Diagnosis of Lung Cancer Using Endobronchial Ultrasonography Image Based on Multi-Scale Image and Multi-Feature Fusion Framework
<p>This figure illustrates the detailed process for generating multi-scale EBUS images: First, three EBUS images are selected from the four available types. Each selected EBUS image is then converted from RGB to gray-scale and resized to 224 × 224 pixels. Finally, the three resized gray-scale images are merged to form a single multi-scale RGB image. This approach utilizes varying image resolutions to effectively capture multi-scale features within one composite image.</p> "> Figure 2
<p>This figure illustrates the architecture of our proposed <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="normal">M</mi> <mn>3</mn> </msup> <mrow> <mtext>-</mtext> <mi>Net</mi> </mrow> </mrow> </semantics></math>, which is composed of three key components: a feature extraction module, a feature fusion module, and a classifier. Each branch in the <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="normal">M</mi> <mn>3</mn> </msup> <mrow> <mtext>-</mtext> <mi>Net</mi> </mrow> </mrow> </semantics></math> architecture corresponds to a specific type of EBUS image, with each image type processed by an individual CNN encoder for feature extraction. The extracted features are then sent to the feature fusion module, where they are combined. Finally, the fused features are passed into the classifier to generate the final class prediction. The feature extraction module extracts distinct features, <span class="html-italic">F</span><sub>1</sub>, <span class="html-italic">F</span><sub>2</sub>, and <span class="html-italic">F</span><sub>3</sub>, from different input images. These extracted features are then processed through an attention-based feature fusion module, where they are integrated. Finally, the fused features are passed into the classifier to generate probability predictions for the target categories.</p> "> Figure 3
<p>This figure illustrates the framework of feature fusion module version 1 (FFM-v1).</p> "> Figure 4
<p>This figure illustrates the framework of feature fusion module version 2 (FFM-v2).</p> "> Figure 5
<p>This figure illustrates the framework of feature fusion module version 3 (FFM-v3).</p> "> Figure 6
<p>This figure represents the encoder framework based on the fine-tuned DenseNet-121 model.</p> "> Figure 7
<p>This figure illustrates 12 CNN models that were trained on the polar type 3 EBUS dataset using both unweighted cross-entropy and weighted cross-entropy as loss functions to evaluate their AUC.</p> "> Figure 8
<p>This figure shows the best AUC achieved when training 12 CNN models with weighted cross-entropy loss on each of the 14 EBUS image datasets.</p> ">
Abstract
:1. Introduction
- We developed a novel multi-feature fusion framework for lung cancer diagnosis using EBUS images.
- We propose a method for generating multi-scale EBUS images from a single EBUS image.
- We constructed three attention-based multi-feature fusion modules to enhance the effectiveness of feature fusion.
- To address the impact of data imbalance, we customized the loss function weights, training the model with a weighted loss function to mitigate the influence of data imbalance on the experimental results.
2. Materials and Methods
2.1. Data Acquisition
2.2. Data Preprocessing
2.3. Multi-Scale Image Generation
2.4. M3-Net: Multi-Feature Fusion Framework
2.5. Feature Fusion Modules
2.6. EBUS Image Encoder Architecture
2.7. Weight Definition for Loss Function
3. Experiment and Results
3.1. Experimental Setting
3.2. Evaluation Metrics
3.3. Classification Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Image Type | CNN Model | AUC | Acc | F1-Score | PPV | NPV | Sen | Spec | |
---|---|---|---|---|---|---|---|---|---|
Original EBUS data | Type 1 | ResNet-50 | 0.65 | 0.65 | 0.55 | 0.81 | 0.61 | 0.46 | 0.84 |
Type 2 | ResNet-50 | 0.67 | 0.67 | 0.61 | 0.74 | 0.63 | 0.53 | 0.81 | |
Type 3 | ResNet-18 | 0.67 | 0.67 | 0.60 | 0.75 | 0.63 | 0.51 | 0.83 | |
Type 4 | DenseNet-121 | 0.72 | 0.70 | 0.66 | 0.77 | 0.67 | 0.59 | 0.81 | |
Polar EBUS data | Polar Type 1 | ResNet-50 | 0.65 | 0.65 | 0.47 | 0.96 | 0.60 | 0.33 | 0.98 |
Polar Type 2 | ResNext-101 | 0.60 | 0.60 | 0.38 | 0.89 | 0.57 | 0.29 | 0.91 | |
Polar Type 3 | DenseNet-169 | 0.79 | 0.74 | 0.72 | 0.79 | 0.74 | 0.70 | 0.77 | |
Polar Type 4 | ResNext-101 | 0.71 | 0.71 | 0.67 | 0.82 | 0.66 | 0.58 | 0.84 | |
MS EBUS data | MS 1-2-3 | ShuffleNet-V2 | 0.69 | 0.66 | 0.62 | 0.71 | 0.63 | 0.55 | 0.76 |
MS 1-2-4 | ResNet-101 | 0.69 | 0.66 | 0.59 | 0.75 | 0.62 | 0.50 | 0.82 | |
MS 2-3-4 | DenseNet-201 | 0.72 | 0.71 | 0.70 | 0.71 | 0.73 | 0.71 | 0.72 | |
PMS EBUS data | PMS 1-2-3 | ResNext-101 | 0.69 | 0.67 | 0.62 | 0.70 | 0.65 | 0.57 | 0.76 |
PMS 1-2-4 | ResNext-50 | 0.74 | 0.64 | 0.59 | 0.75 | 0.61 | 0.54 | 0.74 | |
PMS 2-3-4 | MobileNet-V2 | 0.78 | 0.74 | 0.72 | 0.79 | 0.70 | 0.66 | 0.81 |
References
- Leiter, A.; Veluswamy, R.R.; Wisnivesky, J.P. The global burden of lung cancer: Current status and future trends. Nat. Rev. Clin. Oncol. 2023, 20, 624–639. [Google Scholar] [CrossRef]
- Thandra, K.C.; Barsouk, A.; Saginala, K.; Aluru, J.S.; Barsouk, A. Epidemiology of lung cancer. Contemp. Oncol. Onkol. 2021, 25, 45–52. [Google Scholar]
- Nooreldeen, R.; Bach, H. Current and future development in lung cancer diagnosis. Int. J. Mol. Sci. 2021, 22, 8661. [Google Scholar] [CrossRef]
- Huang, S.; Yang, J.; Shen, N.; Xu, Q.; Zhao, Q. Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective. Semin. Cancer Biol. 2023, 89, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Raza, R.; Zulfiqar, F.; Khan, M.O.; Arif, M.; Alvi, A.; Iftikhar, M.A.; Alam, T. Lung-EffNet: Lung cancer classification using EfficientNet from CT-scan images. Eng. Appl. Artif. Intell. 2023, 126, 106902. [Google Scholar] [CrossRef]
- Sim, A.J.; Kaza, E.; Singer, L.; Rosenberg, S.A. A review of the role of MRI in diagnosis and treatment of early stage lung cancer. Clin. Transl. Radiat. Oncol. 2020, 24, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Ireland, R.H.; Bragg, C.M.; McJury, M.; Woodhouse, N.; Fichele, S.; Van Beek, E.J.; Wild, J.M.; Hatton, M.Q. Feasibility of image registration and intensity-modulated radiotherapy planning with hyperpolarized helium-3 magnetic resonance imaging for non–small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, R.M.; Atallah, R.P.; Struble, R.D.; Badgett, R.G. Lung cancer screening with low-dose CT: A meta-analysis. J. Gen. Intern. Med. 2020, 35, 3015–3025. [Google Scholar] [CrossRef]
- Antoch, G.; Stattaus, J.; Nemat, A.T.; Marnitz, S.; Beyer, T.; Kuehl, H.; Bockisch, A.; Debatin, J.F.; Freudenberg, L.S. Non–small cell lung cancer: Dual-modality PET/CT in preoperative staging. Radiology 2003, 229, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, L.; Cheng, Z.; Yang, M.; Wang, J.; Lin, C.; Wang, Y.; Huang, L.; Chen, Y.; Peng, S.; et al. Deep learning-based six-type classifier for lung cancer and mimics from histopathological whole slide images: A retrospective study. BMC Med. 2021, 19, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyö, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med. 2018, 24, 1559–1567. [Google Scholar] [CrossRef]
- Sicular, S.; Alpaslan, M.; Ortega, F.A.; Keathley, N.; Venkatesh, S.; Jones, R.M.; Lindsey, R.V. Reevaluation of missed lung cancer with artificial intelligence. Respir. Med. Case Rep. 2022, 39, 101733. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, H.L.; Heuvelmans, M.A.; Oudkerk, M. Low-dose computed tomography lung cancer screening: Clinical evidence and implementation research. J. Intern. Med. 2022, 292, 68–80. [Google Scholar] [CrossRef]
- Wu, H.; Sui, H. Effect of chest low-dose spiral CT scan for lung cancer screening among asymptomatic adults. Chin. J. Radiol. Health 2023, 32, 176–181. [Google Scholar]
- Yokoi, K.; Kamiya, N.; Matsuguma, H.; Machida, S.; Hirose, T.; Mori, K.; Tominaga, K. Detection of brain metastasis in potentially operable non-small cell lung cancer: A comparison of CT and MRI. Chest 1999, 115, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, J.B.; Hou, L.K.; Yu, F.; Zhang, J.; Wu, W.; Tang, X.M.; Sun, F.; Lu, H.M.; Deng, J.; et al. Liquid biopsy in lung cancer: Significance in diagnostics, prediction, and treatment monitoring. Mol. Cancer 2022, 21, 25. [Google Scholar] [CrossRef]
- Liam, C.K.; Mallawathantri, S.; Fong, K.M. Is tissue still the issue in detecting molecular alterations in lung cancer? Respirology 2020, 25, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shen, L. Skin lesion analysis towards melanoma detection using deep learning network. Sensors 2018, 18, 556. [Google Scholar] [CrossRef] [PubMed]
- Han, S.S.; Kim, M.S.; Lim, W.; Park, G.H.; Park, I.; Chang, S.E. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J. Investig. Dermatol. 2018, 138, 1529–1538. [Google Scholar] [CrossRef]
- Rath, A.; Mishra, D.; Panda, G.; Satapathy, S.C. Heart disease detection using deep learning methods from imbalanced ECG samples. Biomed. Signal Process. Control 2021, 68, 102820. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Li, Z.; Qin, L. Deep learning in ECG diagnosis: A review. Knowl.-Based Syst. 2021, 227, 107187. [Google Scholar] [CrossRef]
- Abbas, Q. Glaucoma-deep: Detection of glaucoma eye disease on retinal fundus images using deep learning. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 41–45. [Google Scholar] [CrossRef]
- Golan, R.; Jacob, C.; Denzinger, J. Lung nodule detection in CT images using deep convolutional neural networks. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2026; IEEE: New York, NY, USA, 2016; pp. 243–250. [Google Scholar]
- Gu, Y.; Chi, J.; Liu, J.; Yang, L.; Zhang, B.; Yu, D.; Zhao, Y.; Lu, X. A survey of computer-aided diagnosis of lung nodules from CT scans using deep learning. Comput. Biol. Med. 2021, 137, 104806. [Google Scholar] [CrossRef] [PubMed]
- El-Dahshan, E.S.A.; Mohsen, H.M.; Revett, K.; Salem, A.B.M. Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm. Expert Syst. Appl. 2014, 41, 5526–5545. [Google Scholar] [CrossRef]
- Shin, H.; Oh, S.; Hong, S.; Kang, M.; Kang, D.; Ji, Y.g.; Choi, B.H.; Kang, K.W.; Jeong, H.; Park, Y.; et al. Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes. ACS Nano 2020, 14, 5435–5444. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, A.; Tsukamoto, T.; Kiriyama, Y.; Fujita, H. Automated classification of lung cancer types from cytological images using deep convolutional neural networks. BioMed Res. Int. 2017, 2017, 4067832. [Google Scholar] [CrossRef] [PubMed]
- Ardila, D.; Kiraly, A.P.; Bharadwaj, S.; Choi, B.; Reicher, J.J.; Peng, L.; Tse, D.; Etemadi, M.; Ye, W.; Corrado, G.; et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 2019, 25, 954–961. [Google Scholar] [CrossRef]
- Singh, G.A.P.; Gupta, P. Performance analysis of various machine learning-based approaches for detection and classification of lung cancer in humans. Neural Comput. Appl. 2019, 31, 6863–6877. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Hyun, S.H.; Ahn, M.S.; Koh, Y.W.; Lee, S.J. A machine-learning approach using PET-based radiomics to predict the histological subtypes of lung cancer. Clin. Nucl. Med. 2019, 44, 956–960. [Google Scholar] [CrossRef] [PubMed]
- Kokkonouzis, I.; Strimpakos, A.S.; Lampaditis, I.; Tsimpoukis, S.; Syrigos, K.N. The role of endobronchial ultrasound in lung cancer diagnosis and staging: A comprehensive review. Clin. Lung Cancer 2012, 13, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Lee, Y.W.; Huang, Y.S.; Lan, W.R.; Chang, R.F.; Tu, C.Y.; Chen, C.Y.; Liao, W.C. Computer-aided diagnosis of endobronchial ultrasound images using convolutional neural network. Comput. Methods Programs Biomed. 2019, 177, 175–182. [Google Scholar] [CrossRef]
- Li, J.; Zhi, X.; Chen, J.; Wang, L.; Xu, M.; Dai, W.; Sun, J.; Xiong, H. Deep learning with convex probe endobronchial ultrasound multimodal imaging: A validated tool for automated intrathoracic lymph nodes diagnosis. Endosc. Ultrasound 2021, 10, 361–371. [Google Scholar] [PubMed]
- Iandola, F.N. SqueezeNet: AlexNet-level accuracy with 50× fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Vielzeuf, V.; Lechervy, A.; Pateux, S.; Jurie, F. Centralnet: A multilayer approach for multimodal fusion. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Wang, H.; Shikano, K.; Nakajima, T.; Nomura, Y.; Nakaguchi, T. Peripheral pulmonary lesions classification using endobronchial ultrasonography images based on bagging ensemble learning and down-sampling technique. Appl. Sci. 2023, 13, 8403. [Google Scholar] [CrossRef]
- Wang, H.; Takahiro Nakajima, K.S.Y.N.; Nakaguchi, T. Classification of Peripheral Pulmonary Lesions in Endobronchial Ultrasonography Image Using a Multi-branch Framework and Voting Ensemble. Under review.
- Bazargani, R.; Fazli, L.; Gleave, M.; Goldenberg, L.; Bashashati, A.; Salcudean, S. Multi-scale relational graph convolutional network for multiple instance learning in histopathology images. Med. Image Anal. 2024, 96, 103197. [Google Scholar] [CrossRef]
- Li, H.; Vong, C.M.; Wong, P.K.; Ip, W.F.; Yan, T.; Choi, I.C.; Yu, H.H. A multi-feature fusion method for image recognition of gastrointestinal metaplasia (GIM). Biomed. Signal Process. Control 2021, 69, 102909. [Google Scholar] [CrossRef]
- Qin, X.; Wang, Z.; Bai, Y.; Xie, X.; Jia, H. FFA-Net: Feature fusion attention network for single image dehazing. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11908–11915. [Google Scholar]
- He, X.; Qi, G.; Zhu, Z.; Li, Y.; Cong, B.; Bai, L. Medical image segmentation method based on multi-feature interaction and fusion over cloud computing. Simul. Model. Pract. Theory 2023, 126, 102769. [Google Scholar] [CrossRef]
- Dai, Y.; Gieseke, F.; Oehmcke, S.; Wu, Y.; Barnard, K. Attentional feature fusion. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2021; pp. 3560–3569. [Google Scholar]
- Yan, Q.; Wang, B.; Zhang, W.; Luo, C.; Xu, W.; Xu, Z.; Zhang, Y.; Shi, Q.; Zhang, L.; You, Z. Attention-guided deep neural network with multi-scale feature fusion for liver vessel segmentation. IEEE J. Biomed. Health Inform. 2020, 25, 2629–2642. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A survey on deep transfer learning. In Proceedings of the Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; Proceedings, Part III 27. Springer: Berlin/Heidelberg, Germany, 2018; pp. 270–279. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: New York, NY, USA, 2009; pp. 248–255. [Google Scholar]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 10096–10106. [Google Scholar]
- Thabtah, F.; Hammoud, S.; Kamalov, F.; Gonsalves, A. Data imbalance in classification: Experimental evaluation. Inf. Sci. 2020, 513, 429–441. [Google Scholar] [CrossRef]
- Prati, R.C.; Batista, G.E.; Silva, D.F. Class imbalance revisited: A new experimental setup to assess the performance of treatment methods. Knowl. Inf. Syst. 2015, 45, 247–270. [Google Scholar] [CrossRef]
- Khomkham, B.; Lipikorn, R. Pulmonary lesion classification framework using the weighted ensemble classification with random forest and cnn models for ebus images. Diagnostics 2022, 12, 1552. [Google Scholar] [CrossRef]
- Imani, M.; Ghassemian, H. An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges. Inf. Fusion 2020, 59, 59–83. [Google Scholar] [CrossRef]
- Shamshad, F.; Khan, S.; Zamir, S.W.; Khan, M.H.; Hayat, M.; Khan, F.S.; Fu, H. Transformers in medical imaging: A survey. Med. Image Anal. 2023, 88, 102802. [Google Scholar] [CrossRef]
- Dosovitskiy, A. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Chen, W.; Yang, J.; Sun, Z.; Zhang, X.; Tao, G.; Ding, Y.; Gu, J.; Bu, J.; Wang, H. DeepASD: A deep adversarial-regularized graph learning method for ASD diagnosis with multimodal data. Transl. Psychiatry 2024, 14, 375. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Lundberg, S. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
Benign | Malignant | |||
---|---|---|---|---|
Image Nums | Case Nums | Image Nums | Case Nums | |
Train | 270 | 6 | 270 | 40 |
Valid | 150 | 3 | 150 | 21 |
Test | 150 | 4 | 150 | 21 |
Overall | 570 | 13 | 570 | 82 |
Generated Multi-Scale Image | Type 1 | Type 2 | Type 3 | Type 4 |
---|---|---|---|---|
MS 1-2-3 | Used | Used | Used | - |
MS 1-2-4 | Used | Used | - | Used |
MS 2-3-4 | - | Used | Used | Used |
Generated Multi-Scale Image | Polar Type 1 | Polar Type 2 | Polar Type 3 | Polar Type 4 |
---|---|---|---|---|
PMS 1-2-3 | Used | Used | Used | - |
PMS 1-2-4 | Used | Used | - | Used |
PMS 2-3-4 | - | Used | Used | Used |
Image Type | CNN Model | AUC | Acc | F1-Score | PPV | NPV | Sen | Spec |
---|---|---|---|---|---|---|---|---|
Type 4 | DenseNet-121 | 0.72 | 0.70 | 0.66 | 0.77 | 0.67 | 0.59 | 0.81 |
Polar Type 3 | DenseNet-169 | 0.79 | 0.74 | 0.72 | 0.79 | 0.74 | 0.70 | 0.77 |
MS 2-3-4 | DenseNet-201 | 0.72 | 0.71 | 0.70 | 0.71 | 0.73 | 0.71 | 0.72 |
PMS 2-3-4 | MobileNet-V2 | 0.78 | 0.74 | 0.72 | 0.79 | 0.70 | 0.66 | 0.81 |
Image Type | CNN Encoder | Feature Fusion Module | AUC | Acc | F1-Score | PPV | NPV | Sen | Spec | |
---|---|---|---|---|---|---|---|---|---|---|
Single Model | Type 4 | DenseNet-121 | - | 0.72 | 0.70 | 0.66 | 0.77 | 0.67 | 0.59 | 0.81 |
Polar Type 3 | DenseNet-169 | - | 0.79 | 0.74 | 0.74 | 0.79 | 0.74 | 0.70 | 0.77 | |
Framework | Type 4+ Polar Type 3 | DenseNet-121+ DenseNet-169 | FFM-v1 | 0.81 | 0.75 | 0.72 | 0.80 | 0.74 | 0.70 | 0.79 |
FFM-v2 | 0.83 | 0.76 | 0.75 | 0.80 | 0.75 | 0.72 | 0.80 | |||
FFM-v3 | 0.82 | 0.77 | 0.76 | 0.79 | 0.78 | 0.76 | 0.77 |
EBUS Image Type | CNN Encoder | Feature Fusion Module | AUC | Acc | F1-Score | PPV | NPV | Sen | Spec | |
---|---|---|---|---|---|---|---|---|---|---|
Single Model | Polar Type 3 | DenseNet-169 | - | 0.79 | 0.74 | 0.74 | 0.79 | 0.74 | 0.70 | 0.77 |
PMS 2-3-4 | MobileNet-V2 | - | 0.78 | 0.74 | 0.72 | 0.79 | 0.70 | 0.66 | 0.81 | |
Framework | Polar Type 3+ PMS 2-3-4 | DenseNet-169+ MobileNet-V2 | FFM-v1 | 0.80 | 0.75 | 0.74 | 0.77 | 0.74 | 0.72 | 0.78 |
FFM-v2 | 0.80 | 0.74 | 0.75 | 0.74 | 0.75 | 0.76 | 0.72 | |||
FFM-v3 | 0.82 | 0.75 | 0.75 | 0.78 | 0.74 | 0.72 | 0.79 |
EBUS Image Type | CNN Encoder | Feature Fusion Module | AUC | Acc | F1-Score | PPV | NPV | Sen | Spec | |
---|---|---|---|---|---|---|---|---|---|---|
Single Model | Type 4 | DenseNet-121 | - | 0.72 | 0.70 | 0.66 | 0.77 | 0.67 | 0.59 | 0.81 |
Polar Type 3 | DenseNet-169 | - | 0.79 | 0.74 | 0.74 | 0.79 | 0.74 | 0.70 | 0.77 | |
PMS 2-3-4 | MobileNet-V2 | - | 0.78 | 0.74 | 0.72 | 0.79 | 0.70 | 0.66 | 0.81 | |
Framework | Type 4+ Polar Type 3+ PMS 2-3-4 | DenseNet-121+ DenseNet-169+ MobileNet-V2 | FFM-v1 | 0.78 | 0.74 | 0.74 | 0.76 | 0.73 | 0.72 | 0.76 |
FFM-v2 | 0.76 | 0.72 | 0.73 | 0.73 | 0.75 | 0.75 | 0.70 | |||
FFM-v3 | 0.80 | 0.75 | 0.74 | 0.77 | 0.75 | 0.73 | 0.78 |
EBUS Image Type | CNN Encoder | Feature Fusion Module | AUC | Acc | F1- Score | PPV | NPV | Sen | Spec | |
---|---|---|---|---|---|---|---|---|---|---|
Single Model | Type 4 | DenseNet-121 | - | 0.72 | 0.70 | 0.66 | 0.77 | 0.67 | 0.59 | 0.81 |
Polar Type 3 | DenseNet-169 | - | 0.79 | 0.74 | 0.74 | 0.79 | 0.74 | 0.70 | 0.77 | |
MS 2-3-4 | DenseNet-201 | - | 0.72 | 0.71 | 0.70 | 0.71 | 0.73 | 0.71 | 0.72 | |
PMS 2-3-4 | MobileNet-V2 | - | 0.78 | 0.74 | 0.72 | 0.79 | 0.70 | 0.66 | 0.81 | |
Framework | Type 4+Polar Type 3+MS 2-3-4 +PMS 2-3-4 | DenseNet-121+Dense Net-169+DenseNet -201+MobileNet-V2 | FFM-v1 | 0.72 | 0.68 | 0.70 | 0.66 | 0.73 | 0.77 | 0.59 |
FFM-v2 | 0.75 | 0.71 | 0.73 | 0.69 | 0.74 | 0.77 | 0.66 | |||
FFM-v3 | 0.77 | 0.73 | 0.73 | 0.73 | 0.73 | 0.74 | 0.71 |
Methods | AUC | Acc | F1-Score | PPV | NPV | Sen | Spec | |
---|---|---|---|---|---|---|---|---|
Published methods | CNN-SVM [33] | 0.54 | 0.68 | 0.80 | 0.88 | 0.14 | 0.74 | 0.33 |
Single image-based model [59] | 0.52 | 0.67 | 0.79 | 0.87 | 0.12 | 0.73 | 0.31 | |
Previous work [38] | Majority Voting | 0.66 | 0.66 | 0.59 | 0.76 | 0.62 | 0.52 | 0.79 |
Output Average | 0.67 | 0.67 | 0.62 | 0.75 | 0.64 | 0.56 | 0.77 | |
Performance Weighting | 0.72 | 0.66 | 0.60 | 0.76 | 0.62 | 0.53 | 0.78 | |
Our proposed | 0.83 | 0.76 | 0.75 | 0.80 | 0.75 | 0.72 | 0.80 |
Ablation Setting | AUC | Acc | ||
---|---|---|---|---|
Weighted Loss Function | Feature Fusion Module | Data Augmentation | ||
✗ | ✗ | ✗ | 0.74 | 0.68 |
✓ | ✗ | ✗ | 0.72 | 0.68 |
✗ | ✓ | ✗ | 0.76 | 0.71 |
✗ | ✗ | ✓ | 0.74 | 0.64 |
✓ | ✓ | ✓ | 0.83 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Nakajima, T.; Shikano, K.; Nomura, Y.; Nakaguchi, T. Diagnosis of Lung Cancer Using Endobronchial Ultrasonography Image Based on Multi-Scale Image and Multi-Feature Fusion Framework. Tomography 2025, 11, 24. https://doi.org/10.3390/tomography11030024
Wang H, Nakajima T, Shikano K, Nomura Y, Nakaguchi T. Diagnosis of Lung Cancer Using Endobronchial Ultrasonography Image Based on Multi-Scale Image and Multi-Feature Fusion Framework. Tomography. 2025; 11(3):24. https://doi.org/10.3390/tomography11030024
Chicago/Turabian StyleWang, Huitao, Takahiro Nakajima, Kohei Shikano, Yukihiro Nomura, and Toshiya Nakaguchi. 2025. "Diagnosis of Lung Cancer Using Endobronchial Ultrasonography Image Based on Multi-Scale Image and Multi-Feature Fusion Framework" Tomography 11, no. 3: 24. https://doi.org/10.3390/tomography11030024
APA StyleWang, H., Nakajima, T., Shikano, K., Nomura, Y., & Nakaguchi, T. (2025). Diagnosis of Lung Cancer Using Endobronchial Ultrasonography Image Based on Multi-Scale Image and Multi-Feature Fusion Framework. Tomography, 11(3), 24. https://doi.org/10.3390/tomography11030024