A Prospective Cohort Study on the Effects of Repeated Acute Stress on Cortisol Awakening Response and Immune Function in Military Medical Students
<p>Intensive Surgical Skills Week schedule. Samples were collected at wake and 30 min post waking. Students go through hyper-realistic mass casualty and operating room simulations, going through each simulation two times over the duration of training.</p> "> Figure 2
<p>Daily mean percent change in AM salivary cortisol from waking to 30 min later (CAR) across all participants (n = 79) during repeated acute stress. Error bars represent the standard error of the mean (SEM). Results of pairwise comparisons between daily means are shown by the compact letter display. Two means with the same letter are not significantly different at the 0.05 level. Day 3 CAR is significantly reduced compared to all other days (D1, D3 <span class="html-italic">p</span> = 0.014), (D2, D3 <span class="html-italic">p</span> = 0.00006), (D4, D3 <span class="html-italic">p</span> = 0.0005). Day 1 average CAR = 67.28%, Day 2 = 84.45%, Day 3 = 21.30%, Day 4 = 78.83%. Typically, a healthy CAR is expected to be between 50 and 80%.</p> "> Figure 3
<p>Panels A-H represent daily average salivary interleukin levels in pg/mL at Time 1 (waking) and Time 2 (30 min post waking) during repeated acute stress. Error bars represent the SEM. Results of pairwise comparisons between average cytokine values at each time point are shown by the compact letter display. Two means with the same letter are not significantly different at the 0.05 level. All interleukins exhibited significant decreases in average salivary concentration from Time 1 to Time 2 in all days of the sampling period. IL-1a, IL-8 Il-15, IL-18, and IL-1RA, <span class="html-italic">p</span> < 0.0001. IL-6 Day 1, <span class="html-italic">p</span> = 0.0014; Day 2, <span class="html-italic">p</span> = 0.0124; Day 3, <span class="html-italic">p</span> = 0.0003; Day 4, <span class="html-italic">p</span> < 0.0001. IL-10 Day 1, <span class="html-italic">p</span> = 0.003; Day 2, <span class="html-italic">p</span> = 0.0056; Day 3, <span class="html-italic">p</span> = 0.0086; Day 4, <span class="html-italic">p</span> = 0.0098. IL-1B Day 1, <span class="html-italic">p</span> = 0.0001; Days 2–4, <span class="html-italic">p</span> < 0.0001. (<b>a</b>) IL-1a (n = 79), (<b>b</b>) IL-6 (n = 79), (<b>c</b>) IL-8 (n = 79), (<b>d</b>) IL-10 (n = 79), (<b>e</b>) IL-15 (n = 79), (<b>f</b>) IL-18 (n = 79), (<b>g</b>) IL-1β (n = 40), (<b>h</b>) IL-1RA (n = 79).</p> "> Figure 4
<p>Panels A-E represent daily average salivary growth factor levels in pg/mL at Time 1 (waking) and Time 2 (30 min post waking) during repeated acute stress. Error bars represent SEM. Results of pairwise comparisons between average cytokine values at each time point are shown by the compact letter display. Two means with the same letter are not significantly different at the 0.05 level. VEGF-A showed significant increases in the post wake period on all 4 days (<span class="html-italic">p</span> = 0.0059, <span class="html-italic">p</span> = 0.0105, <span class="html-italic">p</span> < 0.0001, <span class="html-italic">p</span> = 0.0155). PDGF-AA showed significant increases in the post wake period on Days 3 and 4 (<span class="html-italic">p</span> = 0.0001, <span class="html-italic">p</span> = 0.0005). EGF, showed significant decreases in the post wake period on all days (<span class="html-italic">p</span> < 0.0001). FGF-2 showed significant decreases on Days 1–3 (<span class="html-italic">p</span> < 0.0001, <span class="html-italic">p</span> = 0.0003, <span class="html-italic">p</span> = 0.008). TGFα showed a significant decrease on Day 3 (<span class="html-italic">p</span> = 0.011). (<b>a</b>) EGF (n = 79), (<b>b</b>) FGF-2 (n = 79), (<b>c</b>) VEGF-A (n = 79), (<b>d</b>) TGFα (n = 79), (<b>e</b>) PDGF-AA (n = 79).</p> "> Figure 5
<p>Panels A-F represent daily average salivary chemokine and miscellaneous cytokine levels in pg/mL at Time 1 (waking) and Time 2 (30 min post waking) during repeated acute stress. Error bars represent SEM. Results of pairwise comparisons between average cytokine values at each time point are shown by the compact letter display. Two means with the same letter are not significantly different at the 0.05 level. MCP-1 showed significant decreases in the post wake period on all 4 days (<span class="html-italic">p</span> < 0.0001). CX3CL1 showed decreases in salivary concentration in the post wake period on all days but only the decrease on Day 2 reached statistical significance (<span class="html-italic">p</span> = 0.0198). TNFα showed significant decreases in salivary concentration from Time 1 to Time 2 on all days (<span class="html-italic">p</span> = 0.0021, <span class="html-italic">p</span> = 0.0055, <span class="html-italic">p</span> < 0.0001, <span class="html-italic">p</span> = 0.0028). G-CSF levels do not show significant changes from Time 1 to Time 2 on any day; however, overall levels are significantly decreased between Day 3 and Day 4 (T1 <span class="html-italic">p</span> = 0.0028, T2 <span class="html-italic">p</span> = 0.0001). (<b>a</b>) CXCL1 (n = 79), (<b>b</b>) CX1CL3 (n = 40), (<b>c</b>) MCP-1 (n = 79), (<b>d</b>) IFNγ (n = 40), (<b>e</b>) TNFα (n = 40), (<b>f</b>) G-CSF (n = 40).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Limitations/Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Contreras, C.M.; Gutierrez-Garcia, A.G. Cortisol Awakening Response: An Ancient Adaptive Feature. J. Psychiatry Psychiatr. Disord. 2018, 2, 29–40. [Google Scholar] [CrossRef]
- Ivkovic, N.; Racic, M. Biomarkers of Stress in Saliva/Biomarkeri Stresa u Pljuvački. Acta Fac. Medicae Naissensis 2015, 32, 91–99. [Google Scholar] [CrossRef]
- Parkin, G.M.; Kim, S.; Mikhail, A.; Malhas, R.; McMillan, L.; Hollearn, M.; Granger, D.A.; Mapstone, M.; Yassa, M.A.; Thomas, E.A. Associations between Saliva and Plasma Cytokines in Cognitively Normal, Older Adults. Aging Clin. Exp. Res. 2023, 35, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Bowles, N.P.; Thosar, S.S.; Butler, M.P.; Clemons, N.A.; Robinson, L.D.; Ordaz, O.H.; Herzig, M.X.; McHill, A.W.; Rice, S.P.M.; Emens, J.; et al. The Circadian System Modulates the Cortisol Awakening Response in Humans. Front. Neurosci. 2022, 16, 995452. [Google Scholar] [CrossRef] [PubMed]
- Dickmeis, T. Glucocorticoids and the Circadian Clock. J. Endocrinol. 2009, 200, 3–22. [Google Scholar] [CrossRef]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions*. Endocr. Rev. 2000, 21, 55–89. [Google Scholar] [CrossRef]
- Pruessner, J.C.; Wolf, O.T.; Hellhammer, D.H.; Buske-Kirschbaum, A.; von Auer, K.; Jobst, S.; Kaspers, F.; Kirschbaum, C. Free Cortisol Levels after Awakening: A Reliable Biological Marker for the Assessment of Adrenocortical Activity. Life Sci. 1997, 61, 2539–2549. [Google Scholar] [CrossRef]
- Almeida, D.M.; Piazza, J.R.; Stawski, R.S. Interindividual Differences and Intraindividual Variability in the Cortisol Awakening Response: An Examination of Age and Gender. Psychol. Aging 2009, 24, 819–827. [Google Scholar] [CrossRef]
- Elder, G.J.; Ellis, J.G.; Barclay, N.L.; Wetherell, M.A. Assessing the Daily Stability of the Cortisol Awakening Response in a Controlled Environment. BMC Psychol. 2016, 4, 3. [Google Scholar] [CrossRef]
- Wetherell, M.A.; Lovell, B.; Smith, M.A. The Effects of an Anticipated Challenge on Diurnal Cortisol Secretion. Stress 2015, 18, 42–48. [Google Scholar] [CrossRef]
- Fries, E.; Dettenborn, L.; Kirschbaum, C. The Cortisol Awakening Response (CAR): Facts and Future Directions. Int. J. Psychophysiol. 2009, 72, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Kern, S.; Krause, I.; Horntrich, A.; Thomas, K.; Aderhold, J.; Ziemssen, T. Cortisol Awakening Response Is Linked to Disease Course and Progression in Multiple Sclerosis. PLoS ONE 2013, 8, e60647. [Google Scholar] [CrossRef] [PubMed]
- Dedovic, K.; Ngiam, J. The Cortisol Awakening Response and Major Depression: Examining the Evidence. Neuropsychiatr. Dis. Treat. 2015, 11, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Yuan, Y.; Zhang, L.; Qin, S.; Zhang, K.; Buchanan, T.W.; Wu, J. Chronic Stress Exposure Decreases the Cortisol Awakening Response in Healthy Young Men. Stress 2013, 16, 630–637. [Google Scholar] [CrossRef]
- O’Connor, D.B.; Hendrickx, H.; Dadd, T.; Elliman, T.D.; Willis, T.A.; Talbot, D.; Mayes, A.E.; Thethi, K.; Powell, J.; Dye, L. Cortisol Awakening Rise in Middle-Aged Women in Relation to Psychological Stress. Psychoneuroendocrinology 2009, 34, 1486–1494. [Google Scholar] [CrossRef] [PubMed]
- Segerstrom, S.C.; Miller, G.E. Psychological Stress and the Human Immune System: A Meta-Analytic Study of 30 Years of Inquiry. Psychol. Bull. 2004, 130, 601–630. [Google Scholar] [CrossRef]
- Mavroudis, P.D.; Corbett, S.A.; Calvano, S.E.; Androulakis, I.P. Circadian Characteristics of Permissive and Suppressive Effects of Cortisol and Their Role in Homeostasis and the Acute Inflammatory Response. Math. Biosci. 2015, 260, 54–64. [Google Scholar] [CrossRef]
- Poller, W.C.; Downey, J.; Mooslechner, A.A.; Khan, N.; Li, L.; Chan, C.T.; McAlpine, C.S.; Xu, C.; Kahles, F.; He, S.; et al. Brain Motor and Fear Circuits Regulate Leukocytes during Acute Stress. Nature 2022, 607, 578–584. [Google Scholar] [CrossRef]
- Mueller, G.; Hunt, B.; Wall, V.; Rush, R.M.; Moloff, A.; Schoeff, J.; Wedmore, I.; Schmid, J.; LaPorta, A.J. Intensive Skills Week for Military Medical Students Increases Technical Proficiency, Confidence, and Skills to Minimize Negative Stress. J. Spec. Oper. Med. 2012, 12, 45–53. [Google Scholar] [CrossRef]
- Hoang, T.N.; LaPorta, A.J.; Malone, J.D.; Champagne, R.; Lavell, K.; De La Rosa, G.M.; Gaul, L.; Dukovich, M. Hyper-Realistic and Immersive Surgical Simulation Training Environment Will Improve Team Performance. Trauma. Surg. Acute Care Open 2020, 5, e000393. [Google Scholar] [CrossRef]
- Crouse Flesch, M.; Shannon, A.; Peterson, T.; Puri, K.; Edwards, J.; Cooper, S.; Clodfelder, C.; LaPorta, A.J.; Gubler, K.D.; Ryznar, R. Objective Response of Saliva Biomarkers After High-Stress and Mass Casualty Scenarios: A Pilot Study. J. Surg. Res. 2024, 302, 533–539. [Google Scholar] [CrossRef] [PubMed]
- West, E.; Singer-Chang, G.; Ryznar, R.; Ross, D.; Czekajlo, M.; Hoang, T.; Alson, R.; Berbel, G.; Moloff, A.; Safaoui, M.; et al. The Effect of Hyper-Realistic Trauma Training on Emotional Intelligence in Second Year Military Medical Students. J. Surg. Educ. 2020, 77, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
- Ryznar, R.; Wong, C.; Onat, E.; Towne, F.; LaPorta, A.; Payton, M. Principal Component Analysis of Salivary Cytokines and Hormones in the Acute Stress Response. Front. Psychiatry 2022, 13, 957545. [Google Scholar] [CrossRef] [PubMed]
- SAS. SAS/STAT® 15.3 User’s Guide; Version 9.4; SAS Institute Inc.: Cary, NC, USA, 2023. [Google Scholar]
- Graphpad Prism; Version 10.2.3; Graphpad Software Inc.: San Diego, CA, USA, 2024.
- PowerPoint; Version 2410; Microsoft Corporation: Redmond, WA, USA, 2021.
- Curtin, N.; Boyle, N.; Mills, K.; Conner, T. Psychological Stress Suppresses Innate IFN-γ Production via Glucocorticoid Receptor Activation: Reversal by the Anxiolytic Chlordiazepoxide—Record Details—EBSCO Discovery Service. Brain Behav. Immun. 2009, 23, 535–547. [Google Scholar] [CrossRef]
- Kak, G.; Raza, M.; Tiwari, B.K. Interferon-Gamma (IFN-γ): Exploring Its Implications in Infectious Diseases. Biomol. Concepts 2018, 9, 64–79. [Google Scholar] [CrossRef]
- Labrecque, N.; Cermakian, N. Circadian Clocks in the Immune System. J. Biol. Rhythm. 2015, 30, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Waggoner, S.N. Circadian Rhythms in Immunity. Curr. Allergy Asthma Rep. 2020, 20, 2. [Google Scholar] [CrossRef]
- Oosterholt, B.; Maes, J.; Van der Linden, D.; Verbraak, M.; Kompier, M. Burnout and Cortisol: Evidence for a Lower Cortisol Awakening Response in Both Clinical and Non-Clinical Burnout—ClinicalKey. J. Psychosom. Res. 2015, 8, 445–451. [Google Scholar] [CrossRef]
- Violanti, J.; Fekedulegn, D.; Andrew, M.; Hartley, T.; Charles, L.; Miller, D.; Burchfiel, C. The Impact of Perceived Intensity and Frequency of Police Work Occupational Stressors on the Cortisol Awakening Response (CAR): Findings from the BCOPS Study—ClinicalKey. Psychoneuroendocrinology 2017, 75, 124–131. [Google Scholar] [CrossRef]
- Cohen, S.; Janicki-Deverts, D.; Doyle, W.J.; Miller, G.E.; Frank, E.; Rabin, B.S.; Turner, R.B. Chronic Stress, Glucocorticoid Receptor Resistance, Inflammation, and Disease Risk. Proc. Natl. Acad. Sci. USA 2012, 109, 5995–5999. [Google Scholar] [CrossRef]
- Girbl, T.; Lenn, T.; Perez, L.; Rolas, L.; Barkaway, A.; Thiriot, A.; Del Fresno, C.; Lynam, E.; Hub, E.; Thelen, M.; et al. Distinct Compartmentalization of the Chemokines CXCL1 and CXCL2 and the Atypical Receptor ACKR1 Determine Discrete Stages of Neutrophil Diapedesis. Immunity 2018, 49, 1062–1076.e6. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed]
- Darcy, J.; Tseng, Y.-H. The Link between Stress and IL-6 Is Heating Up. Cell Metab. 2020, 32, 152–153. [Google Scholar] [CrossRef] [PubMed]
- Knight, E.L.; Jiang, Y.; Rodriguez-Stanley, J.; Almeida, D.M.; Engeland, C.G.; Zilioli, S. Perceived Stress Is Linked to Heightened Biomarkers of Inflammation via Diurnal Cortisol in a National Sample of Adults. Brain Behav. Immun. 2021, 93, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Wolkow, A.; Aisbett, B.; Reynolds, J.; Ferguson, S.A.; Main, L.C. Relationships between Inflammatory Cytokine and Cortisol Responses in Firefighters Exposed to Simulated Wildfire Suppression Work and Sleep Restriction. Physiol. Rep. 2015, 3, e12604. [Google Scholar] [CrossRef]
- DeSantis, A.S.; DiezRoux, A.V.; Hajat, A.; Aiello, A.E.; Golden, S.H.; Jenny, N.S.; Seeman, T.E.; Shea, S. Associations of Salivary Cortisol Levels with Inflammatory Markers: The Multi-Ethnic Study of Atherosclerosis. Psychoneuroendocrinology 2012, 37, 1009–1018. [Google Scholar] [CrossRef]
- Saraiva, M.; Vieira, P.; O’Garra, A. Biology and Therapeutic Potential of Interleukin-10. J. Exp. Med. 2020, 217, e20190418. [Google Scholar] [CrossRef]
- Wright, K.P.; Drake, A.L.; Frey, D.J.; Fleshner, M.; Desouza, C.A.; Gronfier, C.; Czeisler, C.A. Influence of Sleep Deprivation and Circadian Misalignment on Cortisol, Inflammatory Markers, and Cytokine Balance. Brain Behav. Immun. 2015, 47, 24–34. [Google Scholar] [CrossRef]
- Vaseghi, S.; Mostafavijabbari, A.; Alizadeh, M.-S.; Ghaffarzadegan, R.; Kholghi, G.; Zarrindast, M. Intricate Role of Sleep Deprivation in Modulating Depression: Focusing on BDNF, VEGF, Serotonin, Cortisol, and TNF-α. Metab. Brain Dis. 2023, 38, 195–219. [Google Scholar] [CrossRef]
- Warner-Schmidt, J.L.; Duman, R.S. VEGF as a Potential Target for Therapeutic Intervention in Depression. Curr. Opin. Pharmacol. 2008, 8, 14–19. [Google Scholar] [CrossRef]
- Elfving, B.; Jakobsen, J.L.; Madsen, J.C.B.; Wegener, G.; Müller, H.K. Chronic Restraint Stress Increases the Protein Expression of VEGF and Its Receptor VEGFR-2 in the Prefrontal Cortex. Synapse 2015, 69, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Novel Biochemical Markers of Psychosocial Stress in Women|PLoS ONE. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003590 (accessed on 21 July 2024).
- Frank, M.G.; Der-Avakian, A.; Bland, S.T.; Watkins, L.R.; Maier, S.F. Stress-Induced Glucocorticoids Suppress the Antisense Molecular Regulation of FGF-2 Expression. Psychoneuroendocrinology 2007, 32, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Bryant, E.M.; Richardson, R.; Graham, B.M. The Association Between Salivary FGF2 and Physiological and Psychological Components of the Human Stress Response. Chronic Stress 2022, 6, 24705470221114787. [Google Scholar] [CrossRef] [PubMed]
- Sohan, M.; Qusar, M.M.A.S.; Shahriar, M.; Islam, S.M.A.; Bhuiyan, M.A.; Islam, M.R. Association of Reduced Serum EGF and Leptin Levels with the Pathophysiology of Major Depressive Disorder: A Case-Control Study. PLoS ONE 2023, 18, e0288159. [Google Scholar] [CrossRef]
- Chai, H.-H.; Fu, X.-C.; Ma, L.; Sun, H.-T.; Chen, G.-Z.; Song, M.-Y.; Chen, W.-X.; Chen, Y.-S.; Tan, M.-X.; Guo, Y.-W.; et al. The Chemokine CXCL1 and Its Receptor CXCR2 Contribute to Chronic Stress-Induced Depression in Mice. FASEB J. 2019, 33, 8853–8864. [Google Scholar] [CrossRef]
- Li, B.; Wang, B.; Chen, M.; Li, G.; Fang, M.; Zhai, J. Expression and Interaction of TNF-α and VEGF in Chronic Stress-Induced Depressive Rats. Exp. Ther. Med. 2015, 10, 863–868. [Google Scholar] [CrossRef]
- Elfving, B.; Buttenschøn, H.N.; Foldager, L.; Poulsen, P.H.P.; Grynderup, M.B.; Hansen, Å.M.; Kolstad, H.A.; Kaerlev, L.; Mikkelsen, S.; Børglum, A.D.; et al. Depression and BMI Influences the Serum Vascular Endothelial Growth Factor Level. Int. J. Neuropsychopharmacol. 2014, 17, 1409–1417. [Google Scholar] [CrossRef]
- Liu, X.; Albano, R.; Lobner, D. FGF-2 Induces Neuronal Death through Upregulation of System Xc-. Brain Res. 2014, 1547, 25–33. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.-X.; Chen, X.; Qin, X.-Y.; Kardami, E.; Cheng, Y. Antidepressant-Like Effects of Low- and High-Molecular Weight FGF-2 on Chronic Unpredictable Mild Stress Mice. Front. Mol. Neurosci. 2018, 11, 377. [Google Scholar] [CrossRef]
- Bryant, E.M.; Richardson, R.; Graham, B.M. The Relationship between Salivary Fibroblast Growth Factor-2 and Cortisol Reactivity and Psychological Outcomes Prior to and during the COVID-19 Pandemic. J. Affect. Disord. Rep. 2023, 13, 100606. [Google Scholar] [CrossRef]
- Li, J.; Tong, L.; Schock, B.C.; Ji, L.-L. Post-Traumatic Stress Disorder: Focus on Neuroinflammation. Mol. Neurobiol. 2023, 60, 3963–3978. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zheng, J.; Ma, J.; Li, D.; Gu, Q.; Chen, S.; Wang, Z.; Sun, W.; Li, M. Correlation between Serum IGF-1 and EGF Levels and Neuropsychiatric and Cognitive in Parkinson’s Disease Patients. Neurol. Sci. 2023, 44, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.M. Fibroblast Growth Factor-2: A Promising Biomarker for Anxiety and Trauma Disorders. J. Exp. Neurosci. 2017, 11, 1179069517749589. [Google Scholar] [CrossRef] [PubMed]
- Carlini, V.; Noonan, D.M.; Abdalalem, E.; Goletti, D.; Sansone, C.; Calabrone, L.; Albini, A. The Multifaceted Nature of IL-10: Regulation, Role in Immunological Homeostasis and Its Relevance to Cancer, COVID-19 and Post-COVID Conditions. Front. Immunol. 2023, 14, 1161067. [Google Scholar] [CrossRef] [PubMed]
- Ménard, C.; Pfau, M.L.; Hodes, G.E.; Russo, S.J. Immune and Neuroendocrine Mechanisms of Stress Vulnerability and Resilience. Neuropsychopharmacology 2017, 42, 62–80. [Google Scholar] [CrossRef]
- Wong, C.; Patel, S.; LaPorta, A.; Towne, F.; Gubler, K.D.; Bartone, P.; Ryznar, R. Correlation Analysis of Salivary Cytokines and Hormones with Resiliency. J. Trauma. Acute Care Surg. 2023, 95, 664–671. [Google Scholar] [CrossRef]
- Frank, M.G.; Watkins, L.R.; Maier, S.F. The Permissive Role of Glucocorticoids in Neuroinflammatory Priming: Mechanisms and Insights. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 300. [Google Scholar] [CrossRef]
- Joseph, J.J.; Golden, S.H. Cortisol Dysregulation: The Bidirectional Link between Stress, Depression, and Type 2 Diabetes Mellitus. Ann. N. Y Acad. Sci. 2017, 1391, 20–34. [Google Scholar] [CrossRef]
- Gartland, N.; O’Connor, D.B.; Lawton, R.; Bristow, M. Exploring Day-to-Day Dynamics of Daily Stressor Appraisals, Physical Symptoms and the Cortisol Awakening Response. Psychoneuroendocrinology 2014, 50, 130–138. [Google Scholar] [CrossRef]
- Lenaert, B.; Barry, T.J.; Schruers, K.; Vervliet, B.; Hermans, D. Emotional Attentional Control Predicts Changes in Diurnal Cortisol Secretion Following Exposure to a Prolonged Psychosocial Stressor. Psychoneuroendocrinology 2016, 63, 291–295. [Google Scholar] [CrossRef]
- Mueller, G.; Moloff, A.; Wedmore, I.; Schoeff, J.; LaPorta, A.J. High Intensity Scenario Training of Military Medical Students to Increase Learning Capacity and Management of Stress Response. J. Spec. Oper. Med. 2012, 12, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Stalder, T.; Oster, H.; Abelson, J.L.; Huthsteiner, K.; Klucken, T.; Clow, A. The Cortisol Awakening Response: Regulation and Functional Significance. Endocr. Rev. 2024, bnae024. [Google Scholar] [CrossRef] [PubMed]
- Flood, A.; Keegan, R.J. Cognitive Resilience to Psychological Stress in Military Personnel. Front. Psychol. 2022, 13, 809003. [Google Scholar] [CrossRef] [PubMed]
- Clough, B.A.; March, S.; Chan, R.J.; Casey, L.M.; Phillips, R.; Ireland, M.J. Psychosocial Interventions for Managing Occupational Stress and Burnout among Medical Doctors: A Systematic Review. Syst. Rev. 2017, 6, 144. [Google Scholar] [CrossRef] [PubMed]
- Karl, S.; Johar, H.; Ladwig, K.-H.; Peters, A.; Lederbogen, F. Dysregulated Diurnal Cortisol Patterns Are Associated with Cardiovascular Mortality: Findings from the KORA-F3 Study. Psychoneuroendocrinology 2022, 141, 105753. [Google Scholar] [CrossRef]
- Roy, R.; Dang, U.J.; Huffman, K.M.; Alayi, T.; Hathout, Y.; Nagaraju, K.; Visich, P.S.; Hoffman, E.P. A Population-Based Study of Children Suggests Blunted Morning Cortisol Rhythms Are Associated with Alterations of the Systemic Inflammatory State. Psychoneuroendocrinology 2024, 159, 106411. [Google Scholar] [CrossRef]
- Degering, M.; Linz, R.; Puhlmann, L.M.C.; Singer, T.; Engert, V. Revisiting the Stress Recovery Hypothesis: Differential Associations of Cortisol Stress Reactivity and Recovery after Acute Psychosocial Stress with Markers of Long-Term Stress and Health. Brain Behav. Immun. Health 2023, 28, 100598. [Google Scholar] [CrossRef]
- Dedovic, K.; Engert, V.; Duchesne, A.; Lue, S.D.; Andrews, J.; Efanov, S.I.; Beaudry, T.; Pruessner, J.C. Cortisol Awakening Response and Hippocampal Volume: Vulnerability for Major Depressive Disorder? Biol. Psychiatry 2010, 68, 847–853. [Google Scholar] [CrossRef]
- Anand, K.S.; Dhikav, V. Hippocampus in Health and Disease: An Overview. Ann. Indian. Acad. Neurol. 2012, 15, 239. [Google Scholar] [CrossRef]
- Bruehl, H.; Wolf, O.T.; Convit, A. A Blunted Cortisol Awakening Response and Hippocampal Atrophy in Type 2 Diabetes Mellitus. Psychoneuroendocrinology 2009, 34, 815–821. [Google Scholar] [CrossRef]
- Sapolsky, R.M. The Possibility of Neurotoxicity in the Hippocampus in Major Depression: A Primer on Neuron Death. Biol. Psychiatry 2000, 48, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Litteljohn, D.; Nelson, E.; Hayley, S. IFN-γ Differentially Modulates Memory-Related Processes under Basal and Chronic Stressor Conditions. Front. Cell. Neurosci. 2014, 8, 391. [Google Scholar] [CrossRef] [PubMed]
- Sudheimer, K.D.; O’Hara, R.; Spiegel, D.; Powers, B.; Kraemer, H.C.; Neri, E.; Weiner, M.; Hardan, A.; Hallmayer, J.; Dhabhar, F.S. Cortisol, Cytokines, and Hippocampal Volume Interactions in the Elderly. Front. Aging Neurosci. 2014, 6, 153. [Google Scholar] [CrossRef]
- Mandal, G.; Kirkpatrick, M.; Alboni, S.; Mariani, N.; Pariante, C.M.; Borsini, A. Ketamine Prevents Inflammation-Induced Reduction of Human Hippocampal Neurogenesis via Inhibiting the Production of Neurotoxic Metabolites of the Kynurenine Pathway. Int. J. Neuropsychopharmacol. 2024, 27, pyae041. [Google Scholar] [CrossRef] [PubMed]
- Ozgocer, T.; Ucar, C.; Yildiz, S. Cortisol Awakening Response Is Blunted and Pain Perception Is Increased during Menses in Cyclic Women. Psychoneuroendocrinology 2017, 77, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Clow, A.; Thorn, L.; Evans, P.; Hucklebridge, F. The Awakening Cortisol Response: Methodological Issues and Significance. Stress 2004, 7, 29–37. [Google Scholar] [CrossRef]
- Smyth, N.; Thorn, L.; Hucklebridge, F.; Clow, A.; Evans, P. Assessment of the Cortisol Awakening Response: Real-Time Analysis and Curvilinear Effects of Sample Timing Inaccuracy. Psychoneuroendocrinology 2016, 74, 380–386. [Google Scholar] [CrossRef]
Sample Characteristic | n | % | Mean | SD | |
---|---|---|---|---|---|
Gender | |||||
Male | 51 | 63.75% | |||
Female | 29 | 36.25% | |||
Race | |||||
White | 70 | 87.5% | |||
Asian | 4 | 5% | |||
Black | 3 | 3.75% | |||
Multiracial | 3 | 3.75% | |||
Ethnicity | |||||
Hispanic | 5 | 6.25% | |||
Non-Hispanic | 75 | 93.75% | |||
Previous Military Service | |||||
Yes | 9 | 11.25% | |||
No | 71 | 88.75% | |||
Previous Combat Experience | |||||
Yes | 0 | 0% | |||
No | 80 | 100% | |||
Age (years) | 26.63 | 2.18 |
Cytokine | r | r2 | p-Value |
---|---|---|---|
CXCL1 | 0.2 | 0.04 | 0.0005 |
IL-6 | 0.13 | 0.017 | 0.02 |
IL-10 | 0.14 | 0.02 | 0.02 |
VEGF-A | 0.17 | 0.029 | 0.003 |
Cytokine (Day 3 T1) | r | r2 | p-Value |
---|---|---|---|
CXCL1 | 0.41 | 0.17 | 0.0002 |
IL-6 | 0.38 | 0.14 | 0.0006 |
IL-10 | 0.3 | 0.09 | 0.008 |
VEGF-A | 0.41 | 0.17 | 0.0002 |
Cytokine (Day 4 T1) | r | r2 | p-Value |
---|---|---|---|
EGF | 0.27 | 0.073 | 0.02 |
FGF-2 | −0.29 | 0.084 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Propp, M.A.; Paz, D.; Makhkamov, S.; Payton, M.E.; Choudhury, Q.; Nutter, M.; Ryznar, R. A Prospective Cohort Study on the Effects of Repeated Acute Stress on Cortisol Awakening Response and Immune Function in Military Medical Students. Biomedicines 2024, 12, 2519. https://doi.org/10.3390/biomedicines12112519
Propp MA, Paz D, Makhkamov S, Payton ME, Choudhury Q, Nutter M, Ryznar R. A Prospective Cohort Study on the Effects of Repeated Acute Stress on Cortisol Awakening Response and Immune Function in Military Medical Students. Biomedicines. 2024; 12(11):2519. https://doi.org/10.3390/biomedicines12112519
Chicago/Turabian StylePropp, Madison A., Dean Paz, Sukhrob Makhkamov, Mark E. Payton, Qamrul Choudhury, Melodie Nutter, and Rebecca Ryznar. 2024. "A Prospective Cohort Study on the Effects of Repeated Acute Stress on Cortisol Awakening Response and Immune Function in Military Medical Students" Biomedicines 12, no. 11: 2519. https://doi.org/10.3390/biomedicines12112519
APA StylePropp, M. A., Paz, D., Makhkamov, S., Payton, M. E., Choudhury, Q., Nutter, M., & Ryznar, R. (2024). A Prospective Cohort Study on the Effects of Repeated Acute Stress on Cortisol Awakening Response and Immune Function in Military Medical Students. Biomedicines, 12(11), 2519. https://doi.org/10.3390/biomedicines12112519