Paracetamol Use and COVID-19 Clinical Outcomes: A Meta-Analysis
<p>PRISMA flowchart describing the selection process of the included studies.</p> "> Figure 2
<p>Forest plots of the meta-analyses comparing the effectiveness of (<b>A</b>) paracetamol versus no paracetamol to reduce death risk [<a href="#B24-healthcare-12-02309" class="html-bibr">24</a>,<a href="#B28-healthcare-12-02309" class="html-bibr">28</a>,<a href="#B29-healthcare-12-02309" class="html-bibr">29</a>]; (<b>B</b>) paracetamol versus non-steroidal anti-inflammatory drugs (NSAIDs) to reduce death risk [<a href="#B27-healthcare-12-02309" class="html-bibr">27</a>,<a href="#B30-healthcare-12-02309" class="html-bibr">30</a>]; (<b>C</b>) paracetamol versus NSAIDs to reduce the risk of transfer to the intensive care unit (ICU) [<a href="#B25-healthcare-12-02309" class="html-bibr">25</a>,<a href="#B26-healthcare-12-02309" class="html-bibr">26</a>]. All meta-analyses are referred to as subjects with SARS-CoV-2 infection. SE: standard error; CI: confidence interval.</p> "> Figure 2 Cont.
<p>Forest plots of the meta-analyses comparing the effectiveness of (<b>A</b>) paracetamol versus no paracetamol to reduce death risk [<a href="#B24-healthcare-12-02309" class="html-bibr">24</a>,<a href="#B28-healthcare-12-02309" class="html-bibr">28</a>,<a href="#B29-healthcare-12-02309" class="html-bibr">29</a>]; (<b>B</b>) paracetamol versus non-steroidal anti-inflammatory drugs (NSAIDs) to reduce death risk [<a href="#B27-healthcare-12-02309" class="html-bibr">27</a>,<a href="#B30-healthcare-12-02309" class="html-bibr">30</a>]; (<b>C</b>) paracetamol versus NSAIDs to reduce the risk of transfer to the intensive care unit (ICU) [<a href="#B25-healthcare-12-02309" class="html-bibr">25</a>,<a href="#B26-healthcare-12-02309" class="html-bibr">26</a>]. All meta-analyses are referred to as subjects with SARS-CoV-2 infection. SE: standard error; CI: confidence interval.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Paracetamol Users vs. Non-Users
3.2. Paracetamol Users vs. NSAIDs Users
3.3. Quality Assessment and Overall Certainty of the Evidence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ita, K. Response to: Regarding the Article: Coronavirus Disease (COVID-19): Current Status and Prospects for Drug and Vaccine Development. Arch. Med. Res. 2021, 52, 458–459. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Hunt, B.; Stegemann, M.; Rochwerg, B.; Lamontagne, F.; Siemieniuk, R.A.; Agoritsas, T.; Askie, L.; Lytvyn, L.; Leo, Y.S.; et al. A living WHO guideline on drugs for covid-19. BMJ 2020, 370, m3379. [Google Scholar] [CrossRef] [PubMed]
- Graham, G.G.; Scott, K.F. Mechanism of action of paracetamol. Am. J. Ther. 2005, 12, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Alimohamadi, Y.; Sepandi, M.; Taghdir, M.; Hosamirudsari, H. Determine the most common clinical symptoms in COVID-19 patients: A systematic review and meta-analysis. J. Prev. Med. Hyg. 2020, 61, E304–E312. [Google Scholar] [CrossRef]
- COVID-19 Rapid Guideline: Managing COVID-19. Available online: https://www.nice.org.uk/guidance/ng191/chapter/3-Management (accessed on 8 August 2024).
- Types of COVID-19 Treatment. Available online: https://www.cdc.gov/covid/treatment/index.html (accessed on 8 August 2024).
- Fazio, S.; Cosentino, M.; Marino, F.; Pandolfi, S.; Zanolin, E.; Bellavite, P. The Problem of Home Therapy during COVID-19 Pandemic in Italy: Government Guidelines versus Freedom of Cure? J. Pharm. Pharmacol. Res. 2022, 6, 100–114. [Google Scholar] [CrossRef]
- Gallagher, S. Coronavirus tips: Should You Take Paracetamol Rather than Ibuprofen to Treat Symptoms? Available online: https://www.independent.co.uk/life-style/health-and-families/coronavirus-paracetamol-ibuprofen-symptoms-nhs-advice-latest-a9404881.html (accessed on 8 August 2024).
- Do, T.P.; Do, H.Q. Internet Search Interest for Over-the-Counter Analgesics During the COVID-19 Pandemic. Pain. Med. 2021, 22, 2407–2418. [Google Scholar] [CrossRef]
- Romano, S.; Galante, H.; Figueira, D.; Mendes, Z.; Rodrigues, A.T. Time-trend analysis of medicine sales and shortages during COVID-19 outbreak: Data from community pharmacies. Res. Soc. Adm. Pharm. 2021, 17, 1876–1881. [Google Scholar] [CrossRef]
- Wastesson, J.W.; Martikainen, J.E.; Zoega, H.; Schmidt, M.; Karlstad, O.; Pottegard, A. Trends in Use of Paracetamol in the Nordic Countries. Basic Clin. Pharmacol. Toxicol. 2018, 123, 301–307. [Google Scholar] [CrossRef]
- Day, M. Covid-19: Ibuprofen should not be used for managing symptoms, say doctors and scientists. BMJ 2020, 368, m1086. [Google Scholar] [CrossRef]
- Leal, N.S.; Yu, Y.; Chen, Y.; Fedele, G.; Martins, L.M. Paracetamol Is Associated with a Lower Risk of COVID-19 Infection and Decreased ACE2 Protein Expression: A Retrospective Analysis. COVID 2021, 1, 218–229. [Google Scholar] [CrossRef]
- Pandolfi, S.; Simonetti, V.; Ricevuti, G.; Chirumbolo, S. Paracetamol in the home treatment of early COVID-19 symptoms: A possible foe rather than a friend for elderly patients? J. Med. Virol. 2021, 93, 5704–5706. [Google Scholar] [CrossRef] [PubMed]
- Sestili, P.; Fimognari, C. Paracetamol-Induced Glutathione Consumption: Is There a Link with Severe COVID-19 Illness? Front. Pharmacol. 2020, 11, 579944. [Google Scholar] [CrossRef]
- Flacco, M.E.; Acuti Martellucci, C.; Bravi, F.; Parruti, G.; Cappadona, R.; Mascitelli, A.; Manfredini, R.; Mantovani, L.G.; Manzoli, L. Treatment with ACE inhibitors or ARBs and risk of severe/lethal COVID-19: A meta-analysis. Heart 2020, 106, 1519–1524. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Bozada, T., Jr.; Borden, J.; Workman, J.; Del Cid, M.; Malinowski, J.; Luechtefeld, T. Sysrev: A FAIR Platform for Data Curation and Systematic Evidence Review. Front. Artif. Intell. 2021, 4, 685298. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savovic, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Wells, G.S.B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 8 August 2024).
- Higgins, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley & Sons: Chichester, UK, 2019. [Google Scholar]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schunemann, H.J. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef]
- Review Manager (RevMan), Version 5.4; The Cochrane Collaboration: London, UK, 2020.
- Lapi, F.; Marconi, E.; Grattagliano, I.; Rossi, A.; Fornasari, D.; Magni, A.; Lora Aprile, P.; Cricelli, C. To clarify the safety profile of paracetamol for home-care patients with COVID-19: A real-world cohort study, with nested case-control analysis, in primary care. Intern. Emerg. Med. 2022, 17, 2237–2244. [Google Scholar] [CrossRef]
- Sobhy, A.; Saleh, L.; AbdelAtty, M.; AbdelAtty, M.; Refaat, S.; Kamal, M. Early use of ibuprofen in moderate cases of COVID-19 might be a promising agent to attenuate the severity of disease: A randomized controlled trial. Open Anesthesia J. 2023, 17, e258964582303020. [Google Scholar] [CrossRef]
- Kim, J.W.; Yoon, S.; Lee, J.; Lee, S. Serious Clinical Outcomes of COVID-19 Related to Acetaminophen or NSAIDs from a Nationwide Population-Based Cohort Study. Int. J. Environ. Res. Public Health 2023, 20, 3832. [Google Scholar] [CrossRef]
- Rinott, E.; Kozer, E.; Shapira, Y.; Bar-Haim, A.; Youngster, I. Ibuprofen use and clinical outcomes in COVID-19 patients. Clin. Microbiol. Infect. 2020, 26, 1259.e5–1259.e7. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Oseguera, E.; Pinto-Almazan, R.; Arellano-Ramirez, A.; Gasca-Lopez, G.A.; Ocharan-Hernandez, M.E.; Calzada-Mendoza, C.C.; Castillo-Cruz, J.; Martinez-Herrera, E. Mortality and Survival Factors in Patients with Moderate and Severe Pneumonia Due to COVID-19. Healthcare 2023, 11, 932. [Google Scholar] [CrossRef] [PubMed]
- Baldia, P.H.; Wernly, B.; Flaatten, H.; Fjolner, J.; Artigas, A.; Pinto, B.B.; Schefold, J.C.; Kelm, M.; Beil, M.; Bruno, R.R.; et al. The association of prior paracetamol intake with outcome of very old intensive care patients with COVID-19: Results from an international prospective multicentre trial. BMC Geriatr. 2022, 22, 1000. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, S.H.; You, S.C.; Kim, J.; Yang, K. Non-steroidal anti-inflammatory agent use may not be associated with mortality of coronavirus disease 19. Sci. Rep. 2021, 11, 5087. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.E.; Lee, H.; Shin, H.J.; Choe, Y.J.; Filion, K.B.; Shin, J.Y. Association Between Nonsteroidal Antiinflammatory Drug Use and Adverse Clinical Outcomes Among Adults Hospitalized with Coronavirus 2019 in South Korea: A Nationwide Study. Clin. Infect. Dis 2021, 73, e4179–e4188. [Google Scholar] [CrossRef]
- Urru, S.; Sciannameo, V.; Lanera, C.; Salaris, S.; Gregori, D.; Berchialla, P. A topic trend analysis on COVID-19 literature. Digit. Health 2022, 8, 20552076221133696. [Google Scholar] [CrossRef]
- Chin, V.; Ioannidis, J.P.A.; Tanner, M.A.; Cripps, S. Effect estimates of COVID-19 non-pharmaceutical interventions are non-robust and highly model-dependent. J. Clin. Epidemiol. 2021, 136, 96–132. [Google Scholar] [CrossRef]
- Welte, T.; Ambrose, L.J.; Sibbring, G.C.; Sheikh, S.; Mullerova, H.; Sabir, I. Current evidence for COVID-19 therapies: A systematic literature review. Eur. Respir. Rev. 2021, 30, 200384. [Google Scholar] [CrossRef]
- Barosa, M.; Ioannidis, J.P.A.; Prasad, V. Evidence base for yearly respiratory virus vaccines: Current status and proposed improved strategies. Eur. J. Clin. Investig. 2024, 54, e14286. [Google Scholar] [CrossRef]
- Lee, J.M.; Jansen, R.; Sanderson, K.E.; Guerra, F.; Keller-Olaman, S.; Murti, M.; O’Sullivan, T.L.; Law, M.P.; Schwartz, B.; Bourns, L.E.; et al. Public health emergency preparedness for infectious disease emergencies: A scoping review of recent evidence. BMC Public Health 2023, 23, 420. [Google Scholar] [CrossRef]
- Nicolas, M.; Sun, S.; Zorzi, F.; Deplace, S.; Jaafari, N.; Boussageon, R. Does the use of antipyretics prolong illness? A systematic review of the literature and meta-analysis on the effects of antipyretics in acute upper and lower respiratory tract infections. Infect. Dis. Now 2023, 53, 104716. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, S.; Braithwaite, I.; Walker, S.; Weatherall, M.; Jennings, L.; Luck, M.; Barrett, K.; Siebers, R.; Blackmore, T.; Beasley, R.; et al. Randomized controlled trial of the effect of regular paracetamol on influenza infection. Respirology 2016, 21, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Young, P.; Saxena, M.; Bellomo, R.; Freebairn, R.; Hammond, N.; van Haren, F.; Holliday, M.; Henderson, S.; Mackle, D.; McArthur, C.; et al. Acetaminophen for Fever in Critically Ill Patients with Suspected Infection. N. Engl. J. Med. 2015, 373, 2215–2224. [Google Scholar] [CrossRef] [PubMed]
- Bloor, K.; Freemantle, N. Lessons from international experience in controlling pharmaceutical expenditure. II: Influencing doctors. BMJ 1996, 312, 1525–1527. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.A.; Wiffen, P.J.; Derry, S.; Maguire, T.; Roy, Y.M.; Tyrrell, L. Non-prescription (OTC) oral analgesics for acute pain - an overview of Cochrane reviews. Cochrane Database Syst. Rev. 2015, 2015, CD010794. [Google Scholar] [CrossRef]
- Kreps, S.E.; Kriner, D.L. Model uncertainty, political contestation, and public trust in science: Evidence from the COVID-19 pandemic. Sci. Adv. 2020, 6, eabd4563. [Google Scholar] [CrossRef]
- Rubin, O.; Errett, N.A.; Upshur, R.; Baekkeskov, E. The challenges facing evidence-based decision making in the initial response to COVID-19. Scand. J. Public Health 2021, 49, 790–796. [Google Scholar] [CrossRef]
- Siemieniuk, R.A.; Bartoszko, J.J.; Zeraatkar, D.; Kum, E.; Qasim, A.; Martinez, J.P.D.; Izcovich, A.; Lamontagne, F.; Han, M.A.; Agarwal, A.; et al. Drug treatments for covid-19: Living systematic review and network meta-analysis. BMJ 2020, 370, m2980. [Google Scholar] [CrossRef]
- Batteux, E.; Bilovich, A.; Johnson, S.G.B.; Tuckett, D. Negative consequences of failing to communicate uncertainties during a pandemic: An online randomised controlled trial on COVID-19 vaccines. BMJ Open 2022, 12, e051352. [Google Scholar] [CrossRef]
- Moleman, M.; Macbeth, F.; Wieringa, S.; Forland, F.; Shaw, B.; Zuiderent-Jerak, T. From “getting things right” to “getting things right now”: Developing COVID-19 guidance under time pressure and knowledge uncertainty. J. Eval. Clin. Pract. 2022, 28, 49–56. [Google Scholar] [CrossRef]
First Author | Year | Country | Funding | Study Population | Study Design | Sample Size (n); Mean Age | % Females | Intervention | Comparison | Outcomes and Effect Sizes |
---|---|---|---|---|---|---|---|---|---|---|
Sobhy [25] | 2023 | Egypt | None declared | Hospitalized adults (>18 y) with moderate † COVID-19 | RCT (double blinded) | 180; 41.8 y | 53.4 | Paracetamol (500 mg/6 h) | Ibuprofen (400 mg/6 h) | Transfer to ICU: RR = 2.08 (1.05, 4.17) |
Rinott [27] | 2020 | Israel | None declared | Hospitalized adults (24–65 y) with COVID-19 | Retrospective Cohort | 134; 46.0 y | 44.8 | Exclusive paracetamol use | Exclusive ibuprofen use | Respiratory support *‡: RR = 6.34 (0.84, 47.64) |
Death ‡: RR = 4.07 (0.21, 77.19) | ||||||||||
Galindo-Oseguera [28] | 2023 | Mexico | None declared | Hospitalized adults (>18 y) with COVID-19 | Retrospective Cohort | 417; 47.0 y | 33.0 | Paracetamol use prior to hospitalization | No paracetamol use prior to hospitalization | Death ‡: OR = 0.65 (0.43, 0.97) |
Baldia [29] | 2022 | Multicenter study | Projekt DEAL and European Union’s Horizon Programme | ICU elderly patients (≥70 years) with COVID-19 | Cohort | 2464; 75.0 y | 31.0 | Paracetamol use prior to ICU admission | No paracetamol use prior to ICU admission | ICU mortality: OR = 0.93 (0.78, 1.11) |
30-days mortality: OR = 0.86 (0.72, 1.03) | ||||||||||
90-days mortality: OR = 0.88 (0.72,1.07) | ||||||||||
Lapi [24] | 2022 | Italy | Italian College of GPs and Primary Care | COVID-19 outpatients (≥15 y) | Nested Case–Control | 30,316; 50.7 y | 52.4 | Paracetamol use | No paracetamol use | COVID-19 hospitalization/death, early A use: OR = 1.15 (0.92, 1.43) |
COVID-19 hospitalization/death, mid-term B use: OR = 1.29 (0.61, 2.73) | ||||||||||
COVID-19 hospitalization/death, late C use: OR = 1.75 (1.40, 2.18) | ||||||||||
Jeong § [31] | 2021 | South Korea | Korea Health Industry Development Institute | Hospitalized adults (≥19) with COVID-19 | Cohort | 967; not reported | n/a | Paracetamol use prior to hospitalization | NSAIDs use prior to hospitalization | Cardiovascular complications °: OR = 1.15 (0.69, 1.92) |
Secondary acute renal failure: OR = 1.92 (0.27, 14.29) | ||||||||||
Park § [30] | 2021 | South Korea | Ministry of Health and Welfare, Korea | Patients with COVID-19 | Retrospective Cohort | 794; not reported | 58.2 | Paracetamol use | NSAIDs use | All-cause mortality: HR = 0.75 (0.35, 1.59) |
Mechanical ventilation: HR = 0.63 (0.19, 1.89) | ||||||||||
Kim § [26] | 2023 | South Korea | National Research Foundation of Korea | COVID-19 outpatients (≥20 y) | Retrospective Cohort | 338; 55.8 y | 55.0 | Paracetamol use prior to COVID-19 diagnosis | NSAIDs use prior to COVID-19 diagnosis | Conventional oxygen therapy: RR = 1.09 (0.64, 1.86) |
Transfer to ICU: RR = 0.60 (0.15, 2.47) | ||||||||||
Mechanical ventilation: RR = 1.14 (0.42, 3.08) | ||||||||||
Death: RR = 1.71 (0.69, 4.24) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianconi, A.; Zauli, E.; Biagiotti, C.; Calò, G.L.; Cioni, G.; Imperiali, G.; Orazi, V.; Acuti Martellucci, C.; Rosso, A.; Fiore, M. Paracetamol Use and COVID-19 Clinical Outcomes: A Meta-Analysis. Healthcare 2024, 12, 2309. https://doi.org/10.3390/healthcare12222309
Bianconi A, Zauli E, Biagiotti C, Calò GL, Cioni G, Imperiali G, Orazi V, Acuti Martellucci C, Rosso A, Fiore M. Paracetamol Use and COVID-19 Clinical Outcomes: A Meta-Analysis. Healthcare. 2024; 12(22):2309. https://doi.org/10.3390/healthcare12222309
Chicago/Turabian StyleBianconi, Alessandro, Enrico Zauli, Clara Biagiotti, Giovanna Letizia Calò, Giovanni Cioni, Gianmarco Imperiali, Vittorio Orazi, Cecilia Acuti Martellucci, Annalisa Rosso, and Matteo Fiore. 2024. "Paracetamol Use and COVID-19 Clinical Outcomes: A Meta-Analysis" Healthcare 12, no. 22: 2309. https://doi.org/10.3390/healthcare12222309
APA StyleBianconi, A., Zauli, E., Biagiotti, C., Calò, G. L., Cioni, G., Imperiali, G., Orazi, V., Acuti Martellucci, C., Rosso, A., & Fiore, M. (2024). Paracetamol Use and COVID-19 Clinical Outcomes: A Meta-Analysis. Healthcare, 12(22), 2309. https://doi.org/10.3390/healthcare12222309