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Abstract: Receptor-interacting protein kinase 1 (RIPK1) plays a crucial role in controlling inflam-
mation and cell death. Its function is tightly controlled through post-translational modifications,
enabling its dynamic switch between promoting cell survival and triggering cell death. Phosphoryla-
tion of RIPK1 at various sites serves as a critical mechanism for regulating its activity, exerting either
activating or inhibitory effects. Perturbations in RIPK1 phosphorylation status have profound impli-
cations for the development of severe inflammatory diseases in humans. This review explores the
intricate regulation of RIPK1 phosphorylation and dephosphorylation and highlights the potential of
targeting RIPK1 phosphorylation as a promising therapeutic strategy for mitigating human diseases.

Keywords: RIPK1; inflammation; cell death; phosphorylation; dephosphorylation; kinase; phos-
phatase; apoptosis; necroptosis; therapeutics

1. Introduction

Receptor-interacting protein kinase 1 (RIPK1) is a crucial regulator of inflammation
and cell death. Recent findings indicate that both genetic mutations and non-genetic factors
influencing RIPK1 activity can lead to a range of inflammatory and degenerative diseases,
highlighting the necessity for precise regulation of RIPK1 function in maintaining human
health [1,2].

The full-length human RIPK1 is a cytosolic protein consisting of 671 amino acids, with a
molecular mass of approximately 76 kDa, sharing 68% identity with its mouse counterpart
(Figure 1). Belonging to the RIP kinase family, RIPK1 is one of seven members, each featuring
a homologous kinase domain (KD). Besides the common N-terminal kinase domain, RIPK1
possesses a C-terminal death domain (DD), facilitating its dimerization or interaction with
other death-domain-containing proteins, such as TNFR1 (tumor necrosis factor receptor 1),
TRADD (TNFR1-associated death domain protein), and FADD (Fas-associated death do-
main) [3]. Additionally, RIPK1 contains a bridging intermediate domain (ID) housing a
RIP homotypic interaction motif (RHIM) [4]. The RHIM domain of RIPK1 facilitates its
self-polymerization to form amyloid fibers [5]. It also allows interaction with other RHIM-
containing proteins, such as RIPK3, ZBP1 (Z-DNA binding protein 1, also known as DAI and
DLM-1), and TRIF (TIR-domain-containing adapter-inducing interferon β) [1,2].

RIPK1 primarily regulates inflammation through its scaffold function, while its in-
volvement in cell death requires its kinase activity. The regulation of RIPK1 function
involves various post-translational modifications, including ubiquitination, phosphoryla-
tion, and glycosylation. This review aims to summarize RIPK1’s impact on inflammation,
cell survival, cell death, development, and disease pathogenesis, with a focus on the role of
phosphorylation and dephosphorylation.
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cell survival, cell death, development, and disease pathogenesis, with a focus on the role 
of phosphorylation and dephosphorylation. 

 
Figure 1. The domain structure of RIPK1 comprises a kinase domain (KD), an intermediate domain 
(ID), and a death domain (DD). Within the intermediate domain lies the RIP homotypic interaction 
motif domain (RHIM), which participates in polymerization and interacts with the RHIM domains 
of RIPK3, ZBP1, and TRIF. The death domain of RIPK1 facilitates homo-dimerization and interacts 
with the death domains of TNFR1, TRADD, and FADD. Abbreviations: RIPK1, receptor-interacting 
protein kinase 1; RIPK3, receptor-interacting protein kinase 3; ZBP1, Z-DNA-binding protein 1, also 
known as DAI (DNA-dependent activator of interferon regulatory factors) and DLM-1; TRIF, TIR-
domain-containing adapter-inducing interferon β; TNFR1, tumor necrosis factor receptor 1; 
TRADD, TNFR1-associated death domain protein; FADD, Fas-associated death domain. 

2. RIPK1-Mediated Pro-Survival and Inflammatory Signaling 
RIPK1 was initially reported to strongly interact with the cell surface receptor 

Fas/APO-1 (CD95) and weakly with TNFR1 [6]. Subsequently, various members of the 
TNF superfamily, including TNFα, FasL, and TRAIL (TNF-related apoptosis-inducing lig-
and), were found to induce RIPK1-mediated NF-κB (nuclear factor kappa-light-chain-en-
hancer of activated B cells) activation [3]. Among these, the TNFα cascade has been exten-
sively studied (Figure 2) [7]. Upon TNFα binding, RIPK1 and TRADD are rapidly re-
cruited to TNFR1, initiating the assembly of complex I through mutual interactions be-
tween their death domains [8–10]. TRADD then recruits adaptor proteins TRAF2 and 5 
(TNF receptor-associated factor protein 2/5), which in turn engage the E3 ubiquitin ligases 
cIAP1/2 (cellular inhibitor of apoptosis 1 and 2) [11,12]. cIAP1/2 catalyzes K63 ubiquitina-
tion of RIPK1, serving as a scaffold to recruit ubiquitin-binding proteins TAB2/3 (TAK1-
binding protein 2/3) and TAK1 (transforming growth factor-β-activated kinase 1) [13,14]. 
TAK1 then activates the MAPK (mitogen-activated protein kinase) pathway, including 
p38 and MK2 (MAPK-activated kinase 2) [15]. Additionally, the K63 ubiquitin chain re-
cruits another E3 complex LUBAC (the linear ubiquitin chain assembly complex), which 
catalyzes the M1 linear ubiquitin chains on RIPK1 and TNFR1 [16,17]. These linear ubiq-
uitin chains recruit adaptor protein NEMO (NF-κB essential modulator), which further 
engages IKKα/β (IκB kinase α/β) and TBK1/IKKε [18–20]. IKKα/β subsequently activates 
the NF-κB pathway [21,22]. Both the MAPK pathway and the NF-κB pathway activate 
gene expression that promotes inflammation and cell survival while suppressing cell 
death (Figure 2) [7,15]. 

Figure 1. The domain structure of RIPK1 comprises a kinase domain (KD), an intermediate domain
(ID), and a death domain (DD). Within the intermediate domain lies the RIP homotypic interaction
motif domain (RHIM), which participates in polymerization and interacts with the RHIM domains
of RIPK3, ZBP1, and TRIF. The death domain of RIPK1 facilitates homo-dimerization and interacts
with the death domains of TNFR1, TRADD, and FADD. Abbreviations: RIPK1, receptor-interacting
protein kinase 1; RIPK3, receptor-interacting protein kinase 3; ZBP1, Z-DNA-binding protein 1, also
known as DAI (DNA-dependent activator of interferon regulatory factors) and DLM-1; TRIF, TIR-
domain-containing adapter-inducing interferon β; TNFR1, tumor necrosis factor receptor 1; TRADD,
TNFR1-associated death domain protein; FADD, Fas-associated death domain.

2. RIPK1-Mediated Pro-Survival and Inflammatory Signaling

RIPK1 was initially reported to strongly interact with the cell surface receptor Fas/APO-
1 (CD95) and weakly with TNFR1 [6]. Subsequently, various members of the TNF super-
family, including TNFα, FasL, and TRAIL (TNF-related apoptosis-inducing ligand), were
found to induce RIPK1-mediated NF-κB (nuclear factor kappa-light-chain-enhancer of
activated B cells) activation [3]. Among these, the TNFα cascade has been extensively
studied (Figure 2) [7]. Upon TNFα binding, RIPK1 and TRADD are rapidly recruited to
TNFR1, initiating the assembly of complex I through mutual interactions between their
death domains [8–10]. TRADD then recruits adaptor proteins TRAF2 and 5 (TNF receptor-
associated factor protein 2/5), which in turn engage the E3 ubiquitin ligases cIAP1/2
(cellular inhibitor of apoptosis 1 and 2) [11,12]. cIAP1/2 catalyzes K63 ubiquitination of
RIPK1, serving as a scaffold to recruit ubiquitin-binding proteins TAB2/3 (TAK1-binding
protein 2/3) and TAK1 (transforming growth factor-β-activated kinase 1) [13,14]. TAK1
then activates the MAPK (mitogen-activated protein kinase) pathway, including p38 and
MK2 (MAPK-activated kinase 2) [15]. Additionally, the K63 ubiquitin chain recruits another
E3 complex LUBAC (the linear ubiquitin chain assembly complex), which catalyzes the M1
linear ubiquitin chains on RIPK1 and TNFR1 [16,17]. These linear ubiquitin chains recruit
adaptor protein NEMO (NF-κB essential modulator), which further engages IKKα/β (IκB
kinase α/β) and TBK1/IKKε [18–20]. IKKα/β subsequently activates the NF-κB path-
way [21,22]. Both the MAPK pathway and the NF-κB pathway activate gene expression
that promotes inflammation and cell survival while suppressing cell death (Figure 2) [7,15].
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Figure 2. Pleiotropic TNF signaling pathways. (1) Inflammation and cell survival. Engagement of 
TNF with its receptor TNFR1 leads to the recruitment of RIPK1 and TRADD through death domain 
interactions to initiate complex I formation. TRADD then recruits adaptor protein TRAF2/5, which 
binds E3 ligase cIAP1/2. cIAP1/2 catalyzes K63 ubiquitination of RIPK1, serving as a scaffold to re-
cruit ubiquitin-binding proteins TAB2/3 and associated TAK1, activating the downstream MAPK 
pathway. Additionally, the K63 ubiquitin chain recruits another E3 complex, LUBAC, which cata-
lyzes the M1 linear ubiquitin chains on RIPK1 and TNFR1. These linear ubiquitin chains recruit 
adaptor protein NEMO and associated IKKα/β, phosphorylating IκBα to promote its degradation 
and subsequent NF-κB activation. Both the MAPK pathway and the NF-κB pathway activate gene 
expression, which promotes cell survival and inflammation. (2) Apoptosis and/or pyroptosis. Under 
TNF treatment with protein synthesis inhibition by cycloheximide (CHX), complex I is converted to 
complex IIa, containing TRADD, FADD, and Caspase-8, leading to oligomerization and activation 
of Caspase-8 and subsequent apoptosis. Alternatively, co-treatment of TNF with a cIAP1/2 inhibitor, 
Smac-mimetic, converts complex I to complex IIb, containing RIPK1, FADD, and Caspase-8, which 
also activates Caspase-8 and apoptosis. Under some circumstances, such as during Yersinia infection, 
activated Caspase-8 cleaves gasdemin D or E to trigger pyroptosis. (3) Necroptosis. Inhibition of 
apoptosis with Z-VAD-FMK, along with the presence of RIPK3, leads to the conversion of complex 
II into the necrosome. The core components of the necrosome include RIPK1, RIPK3, and MLKL, 
resulting in polymerization and membrane translocation of MLKL and subsequent cell death. In 
general, the scaffold function of RIPK1 is important for inflammation and cell survival, while the 
kinase activity is important for complex IIb-dependent apoptosis as well as necroptosis. Under some 
circumstances, such as during pathogen infection, simultaneous activation of pyroptosis, apoptosis, 
and necroptosis occurs, which is defined as PANoptosis. Abbreviations: TNF, tumor necrosis factor; 
TRAF2/5, TNF receptor-associated factor protein 2/5; cIAP1/2, cellular inhibitor of apoptosis 1 and 
2; TAB2/3, TAK1-binding protein 2/3; TAK1, transforming growth factor-β-activated kinase 1; 
LUBAC, the linear ubiquitin chain assembly complex; NEMO, NF-κB essential modulator; IKKα/β, 
IκB kinase α/β; IκBα, inhibitor of kB alpha; NF-κB, nuclear factor kappa-light-chain-enhancer of 
activated B cells; MAPK, mitogen-activated protein kinase; MLKL, mixed-lineage kinase-like pro-
tein; CHX, cycloheximide; Smac-mimetic, Second Mitochondria-derived Activator of Caspases-mi-
metic. The red stripes in the diagram of RIPK1 and RIPK3 indicate the RHIM domain. 
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Apoptosis is regarded as a non-inflammatory form of programmed cell death, during 

which the contents of the dying cells are contained within apoptotic bodies. Caspases, a 

Figure 2. Pleiotropic TNF signaling pathways. (1) Inflammation and cell survival. Engagement of
TNF with its receptor TNFR1 leads to the recruitment of RIPK1 and TRADD through death domain
interactions to initiate complex I formation. TRADD then recruits adaptor protein TRAF2/5, which
binds E3 ligase cIAP1/2. cIAP1/2 catalyzes K63 ubiquitination of RIPK1, serving as a scaffold
to recruit ubiquitin-binding proteins TAB2/3 and associated TAK1, activating the downstream
MAPK pathway. Additionally, the K63 ubiquitin chain recruits another E3 complex, LUBAC, which
catalyzes the M1 linear ubiquitin chains on RIPK1 and TNFR1. These linear ubiquitin chains recruit
adaptor protein NEMO and associated IKKα/β, phosphorylating IκBα to promote its degradation
and subsequent NF-κB activation. Both the MAPK pathway and the NF-κB pathway activate gene
expression, which promotes cell survival and inflammation. (2) Apoptosis and/or pyroptosis. Under
TNF treatment with protein synthesis inhibition by cycloheximide (CHX), complex I is converted to
complex IIa, containing TRADD, FADD, and Caspase-8, leading to oligomerization and activation of
Caspase-8 and subsequent apoptosis. Alternatively, co-treatment of TNF with a cIAP1/2 inhibitor,
Smac-mimetic, converts complex I to complex IIb, containing RIPK1, FADD, and Caspase-8, which
also activates Caspase-8 and apoptosis. Under some circumstances, such as during Yersinia infection,
activated Caspase-8 cleaves gasdemin D or E to trigger pyroptosis. (3) Necroptosis. Inhibition of
apoptosis with Z-VAD-FMK, along with the presence of RIPK3, leads to the conversion of complex
II into the necrosome. The core components of the necrosome include RIPK1, RIPK3, and MLKL,
resulting in polymerization and membrane translocation of MLKL and subsequent cell death. In
general, the scaffold function of RIPK1 is important for inflammation and cell survival, while the
kinase activity is important for complex IIb-dependent apoptosis as well as necroptosis. Under some
circumstances, such as during pathogen infection, simultaneous activation of pyroptosis, apoptosis,
and necroptosis occurs, which is defined as PANoptosis. Abbreviations: TNF, tumor necrosis factor;
TRAF2/5, TNF receptor-associated factor protein 2/5; cIAP1/2, cellular inhibitor of apoptosis 1
and 2; TAB2/3, TAK1-binding protein 2/3; TAK1, transforming growth factor-β-activated kinase 1;
LUBAC, the linear ubiquitin chain assembly complex; NEMO, NF-κB essential modulator; IKKα/β,
IκB kinase α/β; IκBα, inhibitor of kB alpha; NF-κB, nuclear factor kappa-light-chain-enhancer of
activated B cells; MAPK, mitogen-activated protein kinase; MLKL, mixed-lineage kinase-like protein;
CHX, cycloheximide; Smac-mimetic, Second Mitochondria-derived Activator of Caspases-mimetic.
The red stripes in the diagram of RIPK1 and RIPK3 indicate the RHIM domain.
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3. RIPK1-Mediated Apoptosis

Apoptosis is regarded as a non-inflammatory form of programmed cell death, during
which the contents of the dying cells are contained within apoptotic bodies. Caspases, a
subfamily of cysteine proteases are both the initiators and executioners of apoptosis, as
revealed by genetic and biochemical studies. Physiological and pathogen-related stimuli
can trigger apoptosis through either extrinsic or intrinsic pathways. This process is vital for
maintaining normal development and tissue homeostasis [23,24].

RIPK1 primarily mediates extrinsic apoptosis induced by death receptor ligands, such
as TNFα, FasL, and TRAIL, dependent on the cellular context [1]. Combining TNFα with
a protein synthesis inhibitor cycloheximide (CHX), or an IAP antagonist Smac-mimetic,
can switch the TNFα-induced inflammatory response to apoptosis (Figure 2) [25]. CHX
promotes Caspase-8 activation by eliminating the endogenous Caspase-8 inhibitor c-FLIP
(Cellular FLICE-inhibitory protein), leading to the formation of complex IIa, including
TRADD, FADD, and Caspase-8 [26]. On the other hand, Smac-mimetic triggers cIAP1/2
auto-degradation, releasing RIPK1 from the complex I to form complex IIb, consisting
of RIPK1, FADD, and Caspase-8 [25,27,28]. Activated Caspase-8 cleaves the preforms of
caspase-3/7 to execute apoptotic death. Activation of TNFR1 under various deficient condi-
tions (TAK1, NEMO, TBK1, IKKα/β, A20, and ABIN1) also triggers RIPK1 activation and
complex IIb formation, leading to RIPK1-dependent apoptosis [29–35]. Importantly, RIPK1
kinase activity is essential for TNF and Smac-mimetic-stimulated, but not for TNF- and
CHX-induced apoptosis, as demonstrated by RIPK1 knockdown, RIPK1 kinase inhibitor
necrostatin, or kinase-dead mutants (K45A or D138N) [10,25,36–38].

4. RIPK1-Mediated Necroptosis

Necroptosis, a pro-inflammatory form of programmed cell death, is characterized by
cell membrane rupture and the release of damage-associated molecular patterns (DMAPs).
While not essential for embryogenesis, necroptosis plays a vital role in immune defense
against pathogens and is implicated in various human diseases, including inflammation,
tissue damage, and neurodegeneration [39].

Necroptosis is initially suppressed by apoptosis, primarily through the cleavage of
RIPK1 by activated Caspase-8 in complex II, for example, when induced by TNF and Smac-
mimetic or CHX [40,41]. However, when Caspase-8 is inactivated by specific inhibitors
(such as Z-VAD-FMK) or genetic elimination, activated RIPK1 in complex IIb recruits
RIPK3 through their respective RHIM domains, initiating the formation of another protein
complex, called the necrosome (Figure 2) [5,42–46]. Oligomerized RIPK3 then recruits
the casein kinase 1 family proteins CK1α/δ/ε, which phosphorylate Ser227 of human
RIPK3 [47]. Phosphorylated RIPK3 subsequently recruits MLKL and phosphorylates hu-
man MLKL at Thr357 and Ser358 [48,49]. Consequently, MLKL undergoes oligomerization
into tetramers and amyloid-like polymers, which translocate to the plasma membrane,
resulting in plasma membrane permeabilization [50–56]. In addition, activated MLKL
translocates to the lysosomal membrane, where it forms amyloid-like polymers to facilitate
lysosomal membrane permeabilization and the release of lysosomal proteases, thereby
promoting cell death [57].

RIPK1-mediated necroptosis requires its kinase activity, similar to its involvement in
RIPK1-dependent apoptosis. For example, the RIPK1 inhibitor Nec-1 effectively prevents
necroptosis induced by TNF, TLR ligands, and interferons [43,58,59]. Moreover, mice
with kinase-dead RIPK1 knock-in mutations are resistant to TNF-induced necroptosis and
systemic inflammatory response syndrome (SIRS), similar to RIPK3 knockout mice, and
demonstrate superior resistance compared to MLKL knockout mice [38,60,61].

Multiple innate immune signaling molecules, including death receptors (such as
TNFR1), pathogen recognition receptors (such as Toll-like Receptor TLR3 and TLR4), and
the cytosolic RNA sensor ZBP1, can induce necroptosis. Activation of these pathways
leads to the interaction between the RHIM domains of proteins, such as RIPK1, TRIF,
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or ZBP1, with the RHIM domain of RIPK3, activating RIPK3 and MLKL to promote
necroptosis [58,62–64].

The role of apoptosis in suppressing necroptosis is crucial for embryonic development.
Deficiency in apoptosis components, such as the knockout of Caspase-8 or FADD, often
results in late-gestation embryonic lethality, primarily due to hyperactivation of necropto-
sis [65,66]. Simultaneous deletion of RIPK3 or MLKL can rescue the embryonic lethality of
these mice, albeit with immune deficiencies in adulthood [67–69].

5. RIPK1-Mediated Pyroptosis and PANoptosis

Pyroptosis is another form of immunogenic programmed necrosis, characterized by
the activation of inflammatory caspases, such as Caspase-1, 4, 5, and 11. These activated
caspases cleave gasdermin family proteins to release their N-terminal pore-forming domain
and trigger cell death [23,24,70,71]. Pyroptosis plays a critical role in innate defense against
pathogens by eliminating infected host cells, thereby removing the breeding ground for
pathogens, and activating the inflammatory response for pathogen clearance. There is
extensive crosstalk among programmed cell death pathways. When pyroptosis, apoptosis,
and necroptosis occur simultaneously, such as under pathogen infections, the combination
of these cell deaths is defined as PANoptosis. Concurrent activation of all three cell death
pathways enables the evasion of pathogen-mediated inhibition of individual pathways,
thereby enhancing host defense [72].

Recent findings have uncovered the role of RIPK1 in regulating pyroptosis and PANopto-
sis. For example, in the Gram-negative bacteria Yersinia infection, RIPK1-dependent activation
of Caspase-8 cleaves gasdermin D and E, inducing pyroptosis in mouse macrophages [73–76].
Furthermore, Yersinia infection also modulates RIPK1-dependent apoptosis and necroptosis,
concurrently with pyroptosis activation, thus triggering PANoptosis [77,78].

6. Phosphorylation of RIPK1
6.1. Auto-Activating Phosphorylation

The serine–threonine kinase activity of RIPK1 is crucial for both complex IIb-dependent
apoptosis and necroptosis [79]. Typically, kinases adopt a closed conformation and require
phosphorylation in the activation loop, also known as the T-loop, to activate their kinase
activity [80]. These activating phosphorylation events can be catalyzed by upstream kinases
or achieved through autophosphorylation. Currently, autophosphorylation is the only
known mechanism for activating RIPK1 (Figure 3). For instance, autophosphorylation of
S161 stabilizes the open conformation of the T-loop and promotes human RIPK1 kinase
activation to induce necroptosis [43]. Furthermore, mitochondrial reactive oxygen species
(ROS) modify three essential cysteine residues of RIPK1, leading to cysteine-mediated
aggregation of RIPK1 and subsequent autophosphorylation on S161, which is critical for
RIPK1 to effectively promote necrosome formation and cell death [81]. Moreover, S166
autophosphorylation of RIPK1 is indispensable for MLKL activation and necrosome forma-
tion. Mutation of S166 effectively prevents multiple RIPK1 kinase-dependent inflammatory
lesions in vivo, such as intestinal colitis, hepatitis, liver tumorigenesis, skin inflammation,
and TNF-induced SIRS. Interestingly, while autophosphorylation of Ser166 is essential,
it alone is not adequate to initiate RIPK1-mediated cell death [82]. Multiple autophos-
phorylation sites, including serine residues 14/15, 20, 161, and 166, cooperate to induce
conformational changes in RIPK1 [43,83]. These changes facilitate its association with cell
death effectors, such as FADD and RIPK3, promoting the assembly of cell-death-inducing
signaling complexes, such as complex II and the necrosome. It is noteworthy that the
recombinant RHIM domain of RIPK1 exhibits a significantly higher affinity toward it-
self than the RHIM domain of RIPK3 [5]. Autophosphorylation of RIPK1 is thought to
change its conformation, favoring the interaction between the RIPK1 and RIPK3 RHIM do-
mains over the interactions between RIPK1 RHIM domains, thereby promoting necrosome
formation [47,84].
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Figure 3. Phosphorylation events impacting RIPK1 kinase activity. Schematic representation of 
RIPK1, showing key phosphorylation sites. Green characters denote auto-activating phosphoryla-
tion events, while red characters denote inhibitory phosphorylation events. Multiple kinases cata-
lyze inhibitory phosphorylation events, which serve as critical checkpoints for cell death activation. 
Notably, the kinase responsible for S89 phosphorylation has not yet been reported. Abbreviations: 
TBK1, TANK-binding kinase 1; IKKε, IκB kinase ε; MK2, MAPK-activated protein kinase 2; JAK1, 
Janus kinase 1; AMPK, AMP-activated protein kinase. 

6.2. Inhibitory Phosphorylation 
The kinase activity of RIPK1 is tightly controlled at multiple levels to prevent spon-

taneous activation. Various post-translational modifications on RIPK1, such as ubiquiti-
nation and inhibitory phosphorylation, are intricately connected to keep RIPK1 kinase ac-
tivity in check. For instance, in complex I, RIPK1 undergoes K63 ubiquitination by cIAP1/2 
and M1 linear ubiquitination by LUBAC. These modifications stabilize complex I, inhibit-
ing its dissociation and formation of cell-death-promoting complex II. In addition to acti-
vating the MAPK pathway and the NF-κB pathway to activate gene expression that pro-
motes cell survival and inflammation, TAK1 and IKK kinases further suppress cell death 
by performing inhibitory phosphorylation on RIPK1 to block its kinase activity (Figure 3). 
For instance, TAK1 activates MK2, which directly phosphorylates S320 and S335 of human 
RIPK1, or S321 and S336 of mouse RIPK1, to inhibit RIPK1 kinase activity and subsequent 
apoptosis or necroptosis [85–87]. Interestingly, TAK1 is also reported to directly phos-
phorylate mouse RIPK1 at S321 [29]. In addition, TAK1 activates IKKα/β, which in turn 
phosphorylates S25 in the kinase domain of RIPK1. Phosphorylation of S25 prevents ATP 
binding and inhibits RIPK1 kinase activation [88]. Furthermore, TBK1/IKKε phosphory-
lates T189 in the kinase domain to inhibit RIPK1 kinase activity [31,32]. It is important to 
note that MK2 phosphorylates cytosolic RIPK1, while IKKα/β, TBK1/IKKε, and TAK1 
phosphorylate ubiquitinated RIPK1 in complex I. 

Recently, kinases outside of the TNF pathway have also been found to directly phos-
phorylate RIPK1 to inhibit its kinase activity and cell death. For example, glucose starva-
tion activates AMPK (adenosine monophosphate-activated protein kinase), which phos-
phorylates S416 of human RIPK1 (or S415 of mouse RIPK1) to inhibit RIPK1 kinase activity 
and cell death [89]. 

In addition to serine/threonine phosphorylation, tyrosine phosphorylation has also 
been found to inhibit RIPK1 activity. Studies have shown that JAK1 (Janus Kinase 1) and 
Src kinases phosphorylate Y384 of human RIPK1 (or Y383 of mouse RIPK1) to inhibit 
RIPK1 kinase activity and subsequent cell death [90]. 
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Second, it blocks the inhibitory phosphorylation of S25 of RIPK1 by IKKα/β to promote 

Figure 3. Phosphorylation events impacting RIPK1 kinase activity. Schematic representation of RIPK1,
showing key phosphorylation sites. Green characters denote auto-activating phosphorylation events,
while red characters denote inhibitory phosphorylation events. Multiple kinases catalyze inhibitory
phosphorylation events, which serve as critical checkpoints for cell death activation. Notably, the
kinase responsible for S89 phosphorylation has not yet been reported. Abbreviations: TBK1, TANK-
binding kinase 1; IKKε, IκB kinase ε; MK2, MAPK-activated protein kinase 2; JAK1, Janus kinase 1;
AMPK, AMP-activated protein kinase.

6.2. Inhibitory Phosphorylation

The kinase activity of RIPK1 is tightly controlled at multiple levels to prevent sponta-
neous activation. Various post-translational modifications on RIPK1, such as ubiquitination
and inhibitory phosphorylation, are intricately connected to keep RIPK1 kinase activity in
check. For instance, in complex I, RIPK1 undergoes K63 ubiquitination by cIAP1/2 and
M1 linear ubiquitination by LUBAC. These modifications stabilize complex I, inhibiting its
dissociation and formation of cell-death-promoting complex II. In addition to activating the
MAPK pathway and the NF-κB pathway to activate gene expression that promotes cell sur-
vival and inflammation, TAK1 and IKK kinases further suppress cell death by performing
inhibitory phosphorylation on RIPK1 to block its kinase activity (Figure 3). For instance,
TAK1 activates MK2, which directly phosphorylates S320 and S335 of human RIPK1, or
S321 and S336 of mouse RIPK1, to inhibit RIPK1 kinase activity and subsequent apoptosis
or necroptosis [85–87]. Interestingly, TAK1 is also reported to directly phosphorylate mouse
RIPK1 at S321 [29]. In addition, TAK1 activates IKKα/β, which in turn phosphorylates
S25 in the kinase domain of RIPK1. Phosphorylation of S25 prevents ATP binding and
inhibits RIPK1 kinase activation [88]. Furthermore, TBK1/IKKε phosphorylates T189 in
the kinase domain to inhibit RIPK1 kinase activity [31,32]. It is important to note that MK2
phosphorylates cytosolic RIPK1, while IKKα/β, TBK1/IKKε, and TAK1 phosphorylate
ubiquitinated RIPK1 in complex I.

Recently, kinases outside of the TNF pathway have also been found to directly phos-
phorylate RIPK1 to inhibit its kinase activity and cell death. For example, glucose starvation
activates AMPK (adenosine monophosphate-activated protein kinase), which phosphory-
lates S416 of human RIPK1 (or S415 of mouse RIPK1) to inhibit RIPK1 kinase activity and
cell death [89].

In addition to serine/threonine phosphorylation, tyrosine phosphorylation has also
been found to inhibit RIPK1 activity. Studies have shown that JAK1 (Janus Kinase 1) and
Src kinases phosphorylate Y384 of human RIPK1 (or Y383 of mouse RIPK1) to inhibit RIPK1
kinase activity and subsequent cell death [90].

Inhibitory phosphorylation of RIPK1 plays a pivotal role in host defense against
pathogens and modulates inflammatory responses. For example, the Gram-negative bacte-
rial pathogen Yersinia counters the host defense by inhibiting NF-κB- and MAPK-mediated
pro-inflammatory cytokines’ expression, while promoting RIPK1 activation-dependent
cell death [91]. Its effector protein, acetyltransferase YopJ, elicits multiple functions in the
process. First, it inactivates IKKα/β and TAK1 to block NF-κB and MAPK activation [92].
Second, it blocks the inhibitory phosphorylation of S25 of RIPK1 by IKKα/β to promote
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RIPK1-dependent macrophage cell death [88]. Lastly, it inactivates MK2, preventing in-
hibitory phosphorylation of S321 and S335 on RIPK1, thereby activating RIPK1-dependent
cell death [85–87]. As a consequence, mice expressing the S25D-RIPK1 mutant fail to acti-
vate RIPK1-dependent cell death and are defective in defending against Yersinia infection,
similar to the mice expressing the RIPK1 kinase-dead mutant K45A [88]. In addition,
inhibitors of TAK1, IKKα/β, IKKε, and MK2, the kinases responsible for the inhibitory
phosphorylation of RIPK1, all exacerbate TNF-induced necroptosis and SIRS [29,31,33,86].

Together, the inhibitory phosphorylation events by these kinases function as crucial
checkpoints to prevent RIPK1 kinase activation and subsequent cell death. Dysregulation of
any of these inhibitory phosphorylation events leads to elevated cell death and is frequently
associated with inflammatory diseases.

7. Dephosphorylation of RIPK1

Protein phosphatases play a complementary role in regulating phosphorylation home-
ostasis. These enzymes are classified into three main families based on the sequence similar-
ity of the catalytic domain and substrate specificity: PTPs (protein tyrosine phosphatases),
PPPs (phosphoprotein phosphatases), and PPMs (protein phosphatase metal-dependent).
PTPs specifically dephosphorylate phospho-tyrosine residues, while PPPs and PPMs de-
phosphorylate phospho-serine and phospho-threonine residues. In addition, a subfamily of
PTPs, called the dual-specificity phosphatases, dephosphorylate all three phospho-amino
acids. PPPs and PPMs differ in that PPMs require metal ions, such as magnesium or
manganese, for their activity and function as single-subunit enzymes, while PPPs require
regulatory subunits [93].

PP1 (protein phosphatase 1) is an important subfamily of PPPs. Its catalytic subunits
(PP1c), including PP1α, PP1β, and PP1γ, are responsible for dephosphorylation of the ma-
jority phospho-serine and phospho-threonine sites in mammalian cells, regulating a broad
range of cellular processes. Each PP1 catalytic subunit is obligatorily complexed with one
or two regulatory subunits to form distinct PP1 holoenzymes. The regulatory subunits, also
known as PP1-interacting proteins (PIPs) or regulatory interactors of protein phosphatase
one (RIPPOs), determine substrate specificity by directing PP1c to the subcellular locations
of its substrates and modulating its activity toward different substrates. There are approxi-
mately 200 validated PIPs, which assemble into more than 650 different PP1 holoenzymes
in mammalian cells, enabling the dephosphorylation of diverse substrates [94].

While numerous kinases have been identified to phosphorylate RIPK1, only a limited
number of phosphatases are found to dephosphorylate RIPK1 or RIPK3. For example,
Ppm1b, a metal-ion-dependent phosphatase, dephosphorylates and inactivates RIPK3 to
prevent the recruitment of MLKL into the necrosome, thus inhibiting subsequent necrop-
tosis. Moreover, Ppm1b−/− mice exhibited heightened sensitivity to TNF-induced SIRS
compared to WT mice, confirming its role in inhibiting necroptosis in vivo [95].

A sensitized CRISPR whole-genome knockout screen revealed that PPP1R3G (protein
phosphatase 1 regulator subunit 3G) is essential for necroptosis [96]. Specifically, PPP1R3G
forms a holoenzyme with PP1γ to directly dephosphorylate the inhibitory phosphorylation
sites of human RIPK1, including S25, S320, and S335, thereby activating RIPK1-dependent
apoptosis and necroptosis (Figure 4). An interesting note is that the holoenzyme does not
remove the activating phosphorylation of S166 in vitro. In this context, upon treatment
with TNF/Smac-mimetic/Z-VAD-FMK (T/S/Z), TRAF2 interacts with PPP1R3G to recruit
the PPP1R3G/PP1γ holoenzyme to complex I, where PP1γ dephosphorylates the inhibitory
phosphorylation sites of RIPK1, activating RIPK1 kinase. Loss of PPP1R3G leads to loss of
RIPK1 autophosphorylation at S166 and subsequent failure to form complex IIb to induce
cell death. Like many other PP1 regulatory subunits, PPP1R3G interacts with PP1γ through
an RVXF motif (X stands for any amino acids) [97]. Mutation of RVQF in PPP1R3G to RAQA
disrupts the interaction with PP1γ. Importantly, the RAQA mutant fails to rescue RIPK1
activation and cell death in PPP1R3G knockout cells. Furthermore, prevention of RIPK1
inhibitory phosphorylation with p38 or IKK inhibitors or mutation of serine 25 of RIPK1 to
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alanine largely restores cell death in PPP1R3G-knockout cells. Finally, Ppp1r3g−/− mice are
protected from TNF-induced SIRS, confirming the important role of PPP1R3G in regulating
apoptosis and necroptosis in vivo. Due to experimental sensitivity limitations, the authors
were unable to determine if PPP1R3G/PP1γ removes the inhibitory phosphorylation of
T189. This warrants further analysis in the future. Additionally, it will be interesting to
investigate if the PPP1R3G/PP1γ holoenzyme removes inhibitory phosphorylation of S415.
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Figure 4. Regulation of RIPK1 activity through phosphorylation and dephosphorylation. This
schematic illustrates the dynamic regulation of RIPK1-dependent cell death pathways. Inhibitory
phosphorylation events on RIPK1, catalyzed by multiple kinases, serve as important checkpoints for
cell death activation. Following cell death induction, the PPP1R3G/PP1γ holoenzyme is recruited
to complex I to remove the inhibitory phosphorylation on RIPK1. This process enables RIPK1 au-
tophosphorylation to activate its kinase activity. Consequently, activated RIPK1 triggers downstream
signaling cascades, leading to apoptosis and necroptosis. The balance between inhibitory phosphory-
lation and PPP1R3G/PP1γ-mediated dephosphorylation serves as a key regulatory mechanism for
RIPK1-dependent cell death processes. The red stripes in the diagram of RIPK1 and RIPK3 indicate
the RHIM domain.
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A recent study revealed that the PPP6C (protein phosphatase 6 catalytic subunit) is
essential for necroptosis, identified through a CRISPR whole-genome knockout screen [98].
As previously reported [99], PPP6C is recruited to complex I through TAB2, and dephospho-
rylates TAK1 to prevent inhibitory phosphorylation of RIPK1, thus activating TNF-induced
necroptosis. Gastrointestinal tract-specific deletion of one allele of Ppp6c in mice could
partially alleviate cecum damage caused by TNF-induced SIRS, confirming its role in
necroptosis activation. Recent findings have partially corroborated this result, as evidenced
by a CRISPR screen that identified the protein phosphatase 6 (PP6) holoenzyme as an acti-
vator of TAK1 inhibitor-induced PANoptosis [100]. The study demonstrated that ablation
of the catalytic subunit PPP6C, or combined deletion of its regulatory subunits PPP6R1,
PPP6R2, and PPP6R3, resulted in enhanced inhibitory phosphorylation of RIPK1 at S321
and reduced auto-activating phosphorylation at S166, consequently suppressing PANop-
tosis. However, the research did not conclusively determine whether the PP6 complex
directly dephosphorylates RIPK1 at S321 or if it acts on TAK1, as proposed in the previ-
ous study [98]. This leaves open questions regarding the precise mechanism of PP6 in
regulating RIPK1 phosphorylation.

8. RIPK1 in Development

The scaffolding function, rather than kinase activity, of RIPK1, plays an important
pro-survival role in regulating early postnatal lethality and inflammatory response by
preventing apoptosis and necroptosis. Specifically, the death domain of RIPK1 binds
the death domain of FADD to prevent FADD and Caspase-8-dependent apoptosis, while
the RHIM domain of RIPK1 binds RHIM domains of RIPK3 and ZBP1, preventing their
hyperactivation-induced necroptosis. For example, genetic deletion of RIPK1 in mice
causes postnatal lethality [101]. While double-knockout of RIPK3, Caspase-8, or FADD,
along with RIPK1, only marginally prolongs survival [102–104], triple-knockout of RIPK1,
RIPK3, and either Caspase-8 or FADD rescues RIPK1-deficient mice, allowing them to
survive weaning and mature normally [105,106]. The RHIM domain of RIPK1 inhibits
ZBP1–RIPK3–MLKL-mediated necroptosis, crucial for preventing late embryonic lethality
and adult skin inflammation [107,108]. Moreover, RIPK1 is essential for maintaining the
survival of intestinal epithelial cells (IECs) by blocking apoptosis and necroptosis [109].
Additionally, mice harboring RIPK1 kinase-dead knock-in mutants, including D138N and
K45A, survive to adulthood with no gross or histological abnormalities, indicating that
RIPK1 kinase activity is dispensable for survival [37,38].

9. RIPK1-Mediated Inflammatory Diseases

Many human inflammatory and neurodegenerative diseases are associated with ab-
normal RIPK1 expression or activity. Reports of gene mutations or non-genetic factors that
affect RIPK1 activity are accumulating, highlighting the importance of RIPK1 regulation in
human diseases.

Reduced RIPK1 expression can lead to various human diseases, largely due to the hy-
peractivation of RIPK3, ZBP1, and Caspase-8. As discussed previously, RIPK1 neutralizes
RIPK3 and ZBP1 through RHIM domain interaction under normal conditions, and loss
of RIPK1 leads to overactivation of ZBP1 and RIPK3, resulting in excessive necroptosis
and systemic inflammation. In the meantime, RIPK1 inhibits FADD/Caspase-8-mediated
apoptosis through death domain interaction during development, and loss of RIPK1 leads
to excessive apoptosis. In humans, rare homozygous loss-of-function (LoF) mutations in
RIPK1, including missense, nonsense, and frameshift mutations, cause combined immun-
odeficiency and inflammatory bowel disease (IBD). Many of these patients also suffer from
lymphopenia, recurrent infections, and arthritis [110–113].

Conversely, elevated RIPK1 activity is also implicated in various human diseases due
to heightened inflammation and cell death. For instance, rare mutations in RIPK1, such
as D324N, D324H, and D324Y at the Caspase-8 recognition site LQLD, block Caspase-
8-mediated cleavage of RIPK1, resulting in an autosomal-dominant autoinflammatory
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disease, characterized by recurrent fevers and lymphadenopathy [114–116]. Patients with
these variants often have increased pro-inflammatory cytokines and chemokines, such as
IL-6, TNF, and CXCL2/3, and their peripheral blood mononuclear cells are hypersensitive
to RIPK1 activation-dependent apoptosis and necroptosis induced by TNF.

Furthermore, mutations in other genes that result in hyperactivation of RIPK1 kinase
activity also lead to human diseases. For instance, monogenic mutations in genes such
as IKBKG (encoding NEMO), TNIP1 (encoding ABIN1), TNFAIP3 (encoding A20), and
members of the LUBAC complex have been linked to auto-immune and inflammatory
disorders, such as inflammatory bowel disease, psoriasis, rheumatoid arthritis, and mul-
tiple sclerosis [117–120]. Interestingly, these genes are also involved in regulating NF-κB
signaling [121]. Animal model studies have demonstrated that genetic or pharmacological
inhibition of RIPK1 kinase activity can alleviate pathological symptoms, indicating that
the pathogenesis resulting from these mutations may be driven more by dysregulated
RIPK1-dependent cell death rather than a failure to activate NF-κB [35,60].

Several chronic neurodegenerative diseases, such as amyotrophic lateral sclerosis
(ALS), Alzheimer’s disease (AD), and Parkinson’s disease (PD), are also linked to increased
activation of RIPK1 [122–124]. For example, mutations in the optineurin (OPTN) gene have
been implicated in human ALS. In mouse models, loss of OPTN leads to elevated RIPK1
activity, as well as downstream RIPK3 and MLKL activation, resulting in axon degeneration,
which is partially rescued by Ripk3 loss-of-function or treatment with a RIPK1 inhibitor
necrostatin [122]. Furthermore, an aging-induced reduction in TAK1 expression combined
with TBK1 mutations promotes the onset of neurodegenerative diseases, including ALS
and frontotemporal dementia (FTD). This is mainly attributed to the hyperactivation of
RIPK1, due to decreased inhibitory phosphorylation resulting from reduced activity of
TAK1 and TBK1. Importantly, the ALS/FTD phenotype is partially rescued by a single
allele of kinase-dead RIPK1 [32].

10. Therapeutic Perspectives

Elevated RIPK1 activity is associated with numerous human diseases, making it a
crucial target for therapeutic interventions. In theory, RIPK1 kinase inhibitors will prevent
RIPK1 hyperactivation-induced inflammatory diseases, while preserving RIPK1 scaffold
function to maintain its basal inhibition on RIPK3, ZBP1, and FADD/Caspase-8, thus avert-
ing unwanted necroptosis or apoptosis. Indeed, in mouse models, RIPK1 inhibitors have
been shown to prevent or alleviate clinical symptoms of various diseases, including SIRS,
ischemia-induced tissue injury, neurodegeneration, and bacterial and viral infections [2].
Currently, numerous RIPK1 inhibitors are in different phases of clinical trials for a spectrum
of human inflammatory diseases, ranging from rheumatoid arthritis, cutaneous lupus
erythematosus, ulcerative colitis, SARS-CoV-2 infection, to Alzheimer’s disease and ALS
(Table 1) [125–131] (ClinicalTrials.gov). Many of these RIPK1 inhibitors have successfully
passed phase I safety tests, revealing important dose-dependent effects. For example, the
brain-penetrant RIPK1 inhibitor, DNL104, demonstrated a clear dose-response relationship
in its safety profile. In the single-ascending-dose group, DNL104 was well tolerated across
a range of doses, indicating a favorable safety profile at lower concentrations. However, in
the multiple-ascending-dose group, 37.5% of subjects experienced post-dose liver toxicity,
highlighting the potential for adverse effects at higher cumulative doses or with prolonged
exposure [125]. This dose-dependent toxicity underscores the importance of careful dose
optimization in RIPK1 inhibitor development. Some inhibitors have progressed to phase
II trials, where dose-ranging studies are further refining the therapeutic window and op-
timal dosing regimens. However, as yet, no RIPK1 inhibitors have advanced to phase III
trials, partly due to the ongoing process of establishing the most effective and safe dosing
strategies for long-term treatment.
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Table 1. RIPK1 inhibitors and clinical trials.

Drug (Company/Institution) US Clinical Trial ID Targeted Diseases Phase

GSK2982772
(GSK, Brentford, UK)

NCT02903966 Ulcerative colitis Phase IIa
NCT02776033 Psoriasis Phase IIa
NCT04316585 Moderate to Severe Psoriasis Phase I
NCT02858492 Moderate to Severe Rheumatoid Arthristis (RA) Phase IIa

GSK3145095
(GSK, Brentford, UK) NCT03681951 Pancreatic ductal adenocarcinoma (PDAC) Phase IIa-terminated

DNL104
(Denali, San Francisco,
CA, USA)

NTR6257 (Netherlands) Healthy Adults Phase Ia-terminated

SAR443060 (DNL747)
(Sanofi, Paris, France/Denali,
San Francisco, CA, USA)

NCT03757351 Amyotrophic Lateral Sclerosis (ALS) Phase Ib-terminated

NCT03757325 Alzheimer’s disease (AD) Phase Ib

SAR443122(DNL758)
(Sanofi, Paris, France)

NCT04469621 Severe COVID-19 Phase Ib
NCT05588843 Ulcerative colitis Phase II
NCT04781816 Cutaneous lupus erythematosus (CLEan) Phase II

SAR443820 (DNL788)
(Sanofi, Paris, France)

NCT04982991 Multiple Sclerosis Healthy Subjects Phase I
NCT05795907 ALS Healthy Volunteers Phase I
NCT05797701 ALS Healthy Volunteers Phase I
NCT05237284 ALS Phase II-terminated
NCT05630547 Multiple Sclerosis Phase II

SAR443820 + Erythromycin/
Itraconazole
(Sanofi, Paris, France)

NCT05797753 ALS Healthy Volunteers Phase I

SIR1-365
(Sironax Beijing, China) NCT04622332 Severe COVID-19 Phase I

R522
(Rigel, San Francisco, CA, USA/
Eli Lilly, Indianapolis, IN, USA)

[128] Autoimmune and inflammatory diseases Phase II

GFH312
(Genfleet, Shanghai, China)

NCT04676711 Healthy Adults Phase I
NCT05991362 Healthy Chinese Adults Phase I
NCT05618691 Peripheral Artery Disease (PAD) Phase II-withdrawn

GDC-8264
(Genentech, San Francisco,
CA, USA)

2019-002613-19 (Netherlands) Healthy Adults Phase I
NCT05673876 Acute Graft-versus-host Disease Phase Ib-terminated

Information for US clinical trials can be found at https://clinicaltrials.gov.

Considering the diverse functions of RIPK1 and the uncertain outcomes of the clinical
trials involving RIPK1 inhibitors, there is a pressing need to identify novel targets for specif-
ically inhibiting its cell-death-promoting activity. Due to the pivotal role of PPP1R3G/PP1γ
in removing inhibitory phosphorylation sites on RIPK1, it emerges as a promising alter-
native therapeutic target. Notably, PPP1R3G interacts with PP1γ through a short RVQF
motif, presenting a unique opportunity to develop short-peptide mimetics that disrupt
PPP1R3G and PP1γ interaction. This disruption could potentially block RIPK1-dependent
apoptosis and necroptosis. The same approach has been successfully employed in de-
signing the Smac-mimetics, which mimics the four-residue AVPI sequence in the SMAC
protein. These mimetics specifically mimic the interaction between SMAC and IAPs to
induce IAP degradation, thereby activating apoptosis [27,28,132]. Unlike RIPK1 inhibitors,
these inhibitors of PPP1R3G/PP1γ maintain the inhibitory phosphorylation sites on RIPK1,
preventing its hyperactivation, while not altering RIPK1 scaffold function, thereby pre-
serving its other functions. At the same time, these inhibitors would have minimal impact
on the phosphatase activity of PP1γ, thus maintaining its other vital functions. This in-
novative approach holds potential for therapeutic interventions targeting inflammatory
diseases associated with heightened RIPK1 activity, while minimizing any adverse effects
on cellular homeostasis.

https://clinicaltrials.gov
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11. Conclusions and Future Perspectives

The pivotal role of RIPK1 in orchestrating cell survival and cell death necessitates pre-
cise regulation of its activity. While phosphorylation is a key regulatory mechanism, other
post-translational modifications, such as ubiquitination and glycosylation, also profoundly
influence RIPK1’s scaffolding function and kinase activity. However, the complex interplay
among these modifications and their collective impact on RIPK1 function remain to be fully
deciphered. Future research should focus on elucidating the temporal and spatial dynamics
of these modifications, their cross-talk, and their responses to varying cellular contexts.
Unraveling this intricate regulatory network holds promise for developing more targeted
and effective treatments for RIPK1-related conditions. By identifying novel intervention
points, researchers may achieve fine-tuned control over cell death and inflammatory pro-
cesses in various pathological settings. Moreover, exploring the potential of combining
RIPK1-targeted therapies with other treatments, particularly in cancer and inflammatory
diseases, represents an exciting avenue for future investigation. This approach could lead
to more comprehensive and efficacious therapeutic strategies, potentially revolutionizing
the treatment of these complex disorders.
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