D.; Lascola, K.M.; Leavitt, R.P.; Pham, J.T.; Towner, F.J.; Sonnenfroh, D.M.; Parameswaran, K.R. Parameswaran, Small, low-power consumption CO-sensor for post-fire cleanup aboard spacecraft. Proc. SPIE 2011, 8032, 80320D. [Google Scholar]
- Kosterev, A.; Bakhirkin, Y.; Curl, R.; Tittel, F. Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2002, 27, 1902–1904. [Google Scholar] [CrossRef]
- Russo, S.D.; Sampaolo, A.; Patimisco, P.; Menduni, G.; Giglio, M.; Hoelzl, C.; Passaro, V.M.N.; Wu, H.; Dong, L.; Spagnolo, V. Quartz-enhanced photoacoustic spectroscopy exploiting low-frequency tuning forks as a tool to measure the vibrational relaxation rate in gas species. Photoacoustics 2021, 21, 100227. [Google Scholar] [CrossRef]
- Qiao, S.; Ma, Y.; Patimisco, P.; Sampaolo, A.; He, Y.; Lang, Z.; Tittel, F.K.; Spagnolo, V. Multi-pass quartz-enhanced photoacoustic spectroscopy-based trace gas sensing. Opt. Lett. 2021, 46, 977–980. [Google Scholar] [CrossRef]
- Wang, F.; Xue, Q.; Chang, J.; Wang, Z.; Sun, J.; Luan, X.; Li, C. Wavelength scanning Q-switched fiber-ring laser intra-cavity QEPAS using a standard 32.76 kHz quartz tuning fork for acetylene detection. Opt. Laser Technol. 2021, 134, 106612. [Google Scholar] [CrossRef]
- Menduni, G.; Sgobba, F.; Russo, S.D.; Ranieri, A.C.; Sampaolo, A.; Patimisco, P.; Giglio, M.; Passaro, V.M.N.; Csutak, S.; Assante, D.; et al. Fiber-coupled quartz-enhanced photoacoustic spectroscopy system for methane and ethane monitoring in the near-infrared spectral range. Molecules 2020, 25, 5607. [Google Scholar] [CrossRef]
- Ma, Y.; Tong, Y.; He, Y.; Jin, X.; Tittel, F.K. Compact and sensitive mid-infrared all-fiber quartz-enhanced photoacoustic spectroscopy sensor for carbon monoxide detection. Opt. Express 2019, 27, 9302–9312. [Google Scholar] [CrossRef]
- Lv, H.; Zheng, H.; Liu, Y.; Yang, Z.; Wu, Q.; Lin, H.; Montano, B.A.Z.; Zhu, W.; Yu, J.; Kan, R.; et al. Radial-cavity quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2021, 46, 3917–3920. [Google Scholar] [CrossRef]
- Zheng, H.; Dong, L.; Wu, H.; Yin, X.; Xiao, L.; Jia, S.; Curl, R.F.; Tittel, F.K. Application of acoustic micro-resonators in quartz-enhanced photoacoustic spectroscopy for trace gas analysis. Chem. Phys. Lett. 2018, 691, 462–472. [Google Scholar] [CrossRef]
- Yi, H.; Liu, K.; Chen, W.; Tan, T.; Wang, L.; Gao, X. Application of a broadband blue laser diode to trace NO 2 detection using off-beam quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2011, 36, 481–483. [Google Scholar] [CrossRef]
- Lackner, M. Tunable diode laser absorption spectroscopy (TDLAS) in the process industries—A review. Rev. Chem. Eng. 2007, 23, 65–147. [Google Scholar] [CrossRef]
- Wu, H.; Sampaolo, A.; Dong, L.; Patimisco, P.; Liu, X.; Zheng, H.; Yin, X.; Ma, W.; Zhang, L.; Yin, W.; et al. Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing. Appl. Phys. Lett. 2015, 107, 111104. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Zhang, H.; Borri, S.; Galli, I.; Sampaolo, A.; Patimisco, P.; Spagnolo, V.L.; De Natale, P.; Ren, W. Doubly resonant sub-ppt photoacoustic gas detection with eight decades dynamic range. Photoacoustics 2022, 27, 100387. [Google Scholar] [CrossRef]
- Ma, Y.; He, Y.; Tong, Y.; Yu, X.; Tittel, F.K. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection. Opt. Express 2018, 26, 32103–32110. [Google Scholar] [CrossRef]
- Mi, Y.; Ma, Y. Ultra-Highly Sensitive Ammonia Detection Based on Light-Induced Thermoelastic Spectroscopy. Sensors 2021, 21, 4548. [Google Scholar] [CrossRef]
- Zhang, Q.; Chang, J.; Cong, Z.; Wang, Z. Application of quartz tuning fork in photodetector based on photothermal effect. IEEE Photonics Technol. Lett. 2019, 31, 1592–1595. [Google Scholar] [CrossRef]
- Lang, Z.; Qiao, S.; He, Y.; Ma, Y. Quartz tuning fork-based demodulation of an acoustic signal induced by photo-thermo-elastic energy conversion. Photoacoustics 2021, 22, 100272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Gong, W.; Chang, J.; Wei, Y.; Zhang, T.; Wang, Z.; Li, Y.; Zhang, W.; Liu, T. Long-distance free space gas detection system based on QEPTS technique for CH4 leakage monitoring. Infrared Phys. Technol. 2022, 122, 104091. [Google Scholar] [CrossRef]
- Hu, L.; Zheng, C.; Zhang, M.; Zheng, K.; Zheng, J.; Song, Z.; Li, X.; Zhang, Y.; Wang, Y.; Tittel, F.K. Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy. Photoacoustics 2021, 21, 100230. [Google Scholar] [CrossRef]
- Zhang, Q.; Chang, J.; Cong, Z.; Wang, Z. Long-path quartz tuning fork enhanced photothermal spectroscopy gas sensor using a high power Q-switched fiber laser. Measurement 2020, 156, 107601. [Google Scholar] [CrossRef]
- Chen, X.; Hu, M.; Liu, H.; Yao, L.; Xu, Z.; Kan, R. Light intensity correction for QEPAS using photothermal baseline. Front. Phys. 2022, 10, 964. [Google Scholar] [CrossRef]
- Russo, S.D.; Zifarelli, A.; Patimisco, P.; Sampaolo, A.; Wei, T.; Wu, H.; Dong, L.; Spagnolo, V. Light-induced thermo-elastic effect in quartz tuning forks exploited as a photodetector in gas absorption spectroscopy. Opt. Express 2020, 28, 19074–19084. [Google Scholar] [CrossRef]
- He, Y.; Ma, Y.; Tong, Y.; Yu, X.; Tittel, F.K. Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell. Opt. Lett. 2019, 44, 1904–1907. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.; Liu, N.; Zhou, S. Quartz crystal tuning fork based 2f/1f wavelength modulation spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120608. [Google Scholar] [CrossRef]
- Zhang, Q.; Chang, J.; Cong, Z.; Wang, Z. Quartz tuning fork enhanced photothermal spectroscopy gas detection system with a novel QCTF-self-difference technique. Sens. Actuators A Phys. 2019, 299, 111629. [Google Scholar] [CrossRef]
- Borri, S.; Patimisco, P.; Sampaolo, A.; Beere, H.E.; Ritchie, D.A.; Vitiello, M.S.; Scamarcio, G.; Spagnolo, V. Terahertz quartz enhanced photo-acoustic sensor. Appl. Phys. Lett. 2013, 113, 021105. [Google Scholar] [CrossRef]
- Werle, P. Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence. Appl. Phys B 2011, 102, 313–329. [Google Scholar] [CrossRef]
QTF No. | Resonant Frequency f (Hz) | Q Factor |
---|---|---|
QTF1 | 32,751.94 | 7214 |
QTF2 | 32,758.87 | 8666 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Chen, X.; Yao, L.; Xu, Z.; Hu, M.; Kan, R. Simultaneous Detection of Gas Concentration and Light Intensity Based on Dual-Quartz-Enhanced Photoacoustic-Photothermal Spectroscopy. Photonics 2023, 10, 165. https://doi.org/10.3390/photonics10020165
Liu H, Chen X, Yao L, Xu Z, Hu M, Kan R. Simultaneous Detection of Gas Concentration and Light Intensity Based on Dual-Quartz-Enhanced Photoacoustic-Photothermal Spectroscopy. Photonics. 2023; 10(2):165. https://doi.org/10.3390/photonics10020165
Chicago/Turabian StyleLiu, Hao, Xiang Chen, Lu Yao, Zhenyu Xu, Mai Hu, and Ruifeng Kan. 2023. "Simultaneous Detection of Gas Concentration and Light Intensity Based on Dual-Quartz-Enhanced Photoacoustic-Photothermal Spectroscopy" Photonics 10, no. 2: 165. https://doi.org/10.3390/photonics10020165
APA StyleLiu, H., Chen, X., Yao, L., Xu, Z., Hu, M., & Kan, R. (2023). Simultaneous Detection of Gas Concentration and Light Intensity Based on Dual-Quartz-Enhanced Photoacoustic-Photothermal Spectroscopy. Photonics, 10(2), 165. https://doi.org/10.3390/photonics10020165