The Interplay of Uterine Health and Obesity: A Comprehensive Review
Abstract
:1. Introduction
2. Impact of Obesity on Uterine Reproductive and Immune Functions
2.1. Effects of Obesity on Uterine Structure
2.2. Obesity and Uterine Reproductive Function
2.3. Obesity and Uterine Immune Function
3. Insulin Resistance and Uterine Health
3.1. Insulin Signaling in the Uterus
3.2. Mechanisms Linking Insulin Resistance and Uterine Dysfunction
3.3. Role of Hyperinsulinemia in Uterine Pathology
3.4. Pregnancy Complications and Fertility Treatments in Insulin-Resistant Individuals
4. Leptin Resistance and Uterine Health
4.1. Leptin Signaling in the Uterus
4.2. Disruption of Leptin Signaling in Obesity and Uterine Health
4.3. Potential Therapeutic Targets to Restore Leptin Sensitivity in the Context of Obesity
5. Future Directions and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Riddick, D.H.; Daly, D.C.; Walters, C.A. The Uterus as an Endocrine Compartment. Clin. Perinatol. 1983, 10, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, A.M.; DeMayo, F.J.; Spencer, T.E. Uterine Glands: Developmental Biology and Functional Roles in Pregnancy. Endocr. Rev. 2019, 40, 1424–1445. [Google Scholar] [CrossRef] [PubMed]
- Feyaerts, D.; Joosten, I.; van der Molen, R.G. A Pregnancy to Remember: Trained Immunity of the Uterine Mucosae. Mucosal Immunol. 2021, 14, 539–541. [Google Scholar] [CrossRef] [PubMed]
- Tur-Kaspa, I.; Gleicher, N. Immunology of the Uterus. In The Uterus: Pathology, Diagnosis, and Management; Altchek, A., Deligdisch, L., Eds.; Springer: New York, NY, USA, 1991; pp. 27–38. ISBN 978-1-4613-9086-2. [Google Scholar]
- Agostinis, C.; Mangogna, A.; Bossi, F.; Ricci, G.; Kishore, U.; Bulla, R. Uterine Immunity and Microbiota: A Shifting Paradigm. Front. Immunol. 2019, 10, 2387. [Google Scholar] [CrossRef]
- Smith, R.; Imtiaz, M.; Banney, D.; Paul, J.W.; Young, R.C. Why the Heart Is like an Orchestra and the Uterus Is like a Soccer Crowd. Am. J. Obstet. Gynecol. 2015, 213, 181–185. [Google Scholar] [CrossRef]
- Prefumo, F.; Sharma, R.; Brecker, S.J.D.; Gaze, D.C.; Collinson, P.O.; Thilaganathan, B. Maternal Cardiac Function in Early Pregnancies with High Uterine Artery Resistance. Ultrasound Obs. Gynecol. 2007, 29, 58–64. [Google Scholar] [CrossRef]
- Uteroplacental Blood Flow, Cardiac Function, and Pregnancy Outcome in Women With Congenital Heart Disease|Circulation. Available online: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.113.002810 (accessed on 9 October 2024).
- Uterus Plays a Role in Brain Function, Animal Study Shows. Available online: https://www.nia.nih.gov/news/uterus-plays-role-brain-function-animal-study-shows (accessed on 9 October 2024).
- Koebele, S.V.; Bernaud, V.E.; Northup-Smith, S.N.; Willeman, M.N.; Strouse, I.M.; Bulen, H.L.; Schrier, A.R.; Newbern, J.M.; DeNardo, D.F.; Mayer, L.P.; et al. Gynecological Surgery in Adulthood Imparts Cognitive and Brain Changes in Rats: A Focus on Hysterectomy at Short-, Moderate-, and Long-Term Intervals after Surgery. Horm. Behav. 2023, 155, 105411. [Google Scholar] [CrossRef]
- Koebele, S.V.; Palmer, J.M.; Hadder, B.; Melikian, R.; Fox, C.; Strouse, I.M.; DeNardo, D.F.; George, C.; Daunis, E.; Nimer, A.; et al. Hysterectomy Uniquely Impacts Spatial Memory in a Rat Model: A Role for the Nonpregnant Uterus in Cognitive Processes. Endocrinology 2019, 160, 1–19. [Google Scholar] [CrossRef]
- Olusi, A.M.; Rabiu, K.A.; Oduola-Owoo, B.B.; Rasheed, M.W.; Oduola-Owoo, L.T.; Windapo, O.B. Relationship between Metabolic Syndrome and Uterine Leiomyoma: A Case Control Study. Niger. Health J. 2024, 24, 1058–1069. [Google Scholar] [CrossRef]
- Salcedo, A.C.; Shehata, H.; Berry, A.; Riba, C. Insulin Resistance and Other Risk Factors of Cardiovascular Disease amongst Women with Abnormal Uterine Bleeding. J. Metab. Health 2022, 5, 7. [Google Scholar] [CrossRef]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 10 October 2024).
- Zheng, L.; Yang, L.; Guo, Z.; Yao, N.; Zhang, S.; Pu, P. Obesity and Its Impact on Female Reproductive Health: Unraveling the Connections. Front. Endocrinol. 2024, 14, 1326546. [Google Scholar] [CrossRef] [PubMed]
- Schon, S.B.; Cabre, H.E.; Redman, L.M. The Impact of Obesity on Reproductive Health and Metabolism in Reproductive-Age Females. Fertil. Steril. 2024, 122, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Bhattacharya, S. Impact of Obesity on Gynecology. Womens Health 2010, 6, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Apuzzio, J.; Weiss, G. Maternal Obesity and Associated Reproductive Consequences. Womens Health 2010, 6, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Thong, E.P.; Codner, E.; Laven, J.S.E.; Teede, H. Diabetes: A Metabolic and Reproductive Disorder in Women. Lancet Diabetes Endocrinol. 2020, 8, 134–149. [Google Scholar] [CrossRef]
- Metwally, M.; Li, T.C.; Ledger, W.L. The Impact of Obesity on Female Reproductive Function. Obes. Rev. 2007, 8, 515–523. [Google Scholar] [CrossRef]
- Słabuszewska-Jóźwiak, A.; Lukaszuk, A.; Janicka-Kośnik, M.; Wdowiak, A.; Jakiel, G. Role of Leptin and Adiponectin in Endometrial Cancer. Int. J. Mol. Sci. 2022, 23, 5307. [Google Scholar] [CrossRef]
- Sidorkiewicz, I.; Jóźwik, M.; Niemira, M.; Krętowski, A. Insulin Resistance and Endometrial Cancer: Emerging Role for microRNA. Cancers 2020, 12, 2559. [Google Scholar] [CrossRef]
- Ameer, M.A.; Fagan, S.E.; Sosa-Stanley, J.N.; Peterson, D.C. Anatomy, Abdomen and Pelvis: Uterus. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Gasner, A.; Aatsha, P.A. Physiology, Uterus. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Ylli, D.; Sidhu, S.; Parikh, T.; Burman, K.D. Endocrine Changes in Obesity. In Endotext [Internet]; MDText.com, Inc.: South Dartmouth, MA, USA, 2022. [Google Scholar]
- Parisi, F.; Milazzo, R.; Savasi, V.M.; Cetin, I. Maternal Low-Grade Chronic Inflammation and Intrauterine Programming of Health and Disease. Int. J. Mol. Sci. 2021, 22, 1732. [Google Scholar] [CrossRef]
- Yong, W.; Wang, J.; Leng, Y.; Li, L.; Wang, H. Role of Obesity in Female Reproduction. Int. J. Med. Sci. 2023, 20, 366–375. [Google Scholar] [CrossRef]
- Itriyeva, K. The Effects of Obesity on the Menstrual Cycle. Curr. Probl. Pediatr. Adolesc. Health Care 2022, 52, 101241. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Lin, Z.; Vásquez, E.; Luan, X.; Guo, F.; Xu, L. Association between Obesity and the Risk of Uterine Fibroids: A Systematic Review and Meta-Analysis. J. Epidemiol. Community Health 2021, 75, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Harvey, S.V.; Wentzensen, N.; Bertrand, K.; Black, A.; Brinton, L.A.; Chen, C.; Costas, L.; Dal Maso, L.; De Vivo, I.; Du, M.; et al. Associations of Life Course Obesity with Endometrial Cancer in the Epidemiology of Endometrial Cancer Consortium (E2C2). Int. J. Epidemiol. 2023, 52, 1086–1099. [Google Scholar] [CrossRef] [PubMed]
- Obesity in Pregnancy: Risks and Management|AAFP. Available online: https://www.aafp.org/pubs/afp/issues/2018/0501/p559.html (accessed on 10 October 2024).
- Mooney, S.S.; Sumithran, P. Does Weight Loss in Women with Obesity Induce Regression of Endometrial Hyperplasia? A Systematic Review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023, 288, 49–55. [Google Scholar] [CrossRef]
- Overweight and Obesity|Cancer Australia. Available online: https://www.canceraustralia.gov.au/cancer-types/endometrial-cancer/awareness/lifestyle/overweight-and-obesity (accessed on 10 October 2024).
- Kuryłowicz, A. Estrogens in Adipose Tissue Physiology and Obesity-Related Dysfunction. Biomedicines 2023, 11, 690. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, J.; Zhang, F.; Zhang, S.; Chen, X.; Liang, W.; Xie, Q. Resistance to the Insulin and Elevated Level of Androgen: A Major Cause of Polycystic Ovary Syndrome. Front. Endocrinol. 2021, 12, 741764. [Google Scholar] [CrossRef]
- Borahay, M.A.; Asoglu, M.R.; Mas, A.; Adam, S.; Kilic, G.S.; Al-Hendy, A. Estrogen Receptors and Signaling in Fibroids: Role in Pathobiology and Therapeutic Implications. Reprod. Sci. 2017, 24, 1235–1244. [Google Scholar] [CrossRef]
- Ali, M.; Ciebiera, M.; Vafaei, S.; Alkhrait, S.; Chen, H.-Y.; Chiang, Y.-F.; Huang, K.-C.; Feduniw, S.; Hsia, S.-M.; Al-Hendy, A. Progesterone Signaling and Uterine Fibroid Pathogenesis; Molecular Mechanisms and Potential Therapeutics. Cells 2023, 12, 1117. [Google Scholar] [CrossRef]
- Barboza, I.C.; Depes, D.D.B.; Vianna, I.; Patriarca, M.T.; Arruda, R.M.; Martins, J.A.; Lopes, R.G.C. Analysis of Endometrial Thickness Measured by Transvaginal Ultrasonography in Obese Patients. Einstein 2014, 12, 164–167. [Google Scholar] [CrossRef]
- Lu, L.; Risch, H.; Irwin, M.L.; Mayne, S.T.; Cartmel, B.; Schwartz, P.; Rutherford, T.; Yu, H. Long-Term Overweight and Weight Gain in Early Adulthood in Association with Risk of Endometrial Cancer. Int. J. Cancer 2011, 129, 1237–1243. [Google Scholar] [CrossRef]
- Viola, A.S.; Gouveia, D.; Andrade, L.; Aldrighi, J.M.; Viola, C.F.M.; Bahamondes, L. Prevalence of Endometrial Cancer and Hyperplasia in Non-Symptomatic Overweight and Obese Women. Aust. N. Z. J. Obs. Gynaecol. 2008, 48, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wei, W.; Cai, M. A Review of the Risk Factors Associated with Endometrial Hyperplasia During Perimenopause. IJWH 2024, 16, 1475–1482. [Google Scholar] [CrossRef] [PubMed]
- Endometrial Hyperplasia—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/medicine-and-dentistry/endometrial-hyperplasia (accessed on 10 October 2024).
- Singh, S.; Pal, N.; Shubham, S.; Sarma, D.K.; Verma, V.; Marotta, F.; Kumar, M. Polycystic Ovary Syndrome: Etiology, Current Management, and Future Therapeutics. J. Clin. Med. 2023, 12, 1454. [Google Scholar] [CrossRef] [PubMed]
- Hajam, Y.A.; Rather, H.A.; Neelam; Kumar, R.; Basheer, M.; Reshi, M.S. A Review on Critical Appraisal and Pathogenesis of Polycystic Ovarian Syndrome. Endocr. Metab. Sci. 2024, 14, 100162. [Google Scholar] [CrossRef]
- Barber, T.M.; Franks, S. Obesity and Polycystic Ovary Syndrome. Clin. Endocrinol. 2021, 95, 531–541. [Google Scholar] [CrossRef]
- Gonnella, F.; Konstantinidou, F.; Donato, M.; Gatta, D.M.P.; Peserico, A.; Barboni, B.; Stuppia, L.; Nothnick, W.B.; Gatta, V. The Molecular Link between Obesity and the Endometrial Environment: A Starting Point for Female Infertility. Int. J. Mol. Sci. 2024, 25, 6855. [Google Scholar] [CrossRef]
- Bjorklund, J.; Wiberg-Itzel, E.; Wallstrom, T. Is There an Increased Risk of Cesarean Section in Obese Women after Induction of Labor? A Retrospective Cohort Study. PLoS ONE 2022, 17, e0263685. [Google Scholar] [CrossRef]
- Kissler, K.; Hurt, K.J. The Pathophysiology of Labor Dystocia: Theme with Variations. Reprod. Sci. 2023, 30, 729–742. [Google Scholar] [CrossRef]
- Bogaerts, A.; Witters, I.; Van den Bergh, B.R.H.; Jans, G.; Devlieger, R. Obesity in Pregnancy: Altered Onset and Progression of Labour. Midwifery 2013, 29, 1303–1313. [Google Scholar] [CrossRef]
- Azaïs, H.; Leroy, A.; Ghesquiere, L.; Deruelle, P.; Hanssens, S. Effects of Adipokines and Obesity on Uterine Contractility. Cytokine Growth Factor. Rev. 2017, 34, 59–66. [Google Scholar] [CrossRef]
- Zhang, J.; Bricker, L.; Wray, S.; Quenby, S. Poor Uterine Contractility in Obese Women. BJOG 2007, 114, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Higgins, C.A.; Martin, W.; Anderson, L.; Blanks, A.M.; Norman, J.E.; McConnachie, A.; Nelson, S.M. Maternal Obesity and Its Relationship with Spontaneous and Oxytocin-Induced Contractility of Human Myometrium in Vitro. Reprod. Sci. 2010, 17, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Chin, J.R.; Henry, E.; Holmgren, C.M.; Varner, M.W.; Branch, D.W. Maternal Obesity and Contraction Strength in the First Stage of Labor. Am. J. Obs. Gynecol. 2012, 207, 129.e1–129.e6. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, J.A.; Oporto, J.I. The Myometrium in Pregnant Women with Obesity. Curr. Vasc. Pharmacol. 2021, 19, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Grotegut, C.A.; Gunatilake, R.P.; Feng, L.; Heine, R.P.; Murtha, A.P. The Influence of Maternal Body Mass Index on Myometrial Oxytocin Receptor Expression in Pregnancy. Reprod. Sci. 2013, 20, 1471–1477. [Google Scholar] [CrossRef]
- Gao, X.; Li, Y.; Ma, Z.; Jing, J.; Zhang, Z.; Liu, Y.; Ding, Z. Obesity Induces Morphological and Functional Changes in Female Reproductive System through Increases in NF-κB and MAPK Signaling in Mice. Reprod. Biol. Endocrinol. 2021, 19, 148. [Google Scholar] [CrossRef]
- Baltayeva, J.; Konwar, C.; Castellana, B.; Mara, D.L.; Christians, J.K.; Beristain, A.G. Obesogenic Diet Exposure Alters Uterine Natural Killer Cell Biology and Impairs Vasculature Remodeling in Mice†. Biol. Reprod. 2020, 102, 63–75. [Google Scholar] [CrossRef]
- Hayes, E.K.; Tessier, D.R.; Percival, M.E.; Holloway, A.C.; Petrik, J.J.; Gruslin, A.; Raha, S. Trophoblast Invasion and Blood Vessel Remodeling Are Altered in a Rat Model of Lifelong Maternal Obesity. Reprod. Sci. 2014, 21, 648–657. [Google Scholar] [CrossRef]
- Perdu, S.; Castellana, B.; Kim, Y.; Chan, K.; DeLuca, L.; Beristain, A.G. Maternal Obesity Drives Functional Alterations in Uterine NK Cells. JCI Insight 2016, 1, e85560. [Google Scholar] [CrossRef]
- Roberts, K.A.; Riley, S.C.; Reynolds, R.M.; Barr, S.; Evans, M.; Statham, A.; Hor, K.; Jabbour, H.N.; Norman, J.E.; Denison, F.C. Placental Structure and Inflammation in Pregnancies Associated with Obesity. Placenta 2011, 32, 247–254. [Google Scholar] [CrossRef]
- Jiménez-Osorio, A.S.; Carreón-Torres, E.; Correa-Solís, E.; Ángel-García, J.; Arias-Rico, J.; Jiménez-Garza, O.; Morales-Castillejos, L.; Díaz-Zuleta, H.A.; Baltazar-Tellez, R.M.; Sánchez-Padilla, M.L.; et al. Inflammation and Oxidative Stress Induced by Obesity, Gestational Diabetes, and Preeclampsia in Pregnancy: Role of High-Density Lipoproteins as Vectors for Bioactive Compounds. Antioxidants 2023, 12, 1894. [Google Scholar] [CrossRef] [PubMed]
- Khanna, D.; Khanna, S.; Khanna, P.; Kahar, P.; Patel, B.M. Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus 2022, 14, e22711. [Google Scholar] [CrossRef] [PubMed]
- St-Germain, L.E.; Castellana, B.; Baltayeva, J.; Beristain, A.G. Maternal Obesity and the Uterine Immune Cell Landscape: The Shaping Role of Inflammation. Int. J. Mol. Sci. 2020, 21, 3776. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Breindel, M.F.; Singh, M.; Kahn, J. Endometrial Receptivity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Zavatta, A.; Parisi, F.; Mandò, C.; Scaccabarozzi, C.; Savasi, V.M.; Cetin, I. Role of Inflammaging on the Reproductive Function and Pregnancy. Clin. Rev. Allergy Immunol. 2023, 64, 145–160. [Google Scholar] [CrossRef]
- Salamun, V.; Bokal, E.V.; Maver, A.; Papler, T.B. Transcriptome Study of Receptive Endometrium in Overweight and Obese Women Shows Important Expression Differences in Immune Response and Inflammatory Pathways in Women Who Do Not Conceive. PLoS ONE 2021, 16, e0261873. [Google Scholar] [CrossRef]
- Ye, J.; Peng, H.; Huang, X.; Qi, X. The Association between Endometriosis and Risk of Endometrial Cancer and Breast Cancer: A Meta-Analysis. BMC Womens Health 2022, 22, 455. [Google Scholar] [CrossRef]
- Wu, H.-M.; Chen, L.-H.; Hsu, L.-T.; Lai, C.-H. Immune Tolerance of Embryo Implantation and Pregnancy: The Role of Human Decidual Stromal Cell- and Embryonic-Derived Extracellular Vesicles. Int. J. Mol. Sci. 2022, 23, 13382. [Google Scholar] [CrossRef]
- Ma, H.; Cai, S.; Yang, L.; Wang, L.; Ding, J.; Li, L.; Li, H.; Huang, C.; Diao, L. How Do Pre-Pregnancy Endometrial Macrophages Contribute to Pregnancy? J. Reprod. Immunol. 2022, 154, 103736. [Google Scholar] [CrossRef]
- Lédée, N.; Petitbarat, M.; Prat-Ellenberg, L.; Dray, G.; Vaucoret, V.; Kazhalawi, A.; Rodriguez-Pozo, A.; Habeichi, N.; Ruoso, L.; Cassuto, N.G.; et al. The Next Frontier in ART: Harnessing the Uterine Immune Profile for Improved Performance. Int. J. Mol. Sci. 2023, 24, 11322. [Google Scholar] [CrossRef]
- Sharma, S. Natural Killer Cells and Regulatory T Cells in Early Pregnancy Loss. Int. J. Dev. Biol. 2014, 58, 219–229. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Cao, J.; Chen, Y.; Dong, Y. A Novel and Compact Review on the Role of Oxidative Stress in Female Reproduction. Reprod. Biol. Endocrinol. 2018, 16, 80. [Google Scholar] [CrossRef] [PubMed]
- Kaltsas, A.; Zikopoulos, A.; Moustakli, E.; Zachariou, A.; Tsirka, G.; Tsiampali, C.; Palapela, N.; Sofikitis, N.; Dimitriadis, F. The Silent Threat to Women’s Fertility: Uncovering the Devastating Effects of Oxidative Stress. Antioxidants 2023, 12, 1490. [Google Scholar] [CrossRef] [PubMed]
- King, S.; Osei, F.; Marsh, C. Prevalence of Pathogenic Microbes within the Endometrium in Normal Weight vs. Obese Women with Infertility. Reprod. Med. 2024, 5, 90–96. [Google Scholar] [CrossRef]
- Prendergast, C.; Wray, S. Human Myometrial Artery Function and Endothelial Cell Calcium Signalling Are Reduced by Obesity: Can This Contribute to Poor Labour Outcomes? Acta Physiol. 2019, 227, e13341. [Google Scholar] [CrossRef] [PubMed]
- Sekulovski, N.; Whorton, A.E.; Shi, M.; Hayashi, K.; MacLean, J.A. Insulin Signaling Is an Essential Regulator of Endometrial Proliferation and Implantation in Mice. FASEB J. 2021, 35, e21440. [Google Scholar] [CrossRef]
- Chen, M.; Li, J.; Zhang, B.; Zeng, X.; Zeng, X.; Cai, S.; Ye, Q.; Yang, G.; Ye, C.; Shang, L.; et al. Uterine Insulin Sensitivity Defects Induced Embryo Implantation Loss Associated with Mitochondrial Dysfunction-Triggered Oxidative Stress. Oxid. Med. Cell Longev. 2021, 2021, 6655685. [Google Scholar] [CrossRef]
- Jain, V.; Chodankar, R.R.; Maybin, J.A.; Critchley, H.O.D. Uterine Bleeding: How Understanding Endometrial Physiology Underpins Menstrual Health. Nat. Rev. Endocrinol. 2022, 18, 290–308. [Google Scholar] [CrossRef]
- Singh, G.; Cue, L.; Puckett, Y. Endometrial Hyperplasia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Chodankar, R.; Critchley, H.O.D. Biomarkers in Abnormal Uterine Bleeding†. Biol. Reprod. 2019, 101, 1155–1166. [Google Scholar] [CrossRef]
- Ciarmela, P.; Islam, M.S.; Reis, F.M.; Gray, P.C.; Bloise, E.; Petraglia, F.; Vale, W.; Castellucci, M. Growth Factors and Myometrium: Biological Effects in Uterine Fibroid and Possible Clinical Implications. Hum. Reprod. Update 2011, 17, 772–790. [Google Scholar] [CrossRef]
- Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between Insulin Resistance and the Development of Cardiovascular Disease. Cardiovasc. Diabetol. 2018, 17, 122. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, C.; Li, N.; Liu, X.; He, J.; Chen, X.; Ding, Y.; Tong, C.; Peng, C.; Yin, H.; et al. Elevated Insulin Levels Compromise Endometrial Decidualization in Mice with Decrease in Uterine Apoptosis in Early-Stage Pregnancy. Arch. Toxicol. 2019, 93, 3601–3615. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, N.; Thuesen, B.; Jørgensen, T.; Juul, A.; Spielhagen, C.; Wallaschofksi, H.; Linneberg, A. The Association Between IGF-I and Insulin Resistance. Diabetes Care 2012, 35, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Cicinelli, E.; Vitagliano, A.; Loizzi, V.; De Ziegler, D.; Fanelli, M.; Bettocchi, S.; Nardelli, C.; Trojano, G.; Cicinelli, R.; Minervini, C.F.; et al. Altered Gene Expression Encoding Cytochines, Grow Factors and Cell Cycle Regulators in the Endometrium of Women with Chronic Endometritis. Diagnostics 2021, 11, 471. [Google Scholar] [CrossRef] [PubMed]
- Didziokaite, G.; Biliute, G.; Gudaite, J.; Kvedariene, V. Oxidative Stress as a Potential Underlying Cause of Minimal and Mild Endometriosis-Related Infertility. Int. J. Mol. Sci. 2023, 24, 3809. [Google Scholar] [CrossRef]
- Kwon, M.J.; Kim, J.H.; Kim, K.J.; Ko, E.J.; Lee, J.Y.; Ryu, C.S.; Ha, Y.H.; Kim, Y.R.; Kim, N.K. Genetic Association between Inflammatory-Related Polymorphism in STAT3, IL-1β, IL-6, TNF-α and Idiopathic Recurrent Implantation Failure. Genes 2023, 14, 1588. [Google Scholar] [CrossRef]
- Do, H.D.; Lohsoonthorn, V.; Jiamjarasrangsi, W.; Lertmaharit, S.; Williams, M.A. Prevalence of Insulin Resistance and Its Relationship with Cardiovascular Disease Risk Factors among Thai Adults over 35 Years Old. Diabetes Res. Clin. Pract. 2010, 89, 303–308. [Google Scholar] [CrossRef]
- De Boer, I.H.; Katz, R.; Chonchol, M.B.; Fried, L.F.; Ix, J.H.; Kestenbaum, B.; Mukamal, K.J.; Peralta, C.A.; Siscovick, D.S. Insulin Resistance, Cystatin C, and Mortality Among Older Adults. Diabetes Care 2012, 35, 1355–1360. [Google Scholar] [CrossRef]
- Neff, A.M.; Yu, J.; Taylor, R.N.; Bagchi, I.C.; Bagchi, M.K. Insulin Signaling Via Progesterone-Regulated Insulin Receptor Substrate 2 Is Critical for Human Uterine Decidualization. Endocrinology 2019, 161, bqz021. [Google Scholar] [CrossRef]
- Barber, T.M.; Hanson, P.; Weickert, M.O.; Franks, S. Obesity and Polycystic Ovary Syndrome: Implications for Pathogenesis and Novel Management Strategies. Clin. Med. Insights Reprod. Health 2019, 13, 1179558119874042. [Google Scholar] [CrossRef]
- Fornes, R.; Ormazabal, P.; Rosas, C.; Gabler, F.; Vantman, D.; Romero, C.; Vega, M. Changes in the Expression of Insulin Signaling Pathway Molecules in Endometria from Polycystic Ovary Syndrome Women with or without Hyperinsulinemia. Mol. Med. 2010, 16, 129–136. [Google Scholar] [CrossRef]
- Oróstica, L.; García, P.; Vera, C.; García, V.; Romero, C.; Vega, M. Effect of TNF-α on Molecules Related to the Insulin Action in Endometrial Cells Exposed to Hyperandrogenic and Hyperinsulinic Conditions Characteristics of Polycystic Ovary Syndrome. Reprod. Sci. 2018, 25, 1000–1009. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.N.M.; Amri, M.F.; Ugusman, A.; Hamid, A.A.; Wahab, N.A.; Mokhtar, M.H. Hyperandrogenism and Its Possible Effects on Endometrial Receptivity: A Review. Int. J. Mol. Sci. 2023, 24, 12026. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Li, N.; Song, G.; Yang, Y.; Ning, X. Insulin-like Growth Factor 1 Regulates Growth of Endometrial Carcinoma through PI3k Signaling Pathway in Insulin-Resistant Type 2 Diabetes. Am. J. Transl. Res. 2016, 8, 3329–3336. [Google Scholar] [PubMed]
- Shan, W.; Ning, C.; Luo, X.; Zhou, Q.; Gu, C.; Zhang, Z.; Chen, X. Hyperinsulinemia Is Associated with Endometrial Hyperplasia and Disordered Proliferative Endometrium: A Prospective Cross-Sectional Study. Gynecol. Oncol. 2014, 132, 606–610. [Google Scholar] [CrossRef]
- Giudice, L.C. Endometrium in PCOS: Implantation and Predisposition to Endocrine CA. Best. Pract. Res. Clin. Endocrinol. Metab. 2006, 20, 235–244. [Google Scholar] [CrossRef]
- Xing, C.; Zhang, J.; Zhao, H.; He, B. Effect of Sex Hormone-Binding Globulin on Polycystic Ovary Syndrome: Mechanisms, Manifestations, Genetics, and Treatment. Int. J. Womens Health 2022, 14, 91–105. [Google Scholar] [CrossRef]
- Yu, K.; Huang, Z.-Y.; Xu, X.-L.; Li, J.; Fu, X.-W.; Deng, S.-L. Estrogen Receptor Function: Impact on the Human Endometrium. Front. Endocrinol. 2022, 13, 827724. [Google Scholar] [CrossRef]
- Eriksson, U.J.; Swenne, I. Diabetes in Pregnancy: Fetal Macrosomia, Hyperinsulinism, and 1slet Hyperplasia in the Offspring of Rats Subjected to Temporary Protein-Energy Malnutrition Early in Life. Pediatr. Res. 1993, 34, 791–795. [Google Scholar] [CrossRef]
- Seely, E.W.; Solomon, C.G. Insulin Resistance and Its Potential Role in Pregnancy-Induced Hypertension. J. Clin. Endocrinol. Metab. 2003, 88, 2393–2398. [Google Scholar] [CrossRef]
- Franik, S.; Le, Q.-K.; Kremer, J.A.; Kiesel, L.; Farquhar, C. Aromatase Inhibitors (Letrozole) for Ovulation Induction in Infertile Women with Polycystic Ovary Syndrome. Cochrane Database Syst. Rev. 2022, 2022, CD010287. [Google Scholar] [CrossRef]
- Johnson, N.P. Metformin Use in Women with Polycystic Ovary Syndrome. Ann. Transl. Med. 2014, 2, 56. [Google Scholar] [CrossRef] [PubMed]
- Elnashar, A.M. The Role of Metformin in Ovulation Induction: Current Status. Middle East. Fertil. Soc. J. 2011, 16, 175–181. [Google Scholar] [CrossRef]
- Attia, G.M.; Almouteri, M.M.; Alnakhli, F.T. Role of Metformin in Polycystic Ovary Syndrome (PCOS)-Related Infertility. Cureus 2023, 15, e44493. [Google Scholar] [CrossRef] [PubMed]
- Lei, R.; Chen, S.; Li, W. Advances in the Study of the Correlation between Insulin Resistance and Infertility. Front. Endocrinol. 2024, 15, 1288326. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, Y.; Fang, X.; Kwak-Kim, J.; Wu, L. Insulin Resistance Adversely Affect IVF Outcomes in Lean Women Without PCOS. Front. Endocrinol. 2021, 12, 734638. [Google Scholar] [CrossRef]
- Malaza, N.; Masete, M.; Adam, S.; Dias, S.; Nyawo, T.; Pheiffer, C. A Systematic Review to Compare Adverse Pregnancy Outcomes in Women with Pregestational Diabetes and Gestational Diabetes. Int. J. Environ. Res. Public Health 2022, 19, 10846. [Google Scholar] [CrossRef]
- HAPO Study Cooperative Research Group. The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Int. J. Gynaecol. Obstet. Off. Organ. Int. Fed. Gynaecol. Obstet. 2002, 78, 69–77. [Google Scholar] [CrossRef]
- Ornoy, A.; Becker, M.; Weinstein-Fudim, L.; Ergaz, Z. Diabetes during Pregnancy: A Maternal Disease Complicating the Course of Pregnancy with Long-Term Deleterious Effects on the Offspring. A Clinical Review. Int. J. Mol. Sci. 2021, 22, 2965. [Google Scholar] [CrossRef]
- Affres, H.; Senat, M.-V.; Letourneau, A.; Deruelle, P.; Coustols-Valat, M.; Bouchghoul, H.; Bouyer, J. Glyburide Therapy for Gestational Diabetes: Glycaemic Control, Maternal Hypoglycaemia, and Treatment Failure. Diabetes Metab. 2021, 47, 101210. [Google Scholar] [CrossRef]
- Balsells, M.; García-Patterson, A.; Solà, I.; Roqué, M.; Gich, I.; Corcoy, R. Glibenclamide, Metformin, and Insulin for the Treatment of Gestational Diabetes: A Systematic Review and Meta-Analysis. BMJ 2015, 350, h102. [Google Scholar] [CrossRef]
- Subiabre, M.; Silva, L.; Toledo, F.; Paublo, M.; López, M.A.; Boric, M.P.; Sobrevia, L. Insulin Therapy and Its Consequences for the Mother, Foetus, and Newborn in Gestational Diabetes Mellitus. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2018, 1864, 2949–2956. [Google Scholar] [CrossRef] [PubMed]
- Priya, G.; Kalra, S. Metformin in the Management of Diabetes during Pregnancy and Lactation. Drugs Context 2018, 7, 212523. [Google Scholar] [CrossRef] [PubMed]
- Aroda, V.R.; Ratner, R.E. Metformin and Type 2 Diabetes Prevention. Diabetes Spectr. 2018, 31, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Jafari-Gharabaghlou, D.; Vaghari-Tabari, M.; Oghbaei, H.; Lotz, L.; Zarezadeh, R.; Rastgar Rezaei, Y.; Ranjkesh, M.; Nouri, M.; Fattahi, A.; Nikanfar, S.; et al. Role of Adipokines in Embryo Implantation. Endocr. Connect. 2021, 10, R267–R278. [Google Scholar] [CrossRef]
- González, R.R.; Caballero-Campo, P.; Jasper, M.; Mercader, A.; Devoto, L.; Pellicer, A.; Simon, C. Leptin and Leptin Receptor Are Expressed in the Human Endometrium and Endometrial Leptin Secretion Is Regulated by the Human Blastocyst. J. Clin. Endocrinol. Metab. 2000, 85, 4883–4888. [Google Scholar] [CrossRef]
- Malik, M.; Britten, J.; DeAngelis, A.; Catherino, W.H. Cross-Talk between Janus Kinase-Signal Transducer and Activator of Transcription Pathway and Transforming Growth Factor Beta Pathways and Increased collagen1A1 Production in Uterine Leiomyoma Cells. F&S Sci. 2020, 1, 206–220. [Google Scholar] [CrossRef]
- Makieva, S.; Giacomini, E.; Ottolina, J.; Sanchez, A.M.; Papaleo, E.; Viganò, P. Inside the Endometrial Cell Signaling Subway: Mind the Gap(s). Int. J. Mol. Sci. 2018, 19, 2477. [Google Scholar] [CrossRef]
- Garcia-Galiano, D.; Borges, B.C.; Allen, S.J.; Elias, C.F. PI3K Signaling in Leptin Receptor Cells: Role in Growth and Reproduction. J. Neuroendocr. 2019, 31, e12685. [Google Scholar] [CrossRef]
- Massimiani, M.; Lacconi, V.; La Civita, F.; Ticconi, C.; Rago, R.; Campagnolo, L. Molecular Signaling Regulating Endometrium–Blastocyst Crosstalk. Int. J. Mol. Sci. 2019, 21, 23. [Google Scholar] [CrossRef]
- Asimakopoulos, B.; Milousis, A.; Gioka, T.; Kabouromiti, G.; Gianisslis, G.; Troussa, A.; Simopoulou, M.; Katergari, S.; Tripsianis, G.; Nikolettos, N. Serum Pattern of Circulating Adipokines throughout the Physiological Menstrual Cycle. Endocr. J. 2009, 56, 425–433. [Google Scholar] [CrossRef]
- Ajala, O.M.; Ogunro, P.S.; Elusanmi, G.F.; Ogunyemi, O.E.; Bolarinde, A.A. Changes in Serum Leptin during Phases of Menstrual Cycle of Fertile Women: Relationship to Age Groups and Fertility. Int. J. Endocrinol. Metab. 2013, 11, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, K.; Mumford, S.L.; Schliep, K.C.; Kissell, K.A.; Perkins, N.J.; Wactawski-Wende, J.; Schisterman, E.F. Serum Leptin Levels and Reproductive Function during the Menstrual Cycle. Am. J. Obs. Gynecol. 2014, 210, 248.e1–248.e9. [Google Scholar] [CrossRef] [PubMed]
- Elias, C.F.; Purohit, D. Leptin Signaling and Circuits in Puberty and Fertility. Cell Mol. Life Sci. 2012, 70, 841–862. [Google Scholar] [CrossRef] [PubMed]
- Briffa, J.F.; McAinch, A.J.; Romano, T.; Wlodek, M.E.; Hryciw, D.H. Leptin in Pregnancy and Development: A Contributor to Adulthood Disease? Am. J. Physiol.-Endocrinol. Metabolism. 2015, 308, pp. E335–E350. Available online: https://journals.physiology.org/doi/full/10.1152/ajpendo.00312.2014 (accessed on 10 October 2024).
- Kim, T.H.; Bae, N.; Kim, T.; Hsu, A.L.; Hunter, M.I.; Shin, J.-H.; Jeong, J.-W. Leptin Stimulates Endometriosis Development in Mouse Models. Biomedicines 2022, 10, 2160. [Google Scholar] [CrossRef]
- Teh, W.-T.; McBain, J.; Rogers, P. What Is the Contribution of Embryo-Endometrial Asynchrony to Implantation Failure? J. Assist. Reprod. Genet. 2016, 33, 1419–1430. [Google Scholar] [CrossRef]
- Curtis, G.H.; Reeve, R.E.; Crespi, E.J. Leptin Signaling Promotes Blood Vessel Formation in the Xenopus Tail during the Embryo-Larval Transition. Dev. Biol. 2024, 512, 26–34. [Google Scholar] [CrossRef]
- Zenclussen, A.C.; Hämmerling, G.J. Cellular Regulation of the Uterine Microenvironment That Enables Embryo Implantation. Front. Immunol. 2015, 6, 321. [Google Scholar] [CrossRef]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef]
- Sharma, Y.; Galvão, A.M. Maternal Obesity and Ovarian Failure: Is Leptin the Culprit? Anim. Reprod. 2023, 19, e20230007. [Google Scholar] [CrossRef]
- Muhammad, T.; Wan, Y.; Lv, Y.; Li, H.; Naushad, W.; Chan, W.-Y.; Lu, G.; Chen, Z.-J.; Liu, H. Maternal Obesity: A Potential Disruptor of Female Fertility and Current Interventions to Reduce Associated Risks. Obes. Rev. 2023, 24, e13603. [Google Scholar] [CrossRef]
- Santoro, A.; Mattace Raso, G.; Meli, R. Drug Targeting of Leptin Resistance. Life Sci. 2015, 140, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Correia, M.L.G.; Haynes, W.G. Lessons from Leptin’s Molecular Biology: Potential Therapeutic Actions of Recombinant Leptin and Leptin-Related Compounds. Mini Rev. Med. Chem. 2007, 7, 31–38. [Google Scholar] [CrossRef]
- Jensterle, M.; Janez, A.; Fliers, E.; DeVries, J.H.; Vrtacnik-Bokal, E.; Siegelaar, S.E. The Role of Glucagon-like Peptide-1 in Reproduction: From Physiology to Therapeutic Perspective. Hum. Reprod. Update 2019, 25, 504–517. [Google Scholar] [CrossRef] [PubMed]
- Sáinz, N.; González-Navarro, C.J.; Martínez, J.A.; Moreno-Aliaga, M.J. Leptin Signaling as a Therapeutic Target of Obesity. Expert. Opin. Ther. Targets 2015, 19, 893–909. [Google Scholar] [CrossRef] [PubMed]
- Salazar, J.; Chávez-Castillo, M.; Rojas, J.; Ortega, A.; Nava, M.; Pérez, J.; Rojas, M.; Espinoza, C.; Chacin, M.; Herazo, Y.; et al. Is “Leptin Resistance” Another Key Resistance to Manage Type 2 Diabetes? Curr. Diabetes Rev. 2020, 16, 733–749. [Google Scholar] [CrossRef]
- Su, H.; Jiang, L.; Carter-Su, C.; Rui, L. Glucose Enhances Leptin Signaling through Modulation of AMPK Activity. PLoS ONE 2012, 7, e31636. [Google Scholar] [CrossRef]
- Pedroso, J.A.B.; Silveira, M.A.; Lima, L.B.; Furigo, I.C.; Zampieri, T.T.; Ramos-Lobo, A.M.; Buonfiglio, D.C.; Teixeira, P.D.S.; Frazão, R.; Donato, J., Jr. Changes in Leptin Signaling by SOCS3 Modulate Fasting-Induced Hyperphagia and Weight Regain in Mice. Endocrinology 2016, 157, 3901–3914. [Google Scholar] [CrossRef]
- Pérez-Pérez, A.; Sánchez-Jiménez, F.; Vilariño-García, T.; Sánchez-Margalet, V. Role of Leptin in Inflammation and Vice Versa. Int. J. Mol. Sci. 2020, 21, 5887. [Google Scholar] [CrossRef]
- Cerdó, T.; García-Santos, J.A.; Bermúdez, M.G.; Campoy, C. The Role of Probiotics and Prebiotics in the Prevention and Treatment of Obesity. Nutrients 2019, 11, 635. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 Fatty Acids and Inflammatory Processes. Nutrients 2010, 2, 355. [Google Scholar] [CrossRef]
- Franco, J.G.; Dias-Rocha, C.P.; Fernandes, T.P.; Albuquerque Maia, L.; Lisboa, P.C.; Moura, E.G.; Pazos-Moura, C.C.; Trevenzoli, I.H. Resveratrol Treatment Rescues Hyperleptinemia and Improves Hypothalamic Leptin Signaling Programmed by Maternal High-Fat Diet in Rats. Eur. J. Nutr. 2016, 55, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Yang, Y.; Saito, K.; Xu, P.; Wang, C.; Hinton, A.O., Jr.; Yan, X.; Wu, Q.; Tong, Q.; Elmquist, J.K.; et al. Meta-Chlorophenylpiperazine Enhances Leptin Sensitivity in Diet-Induced Obese Mice. Br. J. Pharmacol. 2015, 172, 3510–3521. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-W.; Kim, J.-Y.; Park, Y.-H.; Park, S.-Y.; Won, K.-C.; Choi, K.-H.; Huh, J.-Y.; Moon, K.-H. Metformin Restores Leptin Sensitivity in High-Fat–Fed Obese Rats With Leptin Resistance. Diabetes 2006, 55, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-J.; Park, S.-Y.; Kim, J.-Y.; Won, K.-C.; Kim, B.-R.; Son, J.-K.; Lee, S.-H.; Kim, Y.-W. Combined Treatment of Betulinic Acid, a PTP1B Inhibitor, with Orthosiphon Stamineus Extract Decreases Body Weight in High-Fat–Fed Mice. J. Med. Food 2013, 16, 2–8. [Google Scholar] [CrossRef]
- Shapiro, A.; Cheng, K.-Y.; Gao, Y.; Seo, D.; Anton, S.; Carter, C.S.; Zhang, Y.; Tumer, N.; Scarpace, P.J. The Act of Voluntary Wheel Running Reverses Dietary Hyperphagia and Increases Leptin Signaling in Ventral Tegmental Area of Aged Obese Rats. Gerontology 2010, 57, 335–342. [Google Scholar] [CrossRef]
- Kang, S.; Kim, K.B.; Shin, K.O. Exercise Training Improve Leptin Sensitivity in Peripheral Tissue of Obese Rats. Biochem. Biophys. Res. Commun. 2013, 435, 454–459. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šišljagić, D.; Blažetić, S.; Heffer, M.; Vranješ Delać, M.; Muller, A. The Interplay of Uterine Health and Obesity: A Comprehensive Review. Biomedicines 2024, 12, 2801. https://doi.org/10.3390/biomedicines12122801
Šišljagić D, Blažetić S, Heffer M, Vranješ Delać M, Muller A. The Interplay of Uterine Health and Obesity: A Comprehensive Review. Biomedicines. 2024; 12(12):2801. https://doi.org/10.3390/biomedicines12122801
Chicago/Turabian StyleŠišljagić, Dina, Senka Blažetić, Marija Heffer, Mihaela Vranješ Delać, and Andrijana Muller. 2024. "The Interplay of Uterine Health and Obesity: A Comprehensive Review" Biomedicines 12, no. 12: 2801. https://doi.org/10.3390/biomedicines12122801
APA StyleŠišljagić, D., Blažetić, S., Heffer, M., Vranješ Delać, M., & Muller, A. (2024). The Interplay of Uterine Health and Obesity: A Comprehensive Review. Biomedicines, 12(12), 2801. https://doi.org/10.3390/biomedicines12122801