Applications of Multi-Objective Optimization to Industrial Processes: A Literature Review
Abstract
:1. Introduction
2. Application of MOO for Life-Cycle Assessment
3. Application of MOO to Product Development
4. Application of MOO in Water Networks
5. Application of MOO to Energy Production, Storage and Distribution Systems
6. Application of MOO in Supply Chain Networks
7. Application of MOO to Process Intensification
8. Application of MOO to Industrial Processes Security Evaluation
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MOO | Multi-objective optimization |
LP | Linear programming |
NLP | Non-linear programming |
MIP | Mixed integer programming |
MINLP | Mixed integer non-linear programming |
LCA | Life cycle assessment |
SWM | Solid waste management |
CLSC | Closed-loop supply chains |
FAHP | Fuzzy analytic hierarchy process |
References
- Liu, Q.; Li, X.; Liu, H.; Guo, Z. Multi-objective metaheuristics for discrete optimization problems: A review of the state-of-the-art. Appl. Soft Comput. 2020, 93, 106382. [Google Scholar] [CrossRef]
- Marler, R.T.; Arora, J.S. The weighted sum method for multi-objective optimization: New insights. Struct. Multidiscip. Optim. 2010, 41, 853–862. [Google Scholar] [CrossRef]
- Jones, D.; Tamiz, M. Practical Goal Programming; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Muralikrishna, I.V.; Manickam, V. Life Cycle Assessment. In Environmental Management; Elsevier: Amsterdam, The Netherlands, 2017; pp. 57–75. [Google Scholar] [CrossRef]
- Yue, D.; Pandya, S.; You, F. Integrating Hybrid Life Cycle Assessment with Multiobjective Optimization: A Modeling Framework. Environ. Sci. Technol. 2016, 50, 1501–1509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ji, K.; Liu, W.; Cui, X.; Liu, Y.; Cui, Z. Collaborative Approach for Environmental and Economic Optimization Based on Life Cycle Assessment of End-of-Life Vehicles’ Dismantling in China. J. Clean. Prod. 2020, 276, 124288. [Google Scholar] [CrossRef]
- Xiong, J.; Zhu, J.; He, Y.; Ren, S.; Huang, W.; Lu, F. The Application of Life Cycle Assessment for the Optimization of Pipe Materials of Building Water Supply and Drainage System. Sustain. Cities Soc. 2020, 60, 102267. [Google Scholar] [CrossRef]
- Kamalakkannan, S.; Kulatunga, A.K. Optimization of Eco-Design Decisions Using a Parametric Life Cycle Assessment. Sustain. Prod. Consum. 2021, 27, 1297–1316. [Google Scholar] [CrossRef]
- Monsiváis-Alonso, R.; Mansouri, S.S.; Román-Martínez, A. Life Cycle Assessment of Intensified Processes towards Circular Economy: Omega-3 Production from Waste Fish Oil. Chem. Eng. Process. Process. Intensif. 2020, 158, 108171. [Google Scholar] [CrossRef]
- Pourreza Movahed, Z.; Kabiri, M.; Ranjbar, S.; Joda, F. Multi-Objective Optimization of Life Cycle Assessment of Integrated Waste Management Based on Genetic Algorithms: A Case Study of Tehran. J. Clean. Prod. 2020, 247, 119153. [Google Scholar] [CrossRef]
- Ooi, J.K.; Woon, K.S.; Hashim, H. A Multi-Objective Model to Optimize Country-Scale Municipal Solid Waste Management with Economic and Environmental Objectives: A Case Study in Malaysia. J. Clean. Prod. 2021, 316, 128366. [Google Scholar] [CrossRef]
- Malmir, T.; Ranjbar, S.; Eicker, U. Improving Municipal Solid Waste Management Strategies of Montréal (Canada) Using Life Cycle Assessment and Optimization of Technology Options. Energies 2020, 13, 5701. [Google Scholar] [CrossRef]
- Falahi, M.; Avami, A. Optimization of the Municipal Solid Waste Management System Using a Hybrid Life Cycle Assessment–Energy Approach in Tehran. J. Mater. Cycles Waste Manag. 2020, 22, 133–149. [Google Scholar] [CrossRef]
- Arnell, M.; Rahmberg, M.; Oliveira, F.; Jeppsson, U. Multi-Objective Performance Assessment of Wastewater Treatment Plants Combining Plant-Wide Process Models and Life Cycle Assessment. J. Water Clim. Chang. 2017, 8, 715–729. [Google Scholar] [CrossRef]
- Xie, N.; Liu, Z.; Luo, Z.; Ren, J.; Deng, C.; Yang, S. Multi-Objective Optimization and Life Cycle Assessment of an Integrated System Combining LiBr/H2O Absorption Chiller and Kalina Cycle. Energy Convers. Manag. 2020, 225, 113448. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Zhang, X.; Ma, Z.; Gao, Y.; Liu, B.; Qin, Y. Robust Multi-Objective Optimization with Life Cycle Assessment of Hybrid Solar Combined Cooling, Heating and Power System. Energy Convers. Manag. 2021, 232, 113868. [Google Scholar] [CrossRef]
- Xiao, W.; Cheng, A.; Li, S.; Jiang, X.; Ruan, X.; He, G. A Multi-Objective Optimization Strategy of Steam Power System to Achieve Standard Emission and Optimal Economic by NSGA-II. Energy 2021, 232, 120953. [Google Scholar] [CrossRef]
- Yang, P.; Yuan, M.; Liu, Z.; Xie, N.; Liu, Y.; Yang, S. Multi- Objective Optimization and Life Cycle Assessment of a Cascade System Integrating LiBr/H2O Absorption Refrigeration with Transcritical CO2 Power Cycle. Energy Convers. Manag. 2021, 244, 114453. [Google Scholar] [CrossRef]
- Dabbaghi, F.; Tanhadoust, A.; Nehdi, M.L.; Nasrollahpour, S.; Dehestani, M.; Yousefpour, H. Life Cycle Assessment Multi-Objective Optimization and Deep Belief Network Model for Sustainable Lightweight Aggregate Concrete. J. Clean. Prod. 2021, 318, 128554. [Google Scholar] [CrossRef]
- Vaskan, P.; Guillén-Gosálbez, G.; Jiménez, L. Multi-Objective Design of Heat-Exchanger Networks Considering Several Life Cycle Impacts Using a Rigorous MILP-Based Dimensionality Reduction Technique. Appl. Energy 2012, 98, 149–161. [Google Scholar] [CrossRef]
- Esquivel-Patiño, G.G.; Nápoles-Rivera, F. Environmental and Energetic Analysis of Coupling a Biogas Combined Cycle Power Plant with Carbon Capture, Organic Rankine Cycles and CO2 Utilization Processes. J. Environ. Manag. 2021, 300, 113746. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Aydin, R.; Kwong, C.K.; Huang, Y. Integrated Product Line Design and Supplier Selection: A Multi-Objective Optimization Paradigm. Comput. Ind. Eng. 2014, 70, 150–158. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Dai, Y.; Yang, X.; Zhao, J.; Cui, P.; Zhu, Z.; Wang, Y.; Zheng, S.; Gao, J. Multi-Objective Optimization of a Clean, High-Efficiency Synthesis Process of Methyl-Ethyl-Ketone Oxime from Ammoximation. J. Clean. Prod. 2021, 315, 128176. [Google Scholar] [CrossRef]
- Sohani, A.; Zamani Pedram, M.; Berenjkar, K.; Sayyaadi, H.; Hoseinzadeh, S.; Kariman, H.; El Haj Assad, M. Techno-Energy-Enviro-Economic Multi-Objective Optimization to Determine the Best Operating Conditions for Preparing Toluene in an Industrial Setup. J. Clean. Prod. 2021, 313, 127887. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I. Development and Multi-Objective Optimization of a Newly Proposed Industrial Heat Recovery Based Cascaded Hydrogen and Ammonia Synthesis System. Sci. Total. Environ. 2020, 743, 140671. [Google Scholar] [CrossRef]
- Flegiel, F.; Sharma, S.; Rangaiah, G.P. Development and Multiobjective Optimization of Improved Cumene Production Processes. Mater. Manuf. Process. 2015, 30, 444–457. [Google Scholar] [CrossRef]
- Goli, A.; Zare, H.K. Hybrid Artificial Intelligence and Robust Optimization for a Multi-Objective Product Portfolio Problem Case Study: The Dairy Products Industry. Comput. Ind. Eng. 2019, 137, 106090. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, L.; Zhou, X. Automated Multi-Objective Optimization for Thin-Walled Plastic Products Using Taguchi, ANOVA, and Hybrid ANN-MOGA. Int. J. Adv. Manuf. Technol. 2020, 106, 559–575. [Google Scholar] [CrossRef]
- Meramo-Hurtado, S.-I.; González-Delgado, A.-D. Biorefinery Synthesis and Design Using Sustainability Parameters and Hierarchical/3D Multi-Objective Optimization. J. Clean. Prod. 2019, 240, 118134. [Google Scholar] [CrossRef]
- Jugwanth, Y.; Sewsynker-Sukai, Y.; Gueguim Kana, E.B. Valorization of Sugarcane Bagasse for Bioethanol Production through Simultaneous Saccharification and Fermentation: Optimization and Kinetic Studies. Fuel 2020, 262, 116552. [Google Scholar] [CrossRef]
- Sánchez Bautista, A.F.; Santibañez-Aguilar, J.E.; You, F.; Ponce-Ortega, J.M. Optimal Planning of Distributed Systems of Refineries and Biorefineries Considering Pollution Trading with Forest Plantations. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2016; Volume 38, pp. 1099–1104. [Google Scholar] [CrossRef]
- Murillo-Alvarado, P.E.; Ponce-Ortega, J.M.; Serna-González, M.; Castro-Montoya, A.J.; El-Halwagi, M.M. Optimization of Pathways for Biorefineries Involving the Selection of Feedstocks, Products, and Processing Steps. Ind. Eng. Chem. Res. 2013, 52, 5177–5190. [Google Scholar] [CrossRef]
- Alizadeh Afrouzy, Z.; Nasseri, S.H.; Mahdavi, I.; Paydar, M.M. A Fuzzy Stochastic Multi-Objective Optimization Model to Configure a Supply Chain Considering New Product Development. Appl. Math. Model. 2016, 40, 7545–7570. [Google Scholar] [CrossRef]
- Ji, X.; Gao, Q.; Wang, H. A Bilevel-Optimization Approach to Determine Product Specifications during the Early Phases of Product Development: Increase Customer Value and Reduce Design Risks. Expert Syst. Appl. 2022, 188, 116012. [Google Scholar] [CrossRef]
- San Juan, J.L.; Caligan, C.J.; Garcia, M.M.; Mitra, J.; Mayol, A.P.; Culaba, A. Multi-Objective Optimization of an Integrated Algal and Sludge-Based Bioenergy Park and Wastewater Treatment System. Sustainability 2020, 12, 7793. [Google Scholar] [CrossRef]
- Rerat, C.; Papadokonstantakis, S.; Hungerbühler, K. Integrated Waste Management in Batch Chemical Industry Based on Multi-Objective Optimization. J. Air Waste Manag. Assoc. 2013, 63, 349–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padrón-Páez, J.I.; Almaraz, S.D.-L.; Román-Martínez, A. Sustainable Wastewater Treatment Plants Design through Multiobjective Optimization. Comput. Chem. Eng. 2020, 140, 106850. [Google Scholar] [CrossRef]
- Gormaz-Cuevas, D.; Riffo-Rivas, J.; Montastruc, L.; Brüning-González, M.; Díaz-Alvarado, F. A Multi-Objective Optimization Model to Plan City-Scale Water Systems with Economic and Environmental Objectives: A Case Study in Santiago, Chile. J. Clean. Prod. 2021, 279, 123737. [Google Scholar] [CrossRef]
- Qiao, J.; Zhang, W. Dynamic Multi-Objective Optimization Control for Wastewater Treatment Process. Neural Comput. Applic 2018, 29, 1261–1271. [Google Scholar] [CrossRef]
- Caligan, C.J.A.; Garcia, M.M.S.; Mitra, J.L.; Mayol, A.P.; San Juan, J.L.G.; Culaba, A.B. Multi-Objective Optimization of Water Exchanges between a Wastewater Treatment Facility and Algal Biofuel Production Plant. IOP Conf. Ser. Earth Environ. Sci. 2020, 463, 012050. [Google Scholar] [CrossRef]
- Moazeni, F.; Khazaei, J. Interactive Nonlinear Multiobjective Optimal Design of Water Distribution Systems Using Pareto Navigator Technique. Sustain. Cities Soc. 2021, 73, 103110. [Google Scholar] [CrossRef]
- Zhang, K.; Yan, H.; Zeng, H.; Xin, K.; Tao, T. A Practical Multi-Objective Optimization Sectorization Method for Water Distribution Network. Sci. Total. Environ. 2019, 656, 1401–1412. [Google Scholar] [CrossRef]
- Lence, B.J.; Moosavian, N.; Daliri, H. Fuzzy Programming Approach for Multiobjective Optimization of Water Distribution Systems. J. Water Resour. Plan. Manag. 2017, 143, 04017020. [Google Scholar] [CrossRef]
- Xu, Z.; Yao, L.; Chen, X. Urban Water Supply System Optimization and Planning: Bi-Objective Optimization and System Dynamics Methods. Comput. Ind. Eng. 2020, 142, 106373. [Google Scholar] [CrossRef]
- Sankary, N.; Ostfeld, A. Multiobjective Optimization of Inline Mobile and Fixed Wireless Sensor Networks under Conditions of Demand Uncertainty. J. Water Resour. Plan. Manag. 2018, 144, 04018043. [Google Scholar] [CrossRef]
- Ong, M.C.; Leong, Y.T.; Wan, Y.K.; Chew, I.M.L. Multi-Objective Optimization of Integrated Water System by FUCOM-VIKOR Approach. Process. Integr. Optim. Sustain. 2021, 5, 43–62. [Google Scholar] [CrossRef]
- Solgi, M.; Bozorg-Haddad, O.; Loáiciga, H.A. A multi-objective optimization model for operation of intermittent water distribution networks. Water Supply 2020, 20, 2630–2647. [Google Scholar] [CrossRef]
- Elshaboury, N.; Attia, T.; Marzouk, M. Application of evolutionary optimization algorithms for rehabilitation of water distribution networks. J. Constr. Eng. Manag. 2020, 146, 04020069. [Google Scholar] [CrossRef]
- Aalami, M.T.; Nourani, V.; Fazaeli, H. Developing a surface water resources allocation model under risk conditions with a multi-objective optimization approach. Water Supply 2020, 20, 1167–1177. [Google Scholar] [CrossRef]
- Naghdi, S.; Bozorg-Haddad, O.; Khorsandi, M.; Chu, X. Multi-objective optimization for allocation of surface water and groundwater resources. Sci. Total Environ. 2021, 776, 146026. [Google Scholar] [CrossRef]
- Sadr, S.M.; Johns, M.B.; Memon, F.A.; Duncan, A.P.; Gordon, J.; Gibson, R.; Butler, D. Development and application of a multi-objective-optimization and multi-criteria-based decision support tool for selecting optimal water treatment technologies in india. Water 2020, 12, 2836. [Google Scholar] [CrossRef]
- De-León Almaraz, S.; Boix, M.; Montastruc, L.; Azzaro-Pantel, C.; Liao, Z.; Domenech, S. Design of a Water Allocation and Energy Network for Multi-Contaminant Problems Using Multi-Objective Optimization. Process. Saf. Environ. Prot. 2016, 103, 348–364. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Rangaiah, G.P. Multi-Objective Optimization of Heat Integrated Water Networks in Petroleum Refineries. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2014; Volume 33, pp. 1531–1536. [Google Scholar] [CrossRef]
- Chijin, Z.; Congjing, R.; Zuwei, L.; Jingyuan, S.; Jingdai, W.; Yongrong, Y. Recent Progresses on Optimal Design of Heat Integrated Water Allocation Network. China Pet. Process. Petrochem. Technol. 2021, 23, 69. [Google Scholar]
- Liu, L.; Sheng, Y.; Zhuang, Y.; Zhang, L.; Du, J. Multiobjective Optimization of Interplant Heat Exchanger Networks Considering Utility Steam Supply and Various Locations of Interplant Steam Generation/Utilization. Ind. Eng. Chem. Res. 2020, 59, 14433–14446. [Google Scholar] [CrossRef]
- de Dios, L.G.; Boix, M.; Sauvage, S.; Touche, I.; Cakir, R.; Montastruc, L.; Perez, J.M.S. Multiobjective Optimization of Eco-Industrial Parks: Evaluation of Environmental Impacts at the Watershed Scale. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018; Volume 43, pp. 67–72. [Google Scholar] [CrossRef]
- Ramos, M.A.; Rocafull, M.; Boix, M.; Aussel, D.; Montastruc, L.; Domenech, S. Utility Network Optimization in Eco-Industrial Parks by a Multi-Leader Follower Game Methodology. Comput. Chem. Eng. 2018, 112, 132–153. [Google Scholar] [CrossRef] [Green Version]
- Afshari, H.; Farel, R.; Peng, Q. Challenges of Value Creation in Eco-Industrial Parks (EIPs): A Stakeholder Perspective for Optimizing Energy Exchanges. Resour. Conserv. Recycl. 2018, 139, 315–325. [Google Scholar] [CrossRef]
- Tiu, B.T.C.; Cruz, D.E. An MILP Model for Optimizing Water Exchanges in Eco-Industrial Parks Considering Water Quality. Resour. Conserv. Recycl. 2017, 119, 89–96. [Google Scholar] [CrossRef]
- Leong, Y.T.; Lee, J.-Y.; Tan, R.R.; Foo, J.J.; Chew, I.M.L. Multi-Objective Optimization for Resource Network Synthesis in Eco-Industrial Parks Using an Integrated Analytic Hierarchy Process. J. Clean. Prod. 2017, 143, 1268–1283. [Google Scholar] [CrossRef]
- Ahmed, R.O.; Al-Mohannadi, D.M.; Linke, P. Multi-Objective Resource Integration for Sustainable Industrial Clusters. J. Clean. Prod. 2021, 316, 128237. [Google Scholar] [CrossRef]
- Wang, C.; Olsson, G.; Liu, Y. Coal-Fired Power Industry Water-Energyemission Nexus: A Multi-Objective Optimization. J. Clean. Prod. 2018, 203, 367–375. [Google Scholar] [CrossRef]
- Ghiasi, M. Detailed Study, Multi-Objective Optimization, and Design of an AC-DC Smart Microgrid with Hybrid Renewable Energy Resources. Energy 2019, 169, 496–507. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Aviso, K.B.; Tan, R.R. Multi-Objective Optimisation of Hybrid Power Systems under Uncertainties. Energy 2019, 175, 1271–1282. [Google Scholar] [CrossRef]
- Majewski, D.E.; Wirtz, M.; Bardow, A. Robust Multi-Objective Optimization for Sustainable Design of Distributed Energy Supply Systems. Comput. Chem. Eng. 2017, 102, 26–39. [Google Scholar] [CrossRef]
- Jing, R.; Zhu, X.; Wang, W.; Meng, C.; Shah, N.; Zhao, Y. A Multi-Objective Optimization and Multi-Criteria Evaluation Integrated Framework for Distributed Energy System Optimal Planning. Energy Convers. Manag. 2018, 166, 445–462. [Google Scholar] [CrossRef]
- Jiang, M.; An, H.; Gao, X.; Liu, D.; Jia, N.; Xi, X. Consumption-Based Multi-Objective Optimization Model for Minimizing Energy Consumption: A Case Study of China. Energy 2020, 208, 118384. [Google Scholar] [CrossRef]
- Bagaber, S.A.; Yusoff, A.R. Energy and Cost Integration for Multi-Objective Optimisation in a Sustainable Turning Process. Measurement 2019, 136, 795–810. [Google Scholar] [CrossRef]
- Breen, M.; Upton, J.; Murphy, M.D. Photovoltaic systems on dairy farms: Financial and renewable multi-objective optimization (FARMOO) analysis. Appl. Energy 2020, 278, 115534. [Google Scholar] [CrossRef]
- Li, L.; Liu, P.; Li, Z.; Wang, X. A Multi-Objective Optimization Approach for Selection of Energy Storage Systems. Comput. Chem. Eng. 2018, 115, 213–225. [Google Scholar] [CrossRef]
- Wang, X.; Yang, C.; Huang, M.; Ma, X. Multi-Objective Optimization of a Gas Turbine-Based CCHP Combined with Solar and Compressed Air Energy Storage System. Energy Convers. Manag. 2018, 164, 93–101. [Google Scholar] [CrossRef]
- Chen, S.; Arabkoohsar, A.; Yang, Y.; Zhu, T.; Nielsen, M.P. Multi-objective optimization of a combined cooling, heating, and power system with subcooled compressed air energy storage considering off-design characteristics. Appl. Therm. Eng. 2021, 187, 116562. [Google Scholar] [CrossRef]
- Schram, W.L.; AlSkaif, T.; Lampropoulos, I.; Henein, S.; Van Sark, W.G. On the trade-off between environmental and economic objectives in community energy storage operational optimization. IEEE Trans. Sustain. Energy 2020, 11, 2653–2661. [Google Scholar] [CrossRef]
- Asni, T.; Andiappan, V. Optimal Design of Biomass Combined Heat and Power System Using Fuzzy Multi-Objective Optimisation: Considering System Flexibility, Reliability, and Cost. Process. Integr. Optim. Sustain. 2021, 5, 207–229. [Google Scholar] [CrossRef]
- Li, X.; Gui, D.; Zhao, Z.; Li, X.; Wu, X.; Hua, Y.; Guo, P.; Zhong, H. Operation Optimization of Electrical-Heating Integrated Energy System Based on Concentrating Solar Power Plant Hybridized with Combined Heat and Power Plant. J. Clean. Prod. 2021, 289, 125712. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Zhao, D.; Li, G.; Chen, C. A Two-Stage Approach for Combined Heat and Power Economic Emission Dispatch: Combining Multi-Objective Optimization with Integrated Decision Making. Energy 2018, 162, 237–254. [Google Scholar] [CrossRef] [Green Version]
- Santibanez-Borda, E.; Korre, A.; Nie, Z.; Durucan, S. A Multi-Objective Optimisation Model to Reduce Greenhouse Gas Emissions and Costs in Offshore Natural Gas Upstream Chains. J. Clean. Prod. 2021, 297, 126625. [Google Scholar] [CrossRef]
- Cao, Y.; Mohamed, A.M.; Dahari, M.; Delpisheh, M.; Haghghi, M.A. Performance enhancement and multi-objective optimization of a solar-driven setup with storage process using an innovative modification. J. Energy Storage 2020, 32, 101956. [Google Scholar] [CrossRef]
- Bufi, E.A.; Camporeale, S.; Fornarelli, F.; Fortunato, B.; Pantaleo, A.M.; Sorrentino, A.; Torresi, M. Parametric Multi-Objective Optimization of an Organic Rankine Cycle with Thermal Energy Storage for Distributed Generation. Energy Procedia 2017, 126, 429–436. [Google Scholar] [CrossRef]
- Rodriguez Sotomonte, C.A.; Correa Veloso, T.G.; Coronado, C.J.R.; Rosa do Nascimento, M.A. Multi-Objective Optimization for a Small Biomass Cooling and Power Cogeneration System Using Binary Mixtures. Appl. Therm. Eng. 2021, 182, 116045. [Google Scholar] [CrossRef]
- Hernández-Romero, I.M.; Nápoles-Rivera, F.; Flores-Tlacuahuac, A. Optimal Design of the Ocean Thermal Energy Conversion Systems Involving Weather and Energy Demand Variations. Chem. Eng. Process. Process. Intensif. 2020, 157, 108–114. [Google Scholar] [CrossRef]
- Martín, M.; Martínez, A. A Methodology for Simultaneous Process and Product Design in the Formulated Consumer Products Industry: The Case Study of the Detergent Business. Chem. Eng. Res. Des. 2013, 91, 795–809. [Google Scholar] [CrossRef]
- Martín, M.; Grossmann, I.E. Energy Optimization of Bioethanol Production via Gasification of Switchgrass. AIChE J. 2011, 57, 3408–3428. [Google Scholar] [CrossRef]
- Mokhtari, H.; Fattahi, M. A Multi-Objective Optimization Approach for Green and Resilient Supply Chain Network Design: A Real-Life Case Study. J. Clean. Prod. 2021, 278, 123199. [Google Scholar] [CrossRef]
- Margolis, J.T.; Sullivan, K.M.; Mason, S.J.; Magagnotti, M. A Multi-Objective Optimization Model for Designing Resilient Supply Chain Networks. Int. J. Prod. Econ. 2018, 204, 174–185. [Google Scholar] [CrossRef]
- Resat, H.G.; Unsal, B. A Novel Multi-Objective Optimization Approach for Sustainable Supply Chain: A Case Study in Packaging Industry. Sustain. Prod. Consum. 2019, 20, 29–39. [Google Scholar] [CrossRef]
- Attia, A.M.; Ghaithan, A.M.; Duffuaa, S.O. A Multi-Objective Optimization Model for Tactical Planning of Upstream Oil & Gas Supply Chains. Comput. Chem. Eng. 2019, 128, 216–227. [Google Scholar] [CrossRef]
- Asala, H.I.; Chebeir, J.A.; Manee, V.; Gupta, I.; Dahi-Taleghani, A.; Romagnoli, J.A. An Integrated Machine-Learning Approach to Shale-Gas Supply-Chain Optimization and Refrac Candidate Identification. SPE Reserv. Eval. Eng. 2019, 22, 1201–1224. [Google Scholar] [CrossRef]
- Zarei, J.; Amin-Naseri, M.R. An Integrated Optimization Model for Natural Gas Supply Chain. Energy 2019, 185, 1114–1130. [Google Scholar] [CrossRef]
- Jian, J.; Guo, Y.; Jiang, L.; An, Y.; Su, J. A Multi-Objective Optimization Model for Green Supply Chain Considering Environmental Benefits. Sustainability 2019, 11, 5911. [Google Scholar] [CrossRef] [Green Version]
- Canales-Bustos, L.; Santibañez-González, E.; Candia-Véjar, A. A Multi-Objective Optimization Model for the Design of an Effective Decarbonized Supply Chain in Mining. Int. J. Prod. Econ. 2017, 193, 449–464. [Google Scholar] [CrossRef]
- Sarkar, B.; Omair, M.; Choi, S.-B. A Multi-Objective Optimization of Energy, Economic, and Carbon Emission in a Production Model under Sustainable Supply Chain Management. Appl. Sci. 2018, 8, 1744. [Google Scholar] [CrossRef] [Green Version]
- Pishvaee, M.S.; Torabi, S.A.; Razmi, J. Credibility-Based Fuzzy Mathematical Programming Model for Green Logistics Design under Uncertainty. Comput. Ind. Eng. 2012, 62, 624–632. [Google Scholar] [CrossRef]
- Banasik, A.; Kanellopoulos, A.; Claassen, G.D.H.; Bloemhof-Ruwaard, J.M.; van der Vorst, J.G.A.J. Closing Loops in Agricultural Supply Chains Using Multi-Objective Optimization: A Case Study of an Industrial Mushroom Supply Chain. Int. J. Prod. Econ. 2017, 183, 409–420. [Google Scholar] [CrossRef]
- Nili, M.; Seyedhosseini, S.M.; Jabalameli, M.S.; Dehghani, E. A Multi-Objective Optimization Model to Sustainable Closed-Loop Solar Photovoltaic Supply Chain Network Design: A Case Study in Iran. Renew. Sustain. Energy Rev. 2021, 150, 111428. [Google Scholar] [CrossRef]
- Ehtesham Rasi, R.; Sohanian, M. A Multi-Objective Optimization Model for Sustainable Supply Chain Network with Using Genetic Algorithm. JM2 2021, 16, 714–727. [Google Scholar] [CrossRef]
- Tapia, J.F.D.; Samsatli, S. Integrating Fuzzy Analytic Hierarchy Process into a Multi-Objective Optimisation Model for Planning Sustainable Oil Palm Value Chains. Food Bioprod. Process. 2020, 119, 48–74. [Google Scholar] [CrossRef]
- Castillo-Landero, A.; Ortiz-Espinoza, A.P.; Jiménez-Gutiérrez, A. A Process Intensification Methodology Including Economic, Sustainability, and Safety Considerations. Ind. Eng. Chem. Res. 2019, 58, 6080–6092. [Google Scholar] [CrossRef]
- Zhou, T.; Song, Z.; Zhang, X.; Gani, R.; Sundmacher, K. Optimal Solvent Design for Extractive Distillation Processes: A Multiobjective Optimization-Based Hierarchical Framework. Ind. Eng. Chem. Res. 2019, 58, 5777–5786. [Google Scholar] [CrossRef]
- Bouchkira, I.; Latifi, A.M.; Khamar, L.; Benjelloun, S. Modeling and multi-objective optimization of the digestion tank of an industrial process for manufacturing phosphoric acid by wet process. Comput. Chem. Eng. 2022, 156, 107536. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Q.; Zhang, Z.; Tang, J.; Cui, M.; Chen, X.; Liu, Q.; Fei, Z.; Qiao, X. Surrogate Modeling-Based Multi-Objective Optimization for the Integrated Distillation Processes. Chem. Eng. Process. Process. Intensif. 2021, 159, 108224. [Google Scholar] [CrossRef]
- Alcocer-García, H.; Segovia-Hernández, J.G.; Prado-Rubio, O.A.; Sánchez-Ramírez, E.; Quiroz-Ramírez, J.J. Multi-Objective Optimization of Intensified Processes for the Purification of Levulinic Acid Involving Economic and Environmental Objectives. Chem. Eng. Process. Process. Intensif. 2019, 136, 123–137. [Google Scholar] [CrossRef]
- Chen, X.; Shao, Z.; Gu, X.; Feng, L.; Biegler, L.T. Process Intensification of Polymerization Processes with Embedded Molecular Weight Distributions Models: An Advanced Optimization Approach. Ind. Eng. Chem. Res. 2019, 58, 6133–6145. [Google Scholar] [CrossRef]
- Hasanpour, A.; Farhadi, M.; Sedighi, K. Intensification of Heat Exchangers Performance by Modified and Optimized Twisted Tapes. Chem. Eng. Process. Process. Intensif. 2017, 120, 276–285. [Google Scholar] [CrossRef]
- Guzmán Martínez, C.; Nápoles Rivera, F.; Castro-Montoya, A. Multi-Objective Optimization of Bioethanol Reactive Dehydration Processes Using Genetic Algorithms. Sep. Sci. Technol. 2021, 63, 1–16. [Google Scholar] [CrossRef]
- Shahhosseini, H.R.; Iranshahi, D.; Saeidi, S.; Pourazadi, E.; Klemeš, J.J. Multi-Objective Optimisation of Steam Methane Reforming Considering Stoichiometric Ratio Indicator for Methanol Production. J. Clean. Prod. 2018, 180, 655–665. [Google Scholar] [CrossRef]
- Fonseca, J.D.; Latifi, A.M.; Orjuela, A.; Rodríguez, G.; Gil, I.D. Modeling, Analysis and Multi-Objective Optimization of an Industrial Batch Process for the Production of Tributyl Citrate. Comput. Chem. Eng. 2020, 132, 106603. [Google Scholar] [CrossRef]
- Tikadar, D.; Gujarathi, A.M.; Guria, C. Multi-Objective Optimization of Industrial Gas-Sweetening Operations Using Economic and Environmental Criteria. Process. Saf. Environ. Prot. 2020, 140, 283–298. [Google Scholar] [CrossRef]
- Ivanchina, E.D.; Ivashkina, E.N.; Chuzlov, V.A.; Belinskaya, N.S.; Dementyev, A.Y. Formation of the Component Composition of Blended Hydrocarbon Fuels as the Problem of the Multi-Objective Optimization. Chem. Eng. J. 2020, 383, 121283. [Google Scholar] [CrossRef]
- Hosseini-Ardali, S.M.; Hazrati-Kalbibaki, M.; Fattahi, M.; Lezsovits, F. Multi-Objective Optimization of Post Combustion CO2 Capture Using Methyldiethanolamine (MDEA) and Piperazine (PZ) Bi-Solvent. Energy 2020, 211, 119035. [Google Scholar] [CrossRef]
- Larraín, S.; Pradenas, L.; Pulkkinen, I.; Santander, F. Multiobjective Optimization of a Continuous Kraft Pulp Digester Using SPEA2. Comput. Chem. Eng. 2020, 143, 107086. [Google Scholar] [CrossRef]
- Ramírez-Márquez, C.; Contreras-Zarazúa, G.; Martín, M.; Segovia-Hernández, J.G. Safety, Economic, and Environmental Optimization Applied to Three Processes for the Production of Solar-Grade Silicon. ACS Sustain. Chem. Eng. 2019, 7, 5355–5366. [Google Scholar] [CrossRef]
- Medina-Herrera, N.; Jiménez-Gutiérrez, A.; Grossmann, I.E. A Mathematical Programming Model for Optimal Layout Considering Quantitative Risk Analysis. Comput. Chem. Eng. 2014, 68, 165–181. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Wang, Y.; Gundersen, T.; Wu, Y.; Feng, X.; Liu, M. A Multi-Objective Optimization Method for Industrial Park Layout Design: The Trade-off between Economy and Safety. Chem. Eng. Sci. 2021, 235, 116471. [Google Scholar] [CrossRef]
- Martinez-Gomez, J.; Nápoles-Rivera, F.; Ponce-Ortega, J.M.; Serna-González, M.; El-Halwagi, M.M. Siting Optimization of Facility and Unit Relocation with the Simultaneous Consideration of Economic and Safety Issues. Ind. Eng. Chem. Res. 2014, 53, 3950–3958. [Google Scholar] [CrossRef]
- Nemet, A.; Klemes, J.J.; Kravanja, Z. Heat Exchanger Network Synthesis Considering Risk Assessment for Entire Network Lifetime. Chem. Eng. Trans. 2017, 57, 307–312. [Google Scholar] [CrossRef]
- Al Ani, Z.; Thafseer, M. Towards Process, Energy and Safety Based Criteria for Multi-Objective Optimization of Industrial Acid Gas Removal Process. Process. Saf. Environ. Prot. 2020, 140, 86–99. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, J.; Ahmed, U.; Kim, C.; Lee, Y.-W. Multi-Objective Optimization of Organic Rankine Cycle (ORC) Design Considering Exergy Efficiency and Inherent Safety for LNG Cold Energy Utilization. J. Loss Prev. Process. Ind. 2019, 58, 90–101. [Google Scholar] [CrossRef]
- Martinez-Gomez, J.; Nápoles-Rivera, F.; Ponce-Ortega, J.M.; El-Halwagi, M.M. Optimization of the Production of Syngas from Shale Gas with Economic and Safety Considerations. Appl. Therm. Eng. 2017, 110, 678–685. [Google Scholar] [CrossRef]
- Roy, S.; Gupta, A. Safety Investment Optimization in Process Industry: A Risk-Based Approach. J. Loss Prev. Process. Ind. 2020, 63, 104022. [Google Scholar] [CrossRef]
- Eslami Baladeh, A.; Cheraghi, M.; Khakzad, N. A Multi-Objective Model to Optimal Selection of Safety Measures in Oil and Gas Facilities. Process. Saf. Environ. Prot. 2019, 125, 71–82. [Google Scholar] [CrossRef]
- Roy, N.; Mannan, M.S.; Hasan, M.F. Systematic Incorporation of Inherent Safety in Hazardous Chemicals Supply Chain Optimization. J. Loss Prev. Process. Ind. 2020, 68, 104262. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerda-Flores, S.C.; Rojas-Punzo, A.A.; Nápoles-Rivera, F. Applications of Multi-Objective Optimization to Industrial Processes: A Literature Review. Processes 2022, 10, 133. https://doi.org/10.3390/pr10010133
Cerda-Flores SC, Rojas-Punzo AA, Nápoles-Rivera F. Applications of Multi-Objective Optimization to Industrial Processes: A Literature Review. Processes. 2022; 10(1):133. https://doi.org/10.3390/pr10010133
Chicago/Turabian StyleCerda-Flores, Sandra C., Arturo A. Rojas-Punzo, and Fabricio Nápoles-Rivera. 2022. "Applications of Multi-Objective Optimization to Industrial Processes: A Literature Review" Processes 10, no. 1: 133. https://doi.org/10.3390/pr10010133
APA StyleCerda-Flores, S. C., Rojas-Punzo, A. A., & Nápoles-Rivera, F. (2022). Applications of Multi-Objective Optimization to Industrial Processes: A Literature Review. Processes, 10(1), 133. https://doi.org/10.3390/pr10010133