Experimental Investigation into Atmospheric Microwave Plasma-Driven Nitrogen Fixation Using Metal–Organic Frameworks
<p>Photograph of the experimental system.</p> "> Figure 2
<p>Photographs of three catalysts prior to usage.</p> "> Figure 3
<p>The <span class="html-italic">x</span>-<span class="html-italic">z</span> plane of the 3D computational model of temperature distribution in plasma and its downstream area.</p> "> Figure 4
<p>(<b>a</b>) Mesh diagram used in the simulation, and (<b>b</b>) the mesh sensitivity test.</p> "> Figure 5
<p>Temperature distribution in (<b>a</b>) 3D model, (<b>b</b>) <span class="html-italic">x</span>-<span class="html-italic">z</span> plane and (<b>c</b>) <span class="html-italic">x</span>-<span class="html-italic">y</span> plane (unit: °C).</p> "> Figure 6
<p>Gas temperature at the <span class="html-italic">z</span>-axis in the quartz tube.</p> "> Figure 7
<p>The streamline chart for the inflow rate 7 L/min.</p> "> Figure 8
<p>Infrared absorption spectrum of the gas generated using the atmospheric microwave plasma.</p> "> Figure 9
<p>Infrared absorption spectra of (<b>a</b>) NO and (<b>c</b>) NO<sub>2</sub> with standard concentrations and the calibration curves of (<b>b</b>) NO and (<b>d</b>) NO<sub>2</sub>.</p> "> Figure 10
<p>NO<sub>x</sub> concentration at different gas flow rates and microwave powers of (<b>a</b>) 450 W, (<b>b</b>) 550 W, (<b>c</b>) 650 W, and (<b>d</b>) 700 W.</p> "> Figure 11
<p>Energy consumption with different gas flow rates and microwave powers of (<b>a</b>) 450 W, (<b>b</b>) 550 W, (<b>c</b>) 650 W, and (<b>d</b>) 700 W.</p> "> Figure 12
<p>NO<sub>x</sub> concentration produced during a 60 min operation with these three catalysts.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Experiment System
2.2. Catalyst Characterization
2.3. Catalyst Location Determination
2.4. NOx Measurement
3. Experiment Results and Discussions
3.1. NOx Production
3.2. Energy Consumption
3.3. Stability Test of the Catalysts
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Galloway, N.J.; Cowling, B.E. Reactive Nitrogen and The World: 200 Years of Change. AMBIO 2022, 31, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Winter, L.R.; Chen, J.G. N2 Fixation by Plasma-Activated Processes. Joule 2020, 5, 300–315. [Google Scholar] [CrossRef]
- Wilson, A.; Staack, D.; Farouk, T.; Gutsol, A.; Fridman, A.; Farouk, B. Self-rotating dc atmospheric-pressure discharge over a water-surface electrode: Regimes of operation. Plasma Sources Sci. Technol. 2008, 17, 45001. [Google Scholar] [CrossRef]
- Chanway, C.P.; Anand, R.; Yang, H. Nitrogen Fixation Outside and Inside Plant Tissues. In Advances in Biology and Ecology of Nitrogen Fixation; IntechOpen: Rijeka, Croatia, 2014; pp. 3–21. [Google Scholar] [CrossRef]
- Bond, D.W.; Steiger, S.; Zhang, R.; Tie, X.; Orville, R.E. The importance of NOx production by lightning in the tropics. Orville. Atmos. Environ. 2002, 36, 1509–1519. [Google Scholar] [CrossRef]
- Patil, B.S.; Wang, Q.; Hessel, V.; Lang, J. Plasma N2-fixation: 1900–2014. Catal. Today. 2015, 256, 49–66. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Zheng, J. Non-thermal plasma-assisted ammonia production: A review. Energy Convers. Manag. 2023, 293, 117482. [Google Scholar] [CrossRef]
- Li, L.; Tang, C.; Jin, H.; Davey, K.; Qiao, S.Z. Main-group elements boost electrochemical nitrogen fixation. Chem 2021, 7, 3232–3255. [Google Scholar] [CrossRef]
- Wang, W.; Qu, J.; Li, C.; Guo, L.; Fang, X.; Chen, G. “MoFe cofactor” inspired iron mesh-based MIL-88A(Fe/Mo) for bionic photocatalytic nitrogen fixation. Mol. Catal. 2022, 532, 112730. [Google Scholar] [CrossRef]
- Tsone, I.; O'Modhrai, C.; Bogaerts, A.; Gorbanev, Y. Nitrogen Fixation by an Arc Plasma at Elevated Pressure to Increase the Energy Efficiency and Production Rate of NOx. ACS Sustain. Chem. Eng. 2023, 11, 1888–1897. [Google Scholar] [CrossRef]
- Pei, X.; Gidon, D.; Yang, Y.-J.; Xiong, Z.; Graves, D.B. Reducing energy cost of NOx production in air plasmas. Chem. Eng. J. 2019, 362, 217–228. [Google Scholar] [CrossRef]
- Patil, B.S.; Cherkasov, N.; Lang, J.; Ibhadon, A.O.; Hessel, V.; Wang, Q. Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: Effect of support materials and supported active metal oxides. Appl. Catal. B. 2016, 194, 123–133. [Google Scholar] [CrossRef]
- Vervloessem, E.; Gorbanev, Y.; Nikiforov, A.; Geyter, N.D.; Bogaerts, A. Sustainable NOx production from air in pulsed plasma: Elucidating the chemistry behind the low energy consumption. Green Chem. 2022, 24, 916–929. [Google Scholar] [CrossRef]
- Iqbal, M.; Hoon, L.D.; Khoe, D.D. A novel energy efficient path for nitrogen fixation using a non-thermal arc. RSC Adv. 2021, 11, 12729–12738. [Google Scholar] [CrossRef]
- Vervloessem, E.; Aghaei, M.; Jardali, F.; Hafezkhiabani, N.; Bogaerts, A. Plasma-Based N2 Fixation into NOx: Insights from Modeling toward Optimum Yields and Energy Costs in a Gliding Arc Plasmatron. ACS Sustain. Chem. Eng. 2020, 8, 9711–9720. [Google Scholar] [CrossRef]
- Lei, X.Y.; Cheng, H.; Nie, L.L.; Lu, X.P. Nitrogen Fixation as NOx Enabled by a Three-Level Coupled Rotating Electrodes Air Plasma at Atmospheric Pressure. Plasma Chem. Plasma Process. 2022, 42, 211–227. [Google Scholar] [CrossRef]
- Malik, M.A.; Jiang, C.; Heller, R.; Lane, J.; Hughes, D.; Schoenbach, K.H. Ozone-free nitric oxide production using an atmospheric pressure surface discharge—A way to minimize nitrogen dioxide co-production. Chem. Eng. J. 2016, 283, 631–638. [Google Scholar] [CrossRef]
- Bahnamiri, O.S.; Verheyen, C.; Snyders, R.; Bogaerts, A.; Britun, N. Nitrogen fixation in pulsed microwave discharge studied by infrared absorption combined with modelling. Plasma Sources Sci. Technol. 2021, 30, 065007. [Google Scholar] [CrossRef]
- Mutel, B.; Dessaux, O.; Goudmand, P. Energy cost improvement of the nitrogen oxides synthesis in a low pressure plasma. Rev. Phys. Appl. 1984, 19, 461–464. [Google Scholar] [CrossRef]
- Seán, K.; Annemie, B. Nitrogen fixation in an electrode-free microwave plasma. Joule 2021, 5, 3006–3030. [Google Scholar] [CrossRef]
- Patil, B.S.; Palau, J.R.; Hessel, V.; Lang, J.; Wang, Q. Plasma Nitrogen Oxides Synthesis in a Milli-Scale Gliding Arc Reactor: Investigating the Electrical and Process Parameters. Plasma Chem. Plasma Process. 2016, 36, 241–257. [Google Scholar] [CrossRef]
- Asisov, R.I.; Givotov, V.K.; Rusanov, V.D.; Fridman, A. Spin effects in elementary processes of high-energy chemistry. Khim. Vys. Energ. 1980, 14, 366. [Google Scholar]
- Rouwenhorst, K.H.R.; Jardali, F.; Bogaerts, A.; Lefferts, L. From the Birkeland-Eyde process towards energy-efficient plasma-based NOx synthesis: A techno-economic analysis. Energy Environ. Sci. 2023, 16, 6170–6173. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Schiappacasse, C.; Zhou, N. Sustainable Non-Thermal Plasma-Assisted Nitrogen Fixation—Synergistic Catalysis. ChemSusChem 2019, 12, 3702–3712. [Google Scholar] [CrossRef] [PubMed]
- Hollevoet, L.; Vervloessem, E.; Gorbanev, Y. Energy-Efficient Small-Scale Ammonia Synthesis Process with Plasma-Enabled Nitrogen Oxidation and Catalytic Reduction of Adsorbed NOx. ChemSusChem 2022, 15, e202102526. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.I.; Li, Y.; Luo, Y. Nitrogen fixation as NOx using air plasma coupled with heterogeneous catalysis at atmospheric pressure. Plasma Process. Polym. 2023, 21, e2300135. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Zuo, H.; Kamiya, K.; Chen, Y.; Chen, G. Reinforcement of fluidized catalysts with dbd plasma assisted for green ammonia synthesis. Int. J. Hydrogen Energy. 2024, 67, 521–531. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Omidkar, A.; Li, W.; Meng, S.; Li, Z.; Song, H. Non-thermal plasma assisted catalytic nitrogen fixation with methane at ambient conditions. Chem. Eng. J. 2023, 471, 144748. [Google Scholar] [CrossRef]
- Javishk, S.; Ting, W.; Jolie, L.; Moises, A.C.; Maria, C.L. Nonthermal Plasma Synthesis of Ammonia over Ni-MOF-74. ACS Sustain. Chem. Eng. 2019, 7, 377–383. [Google Scholar] [CrossRef]
- Wandell, R.J.; Wang, H.H.; Bulusu, R.K.M.; Gallan, R.O.; Locke, B.R. Formation of nitrogen oxides by nanosecond pulsed plasma discharges in gas-liquid reactors. Plasma Chem. Plasma Process. 2019, 39, 643–666. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.W.; Xu, X.F. Synergistic effect of Co-Ni bimetal on plasma catalytic ammonia synthesis. Plasma Chem. Plasma Process. 2022, 42, 267–282. [Google Scholar] [CrossRef]
- Gorky, F.; Lucero, J.M.; Crawford, J.M.; Blake, B.; Carreon, M.A.; Carreon, M.L. Plasma-induced catalytic conversion of nitrogen and hydrogen to ammonia over zeolitic imidazolate frameworks ZIF-8 and ZIF-67. ACS Appl. Mater. Interfaces 2021, 13, 21338–21348. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.; Wang, W.; Bogaerts, A.; Carreon, M.L. Ammonia synthesis by radio frequency plasma catalysis: Revealing the underlying mechanisms. ACS Appl. Energy Mater. 2018, 1, 4824–4839. [Google Scholar] [CrossRef]
- Farha, O.K.; Eryazici, I.; Jeong, N.C. Metal−organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 2012, 134, 15016–15021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Su, Z.X.; Jiang, F.L. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 2014, 6, 6590. [Google Scholar] [CrossRef] [PubMed]
- Jalal, A.; Zhao, Y.; Uzun, A. Pyrolysis temperature tunes the catalytic properties of cubtc-derived carbon-embedded copper catalysts for partial hydrogenation. Ind. Eng. Chem. Res. 2022, 61, 2068–2080. [Google Scholar] [CrossRef]
- Wu, G.; Ma, J.; Li, S. Cationic metal-organic frameworks as an efficient adsorbent for the removal of 2,4-dichlorophenoxyacetic acid from aqueous solutions. Environ. Res. 2020, 186, 109542. [Google Scholar] [CrossRef]
- Wei, Q.X.; Shan, H.; Sheng, J.L. Post-synthetic modification of a metal-organic framework based on 5-aminoisophthalic acid for mercury sorption. Inorg. Chem. Commun. 2019, 108, 107515. [Google Scholar] [CrossRef]
- Huang, S.; Liu, C.; Jie, Z.; Zhang, G. Imaging Diagnostics and Gas Temperature Measurements of Atmospheric-Microwave-Induced Air Plasma Torch. IEEE Trans. Plasma Sci. 2020, 48, 2958. [Google Scholar] [CrossRef]
- Ivorra, B. Application of the Laminar Navier–Stokes Equations for Solving 2D and 3D Pathfinding Problems with Static and Dynamic Spatial Constraints: Implementation and Validation in Comsol Multiphysics. J. Sci. Comput. 2018, 74, 1163–1187. [Google Scholar] [CrossRef]
- Wei, X.; Huang, K.; Zhang, W.; Yi, L. Modeling of Argon Plasma Excited by Microwave at Atmospheric Pressure in Ridged Waveguide. IEEE Trans. Plasma Sci. 2016, 44, 1075–1082. [Google Scholar] [CrossRef]
- Xiao, W.; Liao, Y.; Wang, F. Determining Electron Density of Atmospheric Microwave Air Plasma Torch by Microwave Power Measurement. IEEE Trans. Plasma Sci. 2022, 50, 1781–1789. [Google Scholar] [CrossRef]
- Pitchai, K.; Chen, J.; Birla, S.; Gonzalez, R.; Jones, D.; Subbiah, J. A microwave heat transfer model for a rotating multi-component meal in a domestic oven: Development and validation. Food Eng. 2014, 128, 60–71. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, L.; Tao, J.; Huang, K. Numerical Investigation of the Gas Flow Effects on Surface Wave Propagation and Discharge Properties in a Microwave Plasma Torch. IEEE Trans. Plasma Sci. 2019, 47, 271–277. [Google Scholar] [CrossRef]
Plasma/Reactor Type | Reactant Gas | NOx Concentration | Energy Cost (MJ/mol) | Reference |
---|---|---|---|---|
Dielectric Barrier Discharge | N2, O2 | 0.36% | 56–140 | [11] |
Dielectric Barrier Discharge—packed with catalyst | N2, O2 | 0.50% | 18 | [12] |
Spark discharge—pulsed AC | N2, O2 | 0.02% | 0.42 | [13] |
Gliding arc plasmatron | N2, O2 | 1.5% | 3.6 | [15] |
Three-level coupled rotating electrodes plasma | N2, O2 | 0.4–0.5% | 2.27–2.8 | [16] |
Gliding arc plasma | N2, O2 | 0.1% | 15.4 | [17] |
Pulsed microwave discharge | N2, O2 | 7% | 8 | [18] |
Microwave plasma with MOFs catalyst | N2, O2 | 3.3% | 2.05 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, F.; Feng, K.; Wu, S.; Xiao, W. Experimental Investigation into Atmospheric Microwave Plasma-Driven Nitrogen Fixation Using Metal–Organic Frameworks. Processes 2024, 12, 2633. https://doi.org/10.3390/pr12122633
Zheng F, Feng K, Wu S, Xiao W. Experimental Investigation into Atmospheric Microwave Plasma-Driven Nitrogen Fixation Using Metal–Organic Frameworks. Processes. 2024; 12(12):2633. https://doi.org/10.3390/pr12122633
Chicago/Turabian StyleZheng, Fang, Kai Feng, Shaokun Wu, and Wei Xiao. 2024. "Experimental Investigation into Atmospheric Microwave Plasma-Driven Nitrogen Fixation Using Metal–Organic Frameworks" Processes 12, no. 12: 2633. https://doi.org/10.3390/pr12122633
APA StyleZheng, F., Feng, K., Wu, S., & Xiao, W. (2024). Experimental Investigation into Atmospheric Microwave Plasma-Driven Nitrogen Fixation Using Metal–Organic Frameworks. Processes, 12(12), 2633. https://doi.org/10.3390/pr12122633