Digital Detection of Olive Oil Rancidity Levels and Aroma Profiles Using Near-Infrared Spectroscopy, a Low-Cost Electronic Nose and Machine Learning Modelling
<p>Artificial neural network models for (<b>A</b>) classification (Models 1 and 2), and (<b>B</b>) regression (Models 3 and 4), showing the inputs, targets/outputs, and number of neurons used for each.</p> "> Figure 2
<p>Chemical fingerprinting from near-infrared spectroscopy (1596–2396 nm) using (<b>A</b>) the raw signal and (<b>B</b>) the Savitzky–Golay first derivative.</p> "> Figure 3
<p>Stacked bars graph with mean values of the electronic nose outputs. Error bars depict the standard error. Different letters (a–i) represent significant differences between samples based on the least significant difference (LSD) <span class="html-italic">post hoc</span> test (<span class="html-italic">p</span> < 0.05). Abbreviations: R: Rancid; C: Control; OO: Olive oil; L at the start: Low; L at the end: Light; M at the start: Medium; M at the end: medium strength or classic flavor; H: High; S: strong or robust flavor; CP: cold press.</p> "> Figure 4
<p>Matrix showing significant correlations (<span class="html-italic">p</span> < 0.05) between the volatile aromatic compounds and e-nose gas sensors. Abbreviations: MQ3: alcohol; MQ4: methane; MQ7: carbon monoxide; MQ8: hydrogen; MQ135: ammonia, alcohol, and benzene; MQ137: ammonia; MQ138: benzene, alcohol, and ammonia; MG811: carbon dioxide.</p> "> Figure 5
<p>Receiver operating characteristics curves for (<b>A</b>) Model 1 developed using near-infrared spectroscopy absorbance values, and (<b>B</b>) Model 2 developed using electronic nose outputs as inputs. Abbreviations: R: Rancid; C: Control; OO: Olive oil; L at the start: Low; L at the end: Light; M at the start: Medium; M at the end: medium strength or classic flavor; H: High; S: strong or robust flavor; CP: cold press.</p> "> Figure 6
<p>Overall artificial neural network regression models developed with (<b>A</b>) the near-infrared absorbance values (Model 3) and (<b>B</b>) the electronic nose voltage values (Model 4) as inputs to predict the peak area of volatile aromatic compounds.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Description
2.2. Gas Chromatography/Mass Spectroscopy
2.3. Near-Infrared Spectroscopy
2.4. Electronic Nose
2.5. Statistical Analysis and Machine Learning Modeling
3. Results and Discussion
3.1. Volatile Aromatic Compounds from GC-MS
3.2. Near-Infrared Spectroscopy
3.3. Electronic Nose
3.4. Correlations between Volatile Aromatic Compounds (GC-MS) and E-Nose Gas Sensors
3.5. Machine Learning Modelling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahbandeh, M. Consumption of Olive Oil Worldwide from 2012/13 to 2020/21. Available online: https://www-statista-com.eu1.proxy.openathens.net/statistics/940491/olive-oil-consumption-worldwide/#statisticContainer (accessed on 8 February 2022).
- Teres, S.; Barceló-Coblijn, G.; Benet, M.; Alvarez, R.; Bressani, R.; Halver, J.E.; Escriba, P. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc. Natl. Acad. Sci. USA 2008, 105, 13811–13816. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Hoffmann, G. Monounsaturated fatty acids, olive oil and health status: A systematic review and meta-analysis of cohort studies. Lipids Health Dis. 2014, 13, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piscopo, A.; Poiana, M. Packaging and storage of olive oil. In Olive Germplasm—The Olive Cultivation, Table Olive and Olive Oil Industry in Italy; InTechOpen: London, UK, 2012; pp. 201–222. [Google Scholar]
- Savarese, M.; Caporaso, N.; Parisini, C.; Paduano, A.; De Marco, E.; Sacchi, R. Application of an electronic nose for the evaluation of rancidity and shelf life in virgin olive oil. In Proceedings of the Electronic International Interdisciplinary Conference, Virtual, 2–6 September 2013; pp. 361–366. [Google Scholar]
- Harwood, J.; Aparicio, R. Handbook of Olive Oil: Analysis and Properties; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Gámbaro, A.; Ellis, A.C.; Raggio, L. Virgin olive oil acceptability in emerging olive oil-producing countries. Food Nutr. Sci. 2013, 4, 37230. [Google Scholar] [CrossRef] [Green Version]
- Aparicio, R.; Morales, M.T.; García-González, D.L. Towards new analyses of aroma and volatiles to understand sensory perception of olive oil. Eur. J. Lipid Sci. Technol. 2012, 114, 1114–1125. [Google Scholar] [CrossRef]
- Morales, M.; Rios, J.; Aparicio, R. Changes in the volatile composition of virgin olive oil during oxidation: Flavors and off-flavors. J. Agric. Food Chem. 1997, 45, 2666–2673. [Google Scholar] [CrossRef]
- Barthel, G.; Grosch, W. Peroxide value determination—Comparison of some methods. J. Am. Oil Chem. Soc. 1974, 51, 540–544. [Google Scholar] [CrossRef]
- Morales, M.; Luna, G.; Aparicio, R. Comparative study of virgin olive oil sensory defects. Food Chem. 2005, 91, 293–301. [Google Scholar] [CrossRef]
- Christy, A.A.; Kasemsumran, S.; Du, Y.; Ozaki, Y. The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics. Anal. Sci. 2004, 20, 935–940. [Google Scholar] [CrossRef] [Green Version]
- Milinovic, J.; Garcia, R.; Rato, A.E.; Cabrita, M.J. Rapid Assessment of Monovarietal Portuguese Extra Virgin Olive Oil's (EVOO's) Fatty Acids by Fourier-Transform Near-Infrared Spectroscopy (FT-NIRS). Eur. J. Lipid Sci. Technol. 2019, 121, 1800392. [Google Scholar] [CrossRef]
- Lerma-García, M.; Cerretani, L.; Cevoli, C.; Simó-Alfonso, E.; Bendini, A.; Toschi, T.G. Use of electronic nose to determine defect percentage in oils. Comparison with sensory panel results. Sens. Actuators B Chem. 2010, 147, 283–289. [Google Scholar] [CrossRef]
- Cano Marchal, P.; Sanmartin, C.; Satorres Martínez, S.; Gómez Ortega, J.; Mencarelli, F.; Gámez García, J. Prediction of fruity aroma intensity and defect presence in virgin olive oil using an electronic nose. Sensors 2021, 21, 2298. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Howell, K.; Dunshea, F. Assessment of beer quality based on foamability and chemical composition using computer vision algorithms, near infrared spectroscopy and machine learning algorithms. J. Sci. Food Agric. 2018, 98, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Viejo, C.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sens. Actuators B Chem. 2020, 308, 127688. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Tongson, E.; Fuentes, S. Integrating a Low-Cost Electronic Nose and Machine Learning Modelling to Assess Coffee Aroma Profile and Intensity. Sensors 2021, 21, 2016. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Viejo, C.; Torrico, D.; Dunshea, F.; Fuentes, S. Development of Artificial Neural Network Models to Assess Beer Acceptability Based on Sensory Properties Using a Robotic Pourer: A Comparative Model Approach to Achieve an Artificial Intelligence System. Beverages 2019, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Martins, N.; Jiménez-Morillo, N.T.; Freitas, F.; Garcia, R.; Da Silva, M.G.; Cabrita, M.J. Revisiting 3D van Krevelen diagrams as a tool for the visualization of volatile profile of varietal olive oils from Alentejo region, Portugal. Talanta 2020, 207, 120276. [Google Scholar] [CrossRef] [PubMed]
- Kaftan, A.; Elmaci, Y. Aroma characterization of virgin olive oil from two Turkish olive varieties by SPME/GC/MS. Int. J. Food Prop. 2011, 14, 1160–1169. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Dynamic headspace/GC–MS to control the aroma fingerprint of extra-virgin olive oil from the same and different olive varieties. Food Control. 2012, 25, 684–695. [Google Scholar] [CrossRef]
- García-Vico, L.; Belaj, A.; Sánchez-Ortiz, A.; Martínez-Rivas, J.M.; Pérez, A.G.; Sanz, C. Volatile compound profiling by HS-SPME/GC-MS-FID of a core olive cultivar collection as a tool for aroma improvement of virgin olive oil. Molecules 2017, 22, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Good Scents Company. The Good Scents Company Information System. Available online: http://www.thegoodscentscompany.com/data/rw1038291.html (accessed on 3 September 2021).
- Da Costa, J.R.O.; Dal Bosco, S.M.; Ramos, R.C.d.S.; Machado, I.C.K.; Garavaglia, J.; Villasclaras, S.S. Determination of volatile compounds responsible for sensory characteristics from Brazilian extra virgin olive oil using HS-SPME/GC-MS direct method. J. Food Sci. 2020, 85, 3764–3775. [Google Scholar] [CrossRef] [PubMed]
- Ciurczak, E.W.; Igne, B.; Workman, J., Jr.; Burns, D.A. Handbook of Near-Infrared Analysis; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Borghi, F.T.; Santos, P.C.; Santos, F.D.; Nascimento, M.H.; Correa, T.; Cesconetto, M.; Pires, A.A.; Ribeiro, A.V.; Lacerda, V., Jr.; Romao, W. Quantification and classification of vegetable oils in extra virgin olive oil samples using a portable near-infrared spectrometer associated with chemometrics. Microchem. J. 2020, 159, 105544. [Google Scholar] [CrossRef]
- Burns, D.A.; Ciurczak, E.W. Handbook of Near-Infrared Analysis; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Cayuela, J.A.; García, J.F. Nondestructive measurement of squalene in olive oil by near infrared spectroscopy. LWT 2018, 88, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Pineda, M.; Rojas, M.; Gálvez-Valdivieso, G.; Aguilar, M. The origin of aliphatic hydrocarbons in olive oil. J. Sci. Food Agric. 2017, 97, 4827–4834. [Google Scholar] [CrossRef] [PubMed]
- Giuffrè, A.M. The effect of cultivar and harvest season on the n-alkane and the n-alkene composition of virgin olive oil. Eur. Food Res. Technol. 2021, 247, 25–36. [Google Scholar] [CrossRef]
- Moret, S.; Populin, T.; Conte, L.S. Mineral paraffins in olives and olive oils. In Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2010; pp. 499–506. [Google Scholar]
- Fountoulakis, M.; Drakopoulou, S.; Terzakis, S.; Georgaki, E.; Manios, T. Potential for methane production from typical Mediterranean agro-industrial by-products. Biomass Bioenergy 2008, 32, 155–161. [Google Scholar] [CrossRef]
- Del Alamo, R.R.; Fregapane, G.; Aranda, F.; Gómez-Alonso, S.; Salvador, M. Sterol and alcohol composition of Cornicabra virgin olive oil: The campesterol content exceeds the upper limit of 4% established by EU regulations. Food Chem. 2004, 84, 533–537. [Google Scholar] [CrossRef]
Volatile Aromatic Compound | Functional Group | Aroma * |
---|---|---|
Propionic anhydride | Anhydride | Pungent |
Diethyl ketone | Ketone | Ethereal/Acetone |
3-Hexenal | Aldehyde | Green/Leafy/Apple/Melon |
2-Hexenal | Aldehyde | Green/Almond/Leafy/Apple/Plum |
2-(1,1-dimethylethyl)-Cyclobutanone | Cyclic Ketone | NR |
Trans-3-hexenol | Alcohol | Green/Leafy/Floral/Oily/Earthy |
Bicyclobutane | Cycloalkane | NR |
Heptane, 4-methylene- | Hydrocarbon/Alkene | NR |
3-Ethyl-1,5-octadiene Isomer I | Hydrocarbons/Alkadiene | Musty |
3-Ethyl-1,5-octadiene Isomer II | Hydrocarbons/Alkadiene | Musty |
3-Ethyl-1,5-octadiene Isomer III | Hydrocarbons/Alkadiene | Musty |
Ethyl (E)-hex-3-enyl carbonate | Carbonate ester | NR |
D-Limonene | Monoterpene | Citrus/Orange/Fresh/Sweet |
1,2,3-Trimethylcyclohexane | Cycloalkane | NR |
1-Undecanol | Alcohol | Waxy/Fresh/Rose/Soapy/Citrus |
2-(4-methylphenyl)-Indolizine | Heterocyclic aromatic | NR |
Stage | Samples | Accuracy | Error | Performance (Model 1: MSE; Model 2: Cross-Entropy) |
---|---|---|---|---|
Model 1 Inputs: Near-infrared absorbance values (Classification) | ||||
Training | 107 | 100% | 0.0% | <0.01 |
Testing | 46 | 91.3% | 8.7% | 0.01 |
Overall | 153 | 97.4% | 2.6% | - |
Model 2 Inputs: electronic nose voltage values (Classification) | ||||
Training | 356 | 89.0% | 11.0% | 0.02 |
Validation | 77 | 79.2% | 20.8% | 0.04 |
Testing | 77 | 81.8% | 18.2% | 0.04 |
Overall | 510 | 86.5% | 13.5% | - |
Stage | Samples | Observations | Correlation Coefficient (R) | Slope | Performance (MSE) |
---|---|---|---|---|---|
Model 3 Inputs: Near-infrared absorbance values (Regression) | |||||
Training | 107 | 1712 | 0.98 | 0.96 | 2.29 × 1010 |
Validation | 23 | 368 | 0.91 | 0.89 | 13.83 × 1010 |
Testing | 23 | 368 | 0.94 | 0.84 | 12.69 × 1010 |
Overall | 153 | 2448 | 0.96 | 0.92 | - |
Model 4 Inputs: electronic nose voltage values (Regression) | |||||
Training | 357 | 5712 | 0.95 | 0.90 | 7.45 × 1010 |
Testing | 153 | 2448 | 0.90 | 0.88 | 16.98 × 1010 |
Overall | 510 | 8160 | 0.93 | 0.90 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez Viejo, C.; Fuentes, S. Digital Detection of Olive Oil Rancidity Levels and Aroma Profiles Using Near-Infrared Spectroscopy, a Low-Cost Electronic Nose and Machine Learning Modelling. Chemosensors 2022, 10, 159. https://doi.org/10.3390/chemosensors10050159
Gonzalez Viejo C, Fuentes S. Digital Detection of Olive Oil Rancidity Levels and Aroma Profiles Using Near-Infrared Spectroscopy, a Low-Cost Electronic Nose and Machine Learning Modelling. Chemosensors. 2022; 10(5):159. https://doi.org/10.3390/chemosensors10050159
Chicago/Turabian StyleGonzalez Viejo, Claudia, and Sigfredo Fuentes. 2022. "Digital Detection of Olive Oil Rancidity Levels and Aroma Profiles Using Near-Infrared Spectroscopy, a Low-Cost Electronic Nose and Machine Learning Modelling" Chemosensors 10, no. 5: 159. https://doi.org/10.3390/chemosensors10050159
APA StyleGonzalez Viejo, C., & Fuentes, S. (2022). Digital Detection of Olive Oil Rancidity Levels and Aroma Profiles Using Near-Infrared Spectroscopy, a Low-Cost Electronic Nose and Machine Learning Modelling. Chemosensors, 10(5), 159. https://doi.org/10.3390/chemosensors10050159