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Abstract: Traumatic brain injury (TBI) represents a major public health problem, being a leading
cause of disability and mortality among young people in developed countries. Head trauma occurs
across all age groups, each experiencing consistently high rates of mortality and disability. This
review aims to present an overview of TBI epidemiology and its socioeconomic impact, alongside
data valuable for prevention, clinical management, and research efforts. Methods: A narrative review
of TBI was performed with a particular focus on forensic pathology and public health. In fact, this
review highlighted the economic and epidemiological aspects of TBI, as well as autopsy, histology, im-
munohistochemistry, and miRNA. Results: These data, together with immunohistochemical markers,
are crucial for histopathological diagnosis and to determine the timing of injury onset, a fundamental
aspect in forensic pathology practice. There is compelling evidence that brain injury biomarkers may
enhance predictive models for clinical and prognostic outcomes. By clarifying the cause of death and
providing details on survival time after trauma, forensic tools offer valuable information to improve
the clinical management of TBI and guide preventive interventions. Conclusions: TBI is one of the
most common causes of death today, with high costs for health care spending. Knowing the different
mechanisms of TBI, reduces health care costs and helps improve prognosis.

Keywords: traumatic brain injury; epidemiology; forensic pathology; miRNA; hospitalization

1. Introduction

Traumatic brain injury (TBI) is a major public health concern, ranking as the leading
cause of disability and mortality among young adults in developed countries [1].

According to data from the Centers for Disease Control and Prevention, the USA
records approximately 403 emergency department visits and 85 hospital admissions per
100,000 people annually, resulting in significant socioeconomic impact [2]. In Europe, the
estimated costs attributable to TBI in 2010 were €33 billion (equivalent to approximately
USD 49.7 billion in 2017), with direct costs comprising 41% and indirect costs 59% [3].
Given the huge economic burden of TBI, prevention and treatment strategies from a health-
economic perspective are imperative [4].
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Although young male victims of high-speed motor vehicle collisions were historically
considered the most affected group, recent data indicate that TBI epidemiology is evolv-
ing [5]. Additionally, the CDC reports a 34% increase in fall-related TBI cases between 2002
and 2006 [6].

Despite variations in TBI case distribution across age groups, all are characterized by
high rates of mortality and disability [7]. Furthermore, older adult TBI patients experience
worse outcomes compared to their younger counterparts [7]. Admission to trauma centers
has significantly reduced post-injury mortality. In recent years, trauma care has undergone
major advancements [8,9]. There has also been an improvement in primary prevention,
with greater awareness and advancements in intensive care management [10–12]. Under-
standing the distribution of trauma-related deaths is crucial for improving prevention
strategies within the healthcare system. Postmortem examinations play a vital role by
stratifying TBI cases based on category, gender, and injury severity, thus enhancing data
accuracy for proper evaluation [13]. Furthermore, a significant portion of injury-related
deaths and disabilities are preventable through effective interventions [14]. Reviewing
evolving injury patterns in TBI patients, along with autopsy findings, causes of death,
and prognostic factors influencing survival time, is crucial. This evaluation aids in care
management and supports preclinical and translational research, as well as preventive
initiatives [13–15]. Acosta et al. [15] analysed the cause of death of 900 trauma patients,
which was 7.3% of all significant trauma admissions, between January 1985 and December
1995. In the first 24 h of admission, 70% of these patients died of central nervous system
injuries, cerebral herniation, atlanto-occipital transection, or brain vascular injury. Central
nervous system (CNS) injuries were the most common causes of death in the first hour after
admission to the hospital. The origins of death between 24 and 72 h after admission were
due to CNS injuries from penetrating or blunt trauma. After 72 h, the first cause of death
was attributed to acute inflammatory processes, followed by pulmonary embolism and, fi-
nally, brain herniation or cerebral edema, or both [15]. Recent data indicate that TBI-related
deaths in U.S. emergency departments total approximately 56,000 annually [16]. When
adjusted for population size, TBI-related deaths are lower in the European Union compared
to the United States. This difference is partly attributed to the higher rate of firearm-related
fatalities in the U.S., where head injuries frequently occur [16]. These disparities may also
stem from methodological differences in epidemiological studies and variations in hospital
admission policies [16]. The elderly, over 60 years of age, are characterized by the highest
mortality rate. A recent meta-analysis highlighted an in-hospital mortality rate of 57% and
75% at 6 months after the traumatic event. In children aged 0–4 years, TBI is most com-
monly caused by falls, followed by blunt trauma and motor vehicle accidents [16]. Among
children aged 5 to 14, TBI is mainly caused by falls, followed by sports or recreational
injuries, and motor vehicle accidents [5]. Literature indicates significant differences in TBI
incidence and causes across age groups.

This review aims to consolidate and present the latest, most robust evidence on TBI
pathophysiology, as well as macroscopic and microscopic forensic findings. It focuses
on prognostic factors affecting time to death in fatal TBI cases, while outlining the epi-
demiology, socioeconomic impact, and data, which are critical for prevention, clinical care,
and research.

2. Pathophysiology of Traumatic Brain Injury

Brain injury is classified as either primary (mechanically induced), occurring at the
moment of trauma, or secondary, developing within an already damaged brain. Primary
injury involves localized damage to neurons, axons, glia, and blood vessels, including
diffuse axonal injury (DAI) caused by shearing, tearing, and stretching forces [17–19].
High severity trauma, both in a single event or repetitive events, can cause blood–brain
barrier (BBB) damage and cells and liquid leakage, responsible for extravasation of immune
cells, as well as poor regulation of molecules, ions, amino acids and proteins, leading
to consistent secondary injury [20,21]. Timing of secondary injury occurrence after the



Healthcare 2024, 12, 2266 3 of 18

trauma onset is variable and strictly related to neurochemical, metabolic, and cellular
changes [22]. Secondary brain damage includes ionic homeostasis and inflammatory
mediator imbalance, altered release of neurotransmitters, mitochondrial dysfunction, and
lipid peroxidation and membrane degradation, contributing to neuronal necrosis and
apoptosis. Consequently, understanding the pathophysiology of traumatic brain injury
remains a significant challenge [23].

Primary brain injury triggers several biochemical pathways that lead to secondary cell
death and neurodegenerative processes. Such mechanisms occur seconds to minutes after
the initial insult and can prolong from days to years after trauma [18,24].

Secondary cellular lesions primarily affect the injury site and surrounding tissues.
However, brain damage can later spread to other regions, driven by excitotoxicity, oxida-
tive stress, and inflammation that compromise the blood–brain barrier (BBB) [18,19,24–26].
These interconnected and overlapping processes ultimately contribute to increased neu-
rodegeneration [25].

Necrosis and apoptosis, the two primary mechanisms of cell death, engage in a
complex network of cellular and biochemical interactions in TBI [27].

Additionally, studies have shown that immature brain cells naturally undergo apop-
tosis under physiological conditions. Since apoptosis plays a crucial role in brain de-
velopment, it has been hypothesized that it may overlap with necrosis in TBI-related
processes [27].

2.1. Excitotoxicity

Excitotoxic mechanisms are critical contributors to cellular damage in various neu-
rological disorders. Brain injury causes elevated extracellular glutamate levels directly
resulting from trauma. This occurs due to reduced energy for reuptake, amplified release
from increased neuronal membrane depolarization, intracellular accumulation, and leakage
from axonal damage [28].

The increase of glutamate concentration in extracellular space is responsible for depo-
larization of injured neighbouring glial cells or neurons, resulting in tissue damage [29].

The rapid release of glutamate into the interstitial space causes excessive stimulation
of glutamate receptors, particularly N-methyl-D-aspartate (NMDA) receptors. This leads
to ionic dysregulation, including the accumulation of K+ in the extracellular space and
the influx of Na+ and Ca2+ through receptor-gated ion channels. Furthermore, glutamate
activation prompts the release of calcium from the endoplasmic reticulum, increasing free
intracellular Ca2+ concentrations [28–31].

As a result, excitotoxicity induces a metabolic crisis characterized by energy failure,
stemming from the brain’s ineffective attempts to restore ionic homeostasis [28–31].

Elevated intracellular Ca2+ levels activate secondary pathways, including calcium-
dependent proteases, like calpains and caspases. This cascade also triggers the production
of reactive oxygen and nitrogen species, along with mitochondrial damage, ultimately
leading to apoptotic processes [28–31].

2.2. Oxidative Stress and Mitochondrial Dysfunction

Secondary injury in TBI is heavily influenced by reactive oxygen species (ROS). TBI
disrupts blood flow, causing cerebral hypoxia or ischemia and reducing oxygen and glucose
supply to the brain. Consequently, anaerobic metabolism induces a state of acidosis,
activating pH-dependent calcium channels [32–37].

Elevated cytoplasmic Ca2+ levels in neurons disrupt the mitochondrial electron transport
chain, leading to increased production of ROS and reactive nitrogen species (RNS) [32–37].

The excessive Ca2+ concentration may impair mitochondrial function by generating
ROS, resulting in the induction of oxidative stress into the axon. Indeed, oxidative stress
can be defined as the alteration of the homeostatic process and the biochemical pathways
that regulate the production and the removal of ROS [38,39].
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As previously mentioned, axonal injury leads to increased cytoplasmic Ca2+ concentra-
tions, mitochondrial impairment, ROS generation, and oxidative stress [38]. Johnson et al.
reported that ionic alterations in intracellular and extracellular spaces following axonal
damage play a crucial role in both axonal degeneration and dysfunction [40]. Another study
suggested that post-traumatic Ca2+ influx may alter calcium-ATPase function, as demon-
strated in an experimental model of optic nerve stretch injury [41]. Another in vitro study
confirmed such evidence by demonstrating increased calcium entry after axon stretch [42].
Buki et al. proposed that the pathophysiology of diffuse axonal injury (DAI)—characterized
by local axonal cytoskeletal disruptions, mitochondrial dysfunction, cytochrome-c pathway
activation, and caspase enzyme activation—may result from calcium influx caused by
axolemma perturbations [43].

The formation of the mitochondrial permeability transition pore (mPTP) is implicated
in oxidative stress [44]. This internal membrane protein regulates mitochondrial influx and
efflux [45,46].

2.3. Brain–Blood Barrier Breakdown

In TBI, tensile and compressive forces arise in the brain from direct or indirect accel-
eration or deceleration impacts. The brain–blood barrier (BBB), due to its elastic nature,
is among the first structures to be affected and damaged by trauma [47]. The breakdown
of the BBB following experimental brain injury typically follows a biphasic process [20].
Firstly, an increase in BBB permeability can be observed, reaching a maximum within a
few hours and subsequently declining. Secondly, from 3 to 7 days following injury, several
mechanisms are activated as a brain response to the injury [20]. Key factors contributing to
BBB breakdown after trauma include molecules, such as glutamate, ROS, proinflammatory
cytokines, and vascular endothelial growth factor A (VEGFA) [20,48]. After injury, an
increased glutamate release can be observed from different cells and invading neutrophils.
This mechanism increases BBB permeability, induces apoptosis in brain endothelial cells,
and enhances ROS production. ROS activation and increased BBB permeability facilitate the
post-traumatic invasion of inflammatory cells and cytokines. This process upregulates the
expression of endothelial cell adhesion molecules, such as intercellular adhesion molecule-1
(ICAM1) [20,48]. Matrix metalloproteinases (MMPs) are produced by various cells and can
be released from inflammatory cells. MMP production disrupts BBB integrity by degrading
basal lamina proteins and tight junctions, which increases TNF-α and IL-1β activity, further
enhancing BBB permeability and exacerbating post-traumatic neuroinflammation [47,49].

Obviously TBI produces cerebral edema, with increased intracranial pressure, and
permanent brain damage and death. The pathogenesis of traumatic brain edema remains
unclear, limiting the development of effective therapeutic options [50]. AQP4 has been
shown to play a role in cerebral edema formation, but the impact of changes in AQP4
expression under these conditions remains unclear [50].

2.4. Neuroinflammation

Despite extensive research on post-traumatic neuroinflammation, understanding the
origin of the neuroinflammatory cascade remains crucial [47]. Thrombin plays a key role
in neuroinflammation by stimulating proinflammatory mediators, including various cy-
tokines and the chemokine CXCL 1 [49]. However, in TBI there is excessive microglial
activation with an increase in pro-inflammatory cytokines [51]. Several studies in rodent
models of TBI have shown a correlation between the activation of post-traumatic inflam-
matory cells (neutrophils and monocytes) and the development of brain edema and tissue
damage. Neurons are highly vulnerable to neutrophil activity, particularly under condi-
tions of oxygen and glucose deprivation. Inflammatory cells also increase BBB permeability,
triggering and propagating inflammation through the activation of proteolytic enzymes,
such as neutrophil elastase (ELANE) and MMP9 [47,52–54].
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2.5. Glial Components’ Involvement

Astrocytes and microglia engage in complex crosstalk with surrounding cells and the
microenvironment, playing a crucial role in TBI pathophysiology. Following TBI, increased
inflammatory products (proteases, complement factors, and DAMPs) promote inflamma-
tory cascades, with cellular damage [22,55]. The responses of astrocytes and microglia
in experimental TBI studies are closely related to the severity of the trauma [53,56]. Ad-
ditionally, the interplay between the environment, other cell types, and glial responses
contributes to the complex nature of reactive gliosis following TBI [22]. Astrocyte activation
and subsequent astrogliosis result in increased intermediate filament expression (vimentin
and GFAP) and the regulation of neurotrophic factors, like brain-derived neurotrophic
factor (BDNF) [57,58]. Furthermore, astrocytes influence extracellular glutamate concentra-
tion by reducing glutamate excitotoxicity to neurons, other cells and the environment [59].
Although astrocytes provide neurotrophic support and guide axonal growth following TBI,
prolonged astrogliosis deregulates axon regeneration and inhibits functional recovery.

2.6. Neurodegeneration

TBI represents a major risk factor for neurodegeneration and cognitive decline in
later life. In both human and experimental models, several proteins associated with
Alzheimer’s disease (AD) pathophysiology are upregulated. Indeed, the upregulation of
β-amyloid precursor protein (APP) may lead to increased production of Aβ [60]. Recent
evidence suggests that post-contusion axonal injury and axonal swelling may contribute
to long-term sequelae following TBI [8,61,62]. The early phase of TBI is marked by Aβ

deposition in the brain and elevated axonal Aβ levels, which are direct consequences of
axonal degeneration [63–65]. A deeper understanding of the pathological mechanisms
underlying TBI is essential for identifying biomolecular markers in forensic histopathology
and developing novel therapeutic strategies (Figure 1).
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creased calcium concentration causes cell depolarization and the release of glutamate to the
extracellular space. Subsequently, NMDA-activated receptors cause neuron depolarization
(Excitotoxicity) and Na+ and Ca2+ influx, which affects ionic balance in the cytosol. The
accumulation of Ca2+ also activates calcium-dependent proteases, which directly damage
cell components and mitochondria. Exposure to elevated Ca2+ concentrations leads to
mitochondrial dysfunction, causing the release of oxidative radicals and apoptotic factors.
These factors damage cellular components through oxidative stress and activate enzymes
in the apoptotic pathway. The damaged proteins, as well as structural proteins, are next
released in extracellular space, then surviving cells are doomed to neurodegeneration.
Injury to blood vessels reduces perfusion and oxygenation, further exacerbating oxidative
stress. Reperfusion often coincides with the activation of apoptotic factors, leading to the
generation of additional reactive oxygen species. Damage to blood vessels also contributes
to the breakdown of the blood–brain barrier, allowing blood-borne proteins (e.g., fibrin,
thrombin, albumin) to infiltrate the cerebrospinal fluid. This invasion activates glial cells
and elevates the concentrations of pro-inflammatory proteins. Inflammation further weak-
ens the blood–brain barrier and activates leukocytes. These white blood cells contribute
to oxidative stress, potentially leading to a chronic neuroinflammatory process through
interactions with resident cells.

3. Forensic Findings
3.1. Macroscopic Findings

There are several classifications of brain injury. Gennarelli et al. proposed a classifica-
tion of TBI based on the mechanism: contact injuries and acceleration/deceleration injuries
(Table 1) [66].

Table 1. TBI classification according to mechanism of production and neuroradiological and neu-
ropathological findings.

MECHANISM OF PRODUCTION

Contact Acceleration/Deceleration

Lesions to scalp
Fracture of skull with or without an associated

extradural hematoma
Surface contusions/lacerations and associated

intracerebral hematoma

Tearing of bridging veins with formation of
subdural hematoma

Diffuse axonal injury including associated
intracerebral hematomas

Acute vascular injury

NEURORADIOLOGICAL AND NEUROPATHOLOGICAL

Focal Diffuse

Injury to scalp
Fracture to skull

Surface contusions/lacerations
Intracranial hematoma

Raised intracranial pressure and associated
vascular changes

Ischemic damage
Axonal injury
Brain swelling

Meningitis

Diffuse brain injury can be divided into diffuse vascular injury, diffuse axonal injury,
hypoxic brain injury, and diffuse brain swelling. The nature of the injury depends on the
affected brain area and its distribution. Generally, TBI can be classified as focal, including
fractures, contusions, subdural hematomas (SDH), or epidural hematomas, or as diffuse,
such as diffuse brain edema and diffuse axonal injury [17]. Lesions of the scalp, skull, and
dura are crucial in forensic pathology for assessing the site and nature of the underlying
injury, as well as for providing information about associated lesions and potential compli-
cation [67]. Furthermore, the location and extent of fractures observed during autopsy can
offer valuable insights into the trauma dynamics and manner of death [68]. Freeman et al.
demonstrated that head injuries in fatal falls are often associated with skull fractures [69].



Healthcare 2024, 12, 2266 7 of 18

However, if the body is inverted at the moment of impact, then a basal skull fracture often
occurs. The literature emphasizes the importance of a thorough and comprehensive forensic
approach when assessing traumatic brain injury, both in living patients and post-mortem,
especially in cases involving violent deaths or ill-treatment [70,71]. Six types of contusions
have been identified: coup contusions, occurring at the site of impact and causing tensile
force injuries to the brain; contrecoup contusions, located on the side opposite the impact
point; fracture contusions, associated with skull fractures; intermediate blow contusions,
featuring hemorrhagic foci in deep brain structures, like the corpus callosum; sliding con-
tusions, affecting the posterior cerebral lobes; and herniation contusions, resulting from
increased intracranial pressure [72].

Extradural hematomas (EDH) are characterized by hemorrhages between the outer
dura layer and the inner skull surface. During an autopsy, a scalp contusion is often
found on the side of the hematoma, typically accompanied by an underlying fracture and
injury to the middle meningeal artery or one of its main branches [73]. Traumatic subdural
hematomas can be categorized as acute if symptoms appear within 72 h of trauma, subacute
if symptoms develop between 3 days and 3 weeks, or chronic if they manifest more than
3 weeks after the trauma [20]. Subarachnoid hemorrhages are the most frequent result of
traumatic head injuries, often occurring alongside surface contusions. Minor subarachnoid
hemorrhages are common after trauma and may often be undetectable during an autopsy.
One other complicating issue with subarachnoid bleeding is that it frequently occurs as
a result of natural diseases, such as vascular malformations. Forensic pathologists face
significant challenges in determining whether trauma caused the rupture or if a preexisting
rupture led to a fall or other accidents resulting in trauma [68,74]. According to Geddes
et al. [75], TBI can be classified into axonal injury (AI), traumatic axonal injury (TAI),
and diffuse axonal injury (DAI), with progressively greater axonal damage spreading
throughout the brain. Other types of lesions are usually associated with DAI, such as
bleeding, gliding contusions, small hemorrhages in the periventricular areas around the
third ventricles, as well as intracerebral bleeds in the hippocampus and basal ganglia. In
cases of non-formaldehyde-fixed brains, the diagnosis of these injuries is difficult and
sometimes missed. Therefore, in such cases, it is always recommended to fix the brain and
examine it after autopsy, so as to detect lesions characteristic of DAI [76,77].

3.2. Microscopic Findings

Within 18 to 24 h post-injury, damaged axons can be detected using routine hema-
toxylin and eosin (H and E) staining. After axon injury, damage of adjacent axoplasm
occurs, generating the microscopic aspect of retraction bulb [78]. According to a recent
study, the term “retraction bulb” is not representative of the pathophysiology of axonal
injury, since it is due to dysfunctional axonal transport rather than axonal retraction [79].

Classic microscopic findings include axonal swellings in the cerebral white matter,
particularly in patients who died shortly after the injury. In those who died weeks after the
injury, small clusters of microglia may be seen throughout the white matter. In those who
died months after TBI, Wallerian-like degeneration may be seen in the white matter of the
cerebral hemispheres, brainstem, and spinal cord [79].

Li et al. [80] reported a higher number of astrocytes in TBI cases with fatal compli-
cations compared to those without. Such data suggest that critical brain injury leads to
acute death with no sign of astrocyte activation and that subacute death is associated with
progressive brain damage characterized by an astrocyte loss. Furthermore, delayed death
cases may be related to astrocyte number. In a human experimental study, Neri et al. [81]
demonstrated, in the case of a few days of survival, the presence in the peri-contusional
areas of histological signs of edema, such as swelling of astrocytes and dendrites. These
lesions were followed by astrocytic swelling, neuronal shrinkage with eosinophilia, nuclear
pyknosis, and vasogenic edema. All these lesions appeared in more distant areas, as well
as contralateral tissue samples. In the case of higher survival time, an enlargement of astro-
cytes size occurs with increased soma sizes and thickened processes [81]. To date, β-APP
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and GFAP are reliable immunohistochemical markers in TBI diagnosis. They have a pecu-
liar localization and pattern distribution after TBI that need to be taken into consideration
in TBI diagnosis and timing. Several other markers have been used in forensic pathology
to understand the molecular mechanisms involved in brain damage and oxidative stress,
such as IL-1β, GFAP, NFL, Spectrin II, 8OHdG, TUNEL, miR- 21, miR-16, and miR-92.
Despite difficulties in the use of immunohistochemical markers of early stage TBI due to
the overlap of secondary changes after a traumatic event (e.g., hypoxia, edema), which
can make survival time estimation difficult and cause errors in estimating survival time,
miR-21, miR-92 and miR-16 are reliable biomarkers in postmortem TBI diagnosis as strong
predictors of survival [79].

3.3. Causes of Death

In-hospital deaths after TBI range from 4.0% to 21.0%, with mortality rates up to
65% higher in patients with comorbid conditions compared to those without [7,82]. Risk
factors for in-hospital mortality after TBI are advancing age, race, number of comorbidities,
injury severity, and multiple injuries [83]. Complications that occur in the acute care
hospital increase the lengths of hospital stays [84]. Death secondary from TBI in the
hospital are related to infections, sepsis, venous thromboembolism, and postoperative
complications. Specifically, patients with traumatic brain injury could acquire sepsis and
respiratory failure more frequently than others [85], and sepsis-associated mortality after
injury reaches 37% [7,86]. Recent studies show that traumatic brain injury remains the
leading cause of death following multiple trauma, with most fatalities occurring within
the first 24 h or during the first week [13,87]. The second most common cause of death is
exsanguination, primarily resulting from thoracic or abdominal injuries [88]. Other studies
indicate that prehospital mortality accounted for 66% of all TBI deaths, with 27% occurring
between 48 and 72 h, 5% between 3 and 7 days, and 2% after 7 days in the hospital [89].
Trunkey et al. described a trimodal distribution of trauma deaths [90]. Immediate deaths
from TBI are characterized by severe brain trauma and spinal cord injury. Deaths that
occurred within the first few hours after injury and were caused by cerebral hemorrhage.
The last group is characterized as late deaths from sepsis or multiorgan failure [91,92].
A recent study indicated a unimodal distribution of road traffic fatalities, showing that
most blunt trauma deaths occur at the scene of the accident and may be influenced by
alcohol consumption [93,94]. Additionally, the study found that brain injuries, thoracic
injuries, and a combination of both were the primary causes of death [95]. According to the
previous data, causes of death and mortality patterns in TBI patients and major trauma
are essential in establishing the relationship between trauma and death and improving
surveillance, prevention and management of such patients. Therefore, autopsy practice
should be encouraged in these cases.

3.4. Brain Tissue Markers

Numerous biomarkers have been identified for autopsy diagnostics of TBI, marking
a critical area of forensic research. The choice of the biomarker to analyze and the site
(tissues, biofluids) are dictated by the pathophysiology of TBI. The presence of damage
markers and their utility in post-mortem diagnostics are related to their involvement
in the pathophysiological mechanisms associated with brain trauma: direct axonal and
neuronal damage, cytokine release, neuroinflammation, apoptosis, oxidative stress, altered
signal transduction and synaptic plasticity, neurodegeneration, excitotoxicity, and blood–
brain barrier disruption [96]. Post-mortem markers of cranial damage encompass both
macroscopic and microscopic brain lesions [97]. These markers can provide clues about
the nature and extent of the trauma sustained, helping to distinguish between traumatic,
ischemic, or degenerative damage. Visual examination of the brain and surrounding
structures can reveal contusions, hemorrhages, or cranial deformations. Such evidence
is essential for identifying violent traumas, such as those caused by road accidents or
assaults. Histology allows examination of brain tissue samples at the cellular level. The
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presence of apoptosis, necrosis, or infiltration of inflammatory cells can indicate pre-
existing or traumatic damage. Specific markers of neuronal distress, detectable through
immunostaining, are also utilized. Studies have demonstrated that, following TBI, anti-
albumin immunostaining shows positive reactions in frontal cortex neurons, Purkinje cells,
and Bergmann glia in the cerebellum [98]. Anti-GFAP immunostaining highlighted the
presence of damage at the astrocyte level [99], while suggesting that neuronal immuno-
positivity for GFAP is an artifact of processing rather than an actual reactive neuronal
presence of GFAP after TBI. Anti-PGRN immunostaining revealed increased expression
of the protein in the frontal cortex. Furthermore, anti-CD68 immunostaining showed
widespread activation of cortical microglia. These markers are also valuable for determining
the timing of TBI events. Following axonal stress, the metabolism of the axon itself varies,
which can be recognized by the detection of β-Amyloid Precursor Protein (β-APP). Studies
have indicated that, from 0 to 2 h post-mortem, β-APP is weakly visible only in the soma.
However, in cases where the survival time was approximately 2 h, damaged axonal foci
were found. If the survival time is between 2 to 24 h, there is irregular expression of this
marker during this survival period. After 30 days, the expression of β-APP was visible in
both gray and white matter; after that, the expression of β-APP became negative again

3.5. Biofluid Markers

A fluid biomarker is a measurable molecule in biological fluids, reflecting physiological
or pathological processes in the body. The biological fluids analyzed in forensic practice in
cases of TBI include cerebrospinal fluid, blood, saliva, urine, and vitreous humor. Following
TBI, cell injury leads to the release of cytokines, neuroinflammation, and the activation
of glial cells (astrocytes, microglia, and oligodendrocytes) and neurons. The activation
of these mechanisms results in the secretion of brain damage markers into circulation.
Neuron-specific enolase (NSE) is a key protein in brain tissue, predominantly located in
nerve cell bodies and axons. NSE is the only marker that directly evaluates functional
damage to neurons. One of the primary issues related to its use as a brain damage marker
is hemolysis [96]. Erythrocytes contain high levels of NSE, and hemolysis may, therefore,
lead to a significant increase of NSE in the blood [100]. NSE has been detected after 1.5–3 h
of survival following trauma [101] and can label damaged axons, but not normal axons, by
immunohistochemistry with an intensity comparable to β-APP. Only 20% of cases with a
survival time of less than 1.5 h could be identified as TAI (traumatic axonal injury) using
the β-APP biomarker, but positive results with NSE were three times higher than those of
β-APP [102]. After severe TBI, NSE concentrations in ventricular cerebrospinal fluid are
higher in deceased patients than in survivors. However, this marker does not appear to be
reliable in serum due to its presence in the walls of red blood cells, which makes the results
vulnerable to hemolysis [103]. S100 calcium-binding protein B (S100B) is a well-studied
serum biomarker for TBI [104]. Elevated S100B levels have been associated with increased
glial activation, progression of secondary injury processes, and poorer prognosis following
TBI [105,106]. In serum, S100B was significantly higher in TBI cases compared to other kinds
of trauma [107]. Neurofilament light chain (NfL) is considered a more versatile and precise
marker of brain injury compared to S100B [108]. However, S100B has several limitations,
including a lack of neuronal specificity (its levels can also rise due to physical exertion or
polytrauma), a short detection window of three to six hours post-TBI, and variable normal
values across different age groups [108]. Glial fibrillary acidic protein (GFAP), an astrocytic
biomarker, shows significant increases in cerebrospinal fluid (CSF) and serum levels in
cases of TBI fatalities [109]. Interleukin-6 (IL-6) is useful as a TBI marker, particularly in
cases of sepsis. The combination of IL-6 and GFAP helps to correctly classify fatal acute
TBI in over 90% of cases [110]. Microtubule-associated protein Tau (MAPT) concentration
has been observed in biofluids, such as urine and saliva, while no differences are noted in
vitreous fluid. Elevated MAPT concentrations in saliva and urine should be considered
as a potential marker of both mild and severe TBI in post-mortem examinations. Notably,
increased MAPT levels in saliva and urine have been predictive of axonal injury, even in
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cases where the head trauma was not deemed the direct cause of death, which could be
undiagnosed and overlooked during routine forensic autopsies [111].

In conclusion, elevated serum and urine concentrations of progranulin (PGRN) occur
during the early phase of TBI [112]. Increased PGRN serum levels have also been observed
in patients with acute ischemic stroke [113].

3.6. miRNA

miRNAs are short, non-coding RNAs (19–28 nucleotides) crucial for post-transcriptional
regulation of gene expression [114]. The central nervous system (CNS) harbors the highest
quantity and diversity of miRNAs, with around 70% expressed in the brain, spinal cord,
and peripheral nerves [115]. miRNA expression varies during neurological development
and across different brain regions [116]. In neurons, miRNAs can localize within specific
intracellular compartments, such as axons and dendrites, suggesting that each miRNA may
have distinct roles in regulating local protein expression, synaptic maturation, and neural
circuit formation. The correct expression of miRNA is essential for the normal development
and functioning of the central nervous system (CNS), and alterations in miRNA levels
have been associated with cognitive impairments and neuropsychiatric disorders [117].
miRNAs can travel through the extracellular space and reach distant cells, where they
influence gene expression, via exosomes and micro-vesicles, or bind to proteins, such as
high-density lipoproteins [118]. This protection also allows them to be easily measured in
biological fluids, such as serum, plasma, cerebrospinal fluid, urine, and saliva. Thanks to
their abundance, stability, and resistance to enzymatic degradation, miRNAs are excellent
biomarker candidates [119]. Several studies have investigated alterations in miRNA ex-
pression following traumatic brain injury [120]. miR-21 and miR-16 are key biomarkers for
TBI, extensively studied in both human and animal models. Both miRNAs are upregulated
following brain injury: miR-21 inhibits apoptosis and targets angiogenic factors, helping
maintain the blood–brain barrier (BBB). Conversely, miR-16 regulates apoptosis and the
cell cycle by targeting molecules like Bcl-2 and cyclin-dependent kinases, promoting neuro-
genesis and acute repair following TBI. In contrast, some miRNAs, such as miR-107 and
miR-27a, undergo downregulation following injury. The loss of miR-107 is a key part of
inflammatory processes because it makes granulin possible. Conversely, the loss of miR-27a
makes programmed cell death easier by increasing the expression of pro-apoptotic proteins,
like Bcl-2. The dynamic regulation of miRNAs highlights their potential as biomarkers for
monitoring brain injury. They also hold promise as forensic tools for determining the cause
of death in cases of suspected brain trauma [119]. In TBI patients, miRNA 135a and 34b
levels increase considerably within the first 24 h following the traumatic event, whereas
miR-200c and miR-34c show increased expression after seven days. The dysregulation
of miR-34b, miR-135, and miR-451a is closely associated with brain injury and inflamma-
tory processes, suggesting their potential use as biomarkers for damage detection and
as prospective therapeutic targets. Conversely, the alteration of miR-34c and miR-200c
appears to be involved in neuronal repair processes and the reduction of inflammation,
emphasizing their function as indicators in recovery mechanisms [121]. An experimen-
tal study published by Sessa et al. [122] analyzed miRNA expression in three groups of
cadavers: drug addicts (cocaine users), ischemic stroke victims, and elderly people with
age-related damage who died from other neurological causes. miR-132 and miR-34 were
upregulated in drug addicts, suggesting a connection to drug-induced neurodegeneration.
miR-200b and miR-21 were dysregulated in stroke and age-related cognitive impairment.
Additionally, miR-124 was found to be highly sensitive to ischemic damage in individuals
who perished from stroke, as evidenced by its increased expression.

Consequently, miRNAs are prospective biomarkers for TBI in the forensic field, as
they can assist in the identification of the anatomical region of brain damage, the time of
the injury, and the precise cause of death.
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4. Prognostic Factors and Time of Death

Geographical area, patient age, and injury pattern are crucial factors in determining
the time of death and the mortality pattern. Demetriades et al. excluded a specific universal
temporal distribution of TBI-related deaths. Indeed, according to these authors, deaths
are related to injury mechanisms, injury patterns, injury severity and patient age [123].
Champion et al. conducted a study on trauma patients from 1978 to 2013, finding that
prehospital deaths accounted for 56%, and in-hospital deaths for 40% [94].

The Injury Severity Score (ISS) is a reliable medical prognostic score for assessing the
severity of trauma, and is related to severity after trauma, specifically mortality, morbidity,
and length of hospital stay. If the ISS is greater than 15, a major trauma is defined. Patients
with an ISS of 58 ± 2 often die in the pre-hospital setting, while those with an ISS of
28 ± 2 die after 48 h [89].

The Glasgow Coma Scale (GCS) is a widely used tool for assessing mortality and
adverse outcomes. However, its reliability is controversial, particularly in populations
such as sedated or elderly patients. Another mortality assessment tool is the Abbreviated
Injury Score (AIS), which is less influenced by external factors, such as sedation, alcohol,
intubation and facial trauma, than the GCS. According to the AIS, the severity of each injury
is classified by body region (head, face, neck, chest, abdomen, spine, upper extremities and
lower extremities) and by a 1 to 6-point scale. The inter-rater agreement for the degree of
severity (therefore similar to the GCS) can be considered a limitation on its usefulness [124].

Despite discrepancies between the Head Abbreviated Injury Score (HAIS) and the
GCS, Delhumeau et al. found a strong correlation between the anatomical description of
TBI using HAIS and the functional assessment provided by the GCS [125].

5. Hospitalization

Observational studies demonstrated a high mortality rate in severe TBI, accounting
for 30–40% in observational studies [126]. TBI imposes significant societal costs due to
the burden of physical, psychiatric, emotional, and cognitive disabilities among survivors,
which also disrupt the lives of patients and their families. TBI is a rising public health
concern of considerable proportions. More than 50 million TBIs occur internationally each
year [16]. TBI impacts the international economy by approximately USD 400 billion annu-
ally, which represents approximately 0.5% of the entire annual global output. Consequently,
the economic impact of TBI is substantial [16,127–132]. Several models are used to calculate
the economic costs of patient and inpatient medical care. Acute hospital care costs have
been estimated according to relative value units (RVUs) from Medicare and are based on
the relationship between cost-adjusted expenditures, diagnosis, and length of stay [133].
The RVUs are a consequence of the quantity of resources necessary to be used during a
hospital stay as a result of a certain diagnosis [134]. The Health Economic Resources Center
(HERC) calculates the average daily cost of hospitalization to estimate the overall cost of
TBI care [134]. In the United States, the estimated cost of hospitalization for TBI is approxi-
mately USD 85.6 billion [135], in Australia, it was estimated at AUD $8.6 billion in 2008.
I [16,134]. In Europe, a recent report estimated that yearly costs of TBI accounted for USD
49.7 billion [135–138], The estimation of higher total costs may be due to the inclusion of
intangible costs [16]. Given the significant global economic burden of TBI, it is necessary to
enhance prevention and treatment strategies from a health-economic perspective. Besides,
there are few data sources regarding costs as a proxy measure of healthcare. Indeed, for
both mild and severe TBI, the total cost estimation is still incomplete. This is why it is
crucial to collect epidemiological data in order to make an accurate economic estimate and
to create a targeted prevention service [16] (Table 2).
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Table 2. Summary of the global cost estimation of TBI and the cost estimation of TBI in different areas
according to literature data. All costs have been calculated in USD.

Global Estimation [127–132]

Yearly global traumatic brain
injuries estimation USD 10–50 millions

Yearly global cost estimation USD 400 billion

Based on world production 0.5%

Mean lifetime cost
USD 222,600 without rehabilitation

USD 450,000 post-acute rehabilitation program
USD 49,688 annual life care with supervised home placement

First year healthcare costs 41–53% of lifetime cost (excluded familiar costs)

European Estimation in 2010 [136]

Yearly cost estimation USD 49.7 billion

Direct costs 41% (USD 20.4 billion)

Indirect costs 59% (USD 29.3 billion)

USA Estimation in 2000–2009 [135,137,138]

2000 2009

Yearly cost estimation USD 85.6 billion USD 252.2 billion

Lifetime medical costs 15%

Lifetime productivity losses 85%

Mean lifetime cost USD 555,424 per patient [137]

Mean acute cost USD 33,284–USD 81,153 per patient [138]

Total direct costs (USD 81 million)

Total indirect costs (USD 2.3 billion)

Australia Estimation in 2008 [134]

Yearly costs estimation USD 7.9 billion

Productivity losses 55%

Mean lifetime cost for
moderate TBI USD 124,703 per patient

Mean lifetime cost for severe
TBI USD 202,456 per patient

6. Conclusions

TBI is a major cause of injury-related deaths and hospitalizations worldwide, repre-
senting a significant public health concern. Forensic medicine tools, by assessing the cause
of death and by giving information regarding the elements involved in time of survival
after TBI, are essential in providing useful information for the TBI management field and
in promoting preventative efforts. Significant progress has been made in the study of novel
clinical variables, blood biomarkers, and neuroimaging in patient characterization aiming
to create precision medicine approaches for TBI management. Future studies may address
molecular and genomic information in clinical practice. Forensic aspects in TBI are of
crucial importance in order to estimate mortality, for example, the use of miRNA as a risk
factor for a negative outcome in TBI is being considered. Alternatively, the presence of
some biomarkers could, in theory, be used in the future in clinical practice for new scores
or added to existing ones, making these more reliable. This would also improve the costs
of care and the problems of malpractice claims related to deceased TBI patients after long
hospitalization.
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Concentration of Microtubule Associated Protein Tau (MAPT) in Urine and Saliva as a Potential Biomarker of Traumatic Brain
Injury in Relationship with Blood-Brain Barrier Disruption in Postmortem Examination. Forensic Sci. Int. 2019, 301, 28–36.
[CrossRef]
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