RadViz++: Improvements on Radial-Based Visualizations
<p>An instance is pulled towards the anchors proportionally to its normalized variable values.</p> "> Figure 2
<p>(<b>a</b>) RadViz representation of a simple dataset showing clusters (red and blue) and one outlier (black). (<b>b</b>) RadViz Deluxe layout of the same data showing better cluster separation but poorer explanation of the outlier. (<b>c</b>) Differences highlighted between (<b>a</b>,<b>b</b>).</p> "> Figure 3
<p>(<b>a</b>) RadViz with no variables ordering. (<b>b</b>) in RadViz++, anchors are rearranged in the circle according to their correlation coefficient. In our implementation, anchors are depicted by cells with the corresponding variable names above them, and points are colored based on their classes.</p> "> Figure 4
<p>(<b>a</b>) Dendrogram built from variable correlation (<a href="#sec3dot1-informatics-06-00016" class="html-sec">Section 3.1</a>). (<b>b</b>) Simplified dendrogram (<a href="#sec3dot2dot1-informatics-06-00016" class="html-sec">Section 3.2.1</a>).</p> "> Figure 5
<p>(<b>a</b>) Circular icicle plot showing the full dendrogram (<math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>0</mn> <mo>%</mo> </mrow> </semantics></math>). (<b>b</b>) Plot of the simplified dendrogram (<math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math>) leading to a more compact layout.</p> "> Figure 6
<p>HEB bundles and variable histograms in RadViz++.</p> "> Figure 7
<p>(<b>a</b>) Aggregation of several variables. (<b>b</b>) Refining the aggregation for the bottom (brown) cluster.</p> "> Figure 8
<p>(<b>a</b>) Variables to filter away (white). (<b>b</b>) RadViz++ result after variable filtering (using 11 of the original 18 variables).</p> "> Figure 9
<p>Animation of RadViz scatterplot (<b>left</b>) towards the LAMP scatterplot (<b>right</b>) for the Segmentation dataset. Interpolation factors are <math display="inline"><semantics> <mrow> <mn>0.2</mn> <mo>,</mo> <mn>0.4</mn> <mo>,</mo> <mn>0.6</mn> <mo>,</mo> <mn>0.8</mn> </mrow> </semantics></math>. While the LAMP plots offer better cluster segregation, the RadViz plot explains the points in terms of variables. Note how the icicle-plot background opacity changes to indicate the RadViz <span class="html-italic">vs</span> LAMP mode of the scatterplot.</p> "> Figure 10
<p>(<b>a</b>) LAMP scatterplot for the Segmentation dataset. (<b>b</b>) LAMP after the variable filtering shown in <a href="#informatics-06-00016-f008" class="html-fig">Figure 8</a>, leading to a better clustering, but using only 11 of the 18 variables.</p> "> Figure 11
<p>Brush-and-link explanation of the (<b>a</b>) blue and (<b>b</b>) brown clusters. Despite groups of points cannot be correlated to anchors in the LAMP scatterplot, it still valid to explain them in terms of variable ranges.</p> "> Figure 12
<p>(<b>a</b>) Attribute-based analysis of 7 Gaussian clusters dataset [<a href="#B5-informatics-06-00016" class="html-bibr">5</a>]. The variable ‘Dim <span class="html-italic">i</span>’ maps to <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </semantics></math> in our notation. (<b>b</b>) RadViz++ leads to the same conclusions with a cleaner and simpler layout.</p> "> Figure 13
<p>The brush-and-link tool helps explain clusters whose points overlap in the scatterplot, thereby decreasing ambiguity problems. For each selected cluster <math display="inline"><semantics> <msub> <mi>c</mi> <mi>i</mi> </msub> </semantics></math>, bundles show that its points have <span class="html-italic">multiple</span> values in at least one variable bins.</p> "> Figure 14
<p>Breast Cancer dataset analysis performed by Pagliosa et al. [<a href="#B5-informatics-06-00016" class="html-bibr">5</a>]. The variance of the involved variables is the main discriminative factor between the two clusters. All variables contribute quite similarly to discrimination, except <span class="html-italic">Mitosis</span>, which has a low overall variance.</p> "> Figure 15
<p>Breast Cancer dataset analyzed using RadViz++ with force-based (<b>a</b>) and LAMP (<b>b</b>) projection.</p> "> Figure 16
<p>Breast Cancer dataset, explaining the benign (<b>a</b>) and malignant (<b>b</b>) clusters by variables.</p> "> Figure 17
<p>Corel dataset visualized using RadViz++.</p> "> Figure 18
<p>Finding the most descriptive variables for the 10 clusters in the Corel dataset. Detailed description in the text.</p> "> Figure 19
<p>Verifying the explanatory power of each variable-set after selecting its respective anchor (<b>a</b>–<b>c</b>). Further aggregating these variables reduces cluster separation (<b>d</b>), so should be avoided.</p> ">
Abstract
:1. Introduction
- R1
- Be scalable in both the number of variables and instances;
- R2
- Decrease and/or explain visual ambiguities they create in data-to-variable analyses;
- R3
- Show unambiguously variable relations to support variable-to-variable analyses;
- R4
- Separate data clusters well to support data-to-data analyses.
2. Related Work
2.1. Concepts and Background
2.2. Related Methods
3. RadViz++ Proposal
3.1. Anchor Placement
3.2. Variable-to-Variable Analysis
3.2.1. Variable Hierarchy
3.2.2. Similarity Disambiguation
3.3. Analyzing Variable Values
3.4. Scalability and Level-of-Detail
3.4.1. Aggregating Variables
3.4.2. Variable Filtering
3.5. Data-to-Data and Data-to-Variable Analysis
4. Experiments
4.1. Validation on Synthetic Data
4.2. Wisconsin Breast Cancer
4.3. Corel Dataset
5. Discussion
Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van Leeuwen, T.; Jewitt, C. The Handbook of Visual Analysis; SAGE Publications: Thousand, CA, USA, 2000. [Google Scholar]
- Nonato, L.; Aupetit, M. Multidimensional Projection for Visual Analytics: Linking Techniques with Distortions, Tasks, and Layout Enrichment. IEEE Trans. Vis. Comput. Graph. 2018. [Google Scholar] [CrossRef]
- da Silva, R.R.O.; Rauber, P.E.; Martins, R.M.; Minghim, R.; Telea, A. Attribute-based Visual Explanation of Multidimensional Projections. In Proceedings of the EuroVis Workshop on Visual Analytics, Cagliari, Italy, 25–26 May 2015. [Google Scholar]
- Coimbra, D.; Martins, R.; Neves, T.; Telea, A.; Paulovich, F. Explaining three-dimensional dimensionality reduction plots. Inf. Vis. 2016, 15, 154–172. [Google Scholar] [CrossRef]
- Pagliosa, L.; Pagliosa, P.; Nonato, L.G. Understanding Attribute Variability in Multidimensional Projections. In Proceedings of the 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images, Sao Paulo, Brazil, 4–7 October 2016; pp. 297–304. [Google Scholar]
- Inselberg, A. Parallel Coordinates: Visual Multidimensional Geometry and Its Applications; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Telea, A.C. Data Visualization: Principles and Practice, 2nd ed.; A. K. Peters, Ltd.: Bew York, NY, USA, 2014. [Google Scholar]
- McGill, R.; Tukey, J.W.; Larsen, W.A. Variations of Box Plots. Am. Stat. 1978, 32, 12–16. [Google Scholar]
- Hoffman, P.; Grinstein, G.; Marx, K.; Grosse, I.; Stanley, E. DNA visual and analytic data mining. In Proceedings of the Visualization ’97, Phoenix, AZ, USA, 24 October 1997; pp. 437–441. [Google Scholar]
- Bertini, E.; Dell’Aquila, L.; Santucci, G. SpringView: Cooperation of radviz and parallel coordinates for view optimization and clutter reduction. In Proceedings of the Coordinated and Multiple Views in Exploratory Visualization, London, UK, 5 July 2005. [Google Scholar]
- Rubio-Sanchez, M.; Raya, L.; Díaz, F.; Sanchez, A. A comparative study between RadViz and Star Coordinates. IEEE Trans. Vis. Comput. Graph. 2015, 22, 619–628. [Google Scholar] [CrossRef]
- Kruskal, J.B.; Landwehr, J.M. Icicle Plots: Better Displays for Hierarchical Clustering. Am. Stat. 1983, 37, 162–168. [Google Scholar]
- Holten, D. Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data. IEEE Trans. Vis. Comput. Graph. 2006, 12, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Xu, W.; Mueller, K. RadViz Deluxe: An Attribute-Aware Display for Multivariate Data. Processes 2017, 5, 75. [Google Scholar] [CrossRef]
- Nováková, L.; Štěpánková, O. Visualization of trends using RadViz. J. Intell. Inf. Syst. 2011, 37, 355. [Google Scholar] [CrossRef]
- Ankerst, M.; Berchtold, S.; Keim, D. Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In Proceedings of the IEEE Symposium on Information Visualization, Research Triangle, CA, USA, 19–20 October 1998; pp. 52–60. [Google Scholar]
- Nováková, L.; Štěpánková, O. RadViz and Identification of Clusters in Multidimensional Data. In Proceedings of the 2009 13th International Conference Information Visualisation, Barcelona, Spain, 15–17 July 2009; pp. 104–109. [Google Scholar]
- Zhou, F.; Huang, W.; Li, J.; Huang, Y.; Shi, Y.; Zhao, Y. Extending Dimensions in Radviz based on mean shift. In Proceedings of the 2015 IEEE Pacific Visualization Symposium, Hangzhou, China, 14–17 April 2015; pp. 111–115. [Google Scholar]
- Dunn, J.C. Well-Separated Clusters and Optimal Fuzzy Partitions. J. Cybern. 1974, 4, 95–104. [Google Scholar]
- Sharko, J.; Grinstein, G.; Marx, K.A. Vectorized Radviz and Its Application to Multiple Cluster Datasets. IEEE Trans. Vis. Comput. Graph. 2008, 14, 1444–1427. [Google Scholar] [CrossRef]
- Ono, J.; Sikansi, F.; Correa, D.C.; Paulovich, F.V.; Paiva, A.; Nonato, L.G. Concentric RadViz: Visual Exploration of Multi-task Classification. In Proceedings of the 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images, Salvador, Brazil, 26–29 August 2015; pp. 165–172. [Google Scholar]
- Di Caro, L.; Frias-Martinez, V.; Frias-Martinez, E. Analyzing the Role of Dimension Arrangement for Data Visualization in Radviz. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Hyderabad, India, 21–24 June 2010; pp. 125–132. [Google Scholar]
- Kandogan, E. Star Coordinates: A Multi-dimensional Visualization Technique with Uniform Treatment of Dimensions. In Proceedings of the IEEE Information Visualization Symposium, Salt Lake City, UT, USA, 9–10 October 2000; pp. 9–12. [Google Scholar]
- Zanabria, G.G.; Nonato, L.G.; Gomez-Nieto, E. iStar (i*): An interactive star coordinates approach for high-dimensional data exploration. Comput. Graph. 2016, 60, 107–118. [Google Scholar] [CrossRef]
- Grira, N.; Crucianu, M.; Boujemaa, N. Unsupervised and Semi-supervised Clustering: A Brief Survey. Rev. Mach. Learn. Techn. Process. Multimedia Content 2004, 1, 9–16. [Google Scholar]
- Wang, L.; Zhang, J.; Li, H. An Improved Genetic Algorithm for TSP. In Proceedings of the 2007 International Conference on Machine Learning and Cybernetics, Hong Kong, China, 19–22 August 2007; Volume 2, pp. 925–928. [Google Scholar]
- Gower, J.C.; Hand, D.J. Biplots; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Greenacre, M. Biplots in Practice; Fundacion BBVA: Fundación, Colombia, 2010. [Google Scholar]
- Gower, J.C.; Lubbe, S.; Roux, N. Understanding Biplots; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Rubio-Sánchez, M.; Sanchez, A.; Lehmann, D.J. Adaptable Radial Axes Plots for Improved Multivariate Data Visualization. Comput. Graph. Forum 2017, 36, 389–399. [Google Scholar] [CrossRef]
- Bollobás, B.; Frieze, A.M.; Fenner, T.I. An Algorithm for Finding Hamilton Paths and Cycles in Random Graphs. Combinatorica 1987, 7, 327–341. [Google Scholar] [CrossRef]
- Tejada, E.; Minghim, R.; Nonato, L.G. On Improved Projection Techniques to Support Visual Exploration of Multidimensional Data Sets. Inf. Vis. 2003, 2, 218–231. [Google Scholar] [CrossRef]
- Joia, P.; Coimbra, D.; Cuminato, J.A.; Paulovich, F.V.; Nonato, L.G. Local Affine Multidimensional Projection. IEEE Trans. Vis. Comput. Graph. 2011, 17, 2563–2571. [Google Scholar] [CrossRef]
- Martins, R.M.; Coimbra, D.B.; Minghim, R.; Telea, A. Visual analysis of dimensionality reduction quality for parameterized projections. Comput. Graph. 2014, 41, 26–42. [Google Scholar] [CrossRef]
- Dua, D.; Karra Taniskidou, E. UCI Machine Learning Repository, 2019.
- Tung, A.; Xu, X.; Ooi, B.C. CURLER: Finding and visualizing nonlinear correlation clusters. In Proceedings of the 2005 ACM SIGMOD international conference on Management of data, Baltimore, MD, USA, 14–16 June 2005; pp. 233–245. [Google Scholar]
- Fraser, A.M.; Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. 1986, 33, 1134–1140. [Google Scholar] [CrossRef]
- Müller, M. Dynamic Time Warping. In Information Retrieval for Music and Motion; Springer: Berlin/Heidelberg, Germany, 2007; pp. 69–84. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control, 5th ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Rokach, L.; Maimon, O. Clustering Methods. In Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany, 2005; pp. 321–352. [Google Scholar]
- Carlsson, G.; Mémoli, F. Classifying clustering schemes. Found. Comput. Math. 2013, 13, 221–252. [Google Scholar] [CrossRef]
- van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Kruiger, J.; Hassoumi, A.; Schulz, H.J.; Telea, A.C.; Hurter, C. Multidimensional Data Exploration by Explicitly Controlled Animation. Informatics 2017, 4, 26. [Google Scholar] [CrossRef]
- Hurter, C.; Carpendale, S.; Telea, A. Color Tunneling: Interactive Exploration and Selection in Volumetric Datasets. In Proceedings of the 2014 IEEE Pacific Visualization Symposium, Yokohama, Japan, 4–7 March 2014. [Google Scholar]
- Hurter, C.; Telea, A.; Ersoy, O. MoleView: An Attribute and Structure-Based Semantic Lens for Large Element-Based Plots. IEEE Trans. Vis. Comput. Graph. 2011, 17, 2600–2609. [Google Scholar] [CrossRef] [PubMed]
- Brosz, J.; Nacenta, M.A.; Pusch, R.; Carpendale, S.; Hurter, C. Transmogrification: Causal manipulation of visualizations. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, St. Andrews, UK, 8–11 October 2013; pp. 97–106. [Google Scholar]
- Hurter, C. Image-Based Visualization: Interactive Multidimensional Data Exploration. Synth. Lect. Vis. 2015, 3, 1–127. [Google Scholar] [CrossRef]
- Hoogendorp, H.; Ersoy, O.; Reniers, D.; Telea, A. Extraction and Visualization of Call Dependencies for Large C/C++ Code Bases: A Comparative Study. In Proceedings of the 2009 5th IEEE International Workshop on Visualizing Software for Understanding and Analysis, Edmonton, AB, Canada, 25–26 September 2009; pp. 121–130. [Google Scholar]
- Reniers, D.; Voinea, L.; Ersoy, O.; Telea, A. The Solid* Toolset for Software Visual Analytics of Program Structure and Metrics Comprehension: From Research Prototype to Product. Sci. Comput. Program. 2014, 79, 224–240. [Google Scholar] [CrossRef]
- Broeksema, B.; Baudel, T.; Telea, A. Decision Exploration Lab: A Visual Analytics Solution for Decision Management. Comput. Graph. Forum 2013, 32, 158–169. [Google Scholar] [CrossRef]
Instance | V1 | V2 | V3 | V4 |
---|---|---|---|---|
0 | ||||
20 | 40 | 80 | 80 | |
2 | 4 | 8 | 8 | |
0 | 0 | 0 | 0 | |
20 | 1 | 20 | 1 | |
100 | 5 | 100 | 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagliosa, L.d.C.; Telea, A.C. RadViz++: Improvements on Radial-Based Visualizations. Informatics 2019, 6, 16. https://doi.org/10.3390/informatics6020016
Pagliosa LdC, Telea AC. RadViz++: Improvements on Radial-Based Visualizations. Informatics. 2019; 6(2):16. https://doi.org/10.3390/informatics6020016
Chicago/Turabian StylePagliosa, Lucas de Carvalho, and Alexandru C. Telea. 2019. "RadViz++: Improvements on Radial-Based Visualizations" Informatics 6, no. 2: 16. https://doi.org/10.3390/informatics6020016
APA StylePagliosa, L. d. C., & Telea, A. C. (2019). RadViz++: Improvements on Radial-Based Visualizations. Informatics, 6(2), 16. https://doi.org/10.3390/informatics6020016