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Abstract: This paper presents a methodological scheme to obtain the maximum benefit in occu-
pational health by attending to psychosocial risk factors in a company. This scheme is based on
selecting an optimal subset of psychosocial risk factors, considering the departments’ budget in
a company as problem constraints. This methodology can be summarized in three steps: First,
psychosocial risk factors in the company are identified and weighted, applying several instruments
recommended by business regulations. Next, a mathematical model is built using the identified
psychosocial risk factors information and the company budget for risk factors attention. This model
represents the psychosocial risk optimization problem as a Multidimensional Knapsack Problem
(MKP). Finally, since Multidimensional Knapsack Problem is NP-hard, one simulated annealing
algorithm is applied to find a near-optimal subset of factors maximizing the psychosocial risk care
level. This subset is according to the budgets assigned for each of the company’s departments. The
proposed methodology is detailed using a case of study, and thirty instances of the Multidimensional
Knapsack Problem are tested, and the results are interpreted under psychosocial risk problems to
evaluate the simulated annealing algorithm’s performance (efficiency and efficacy) in solving these
optimization problems. This evaluation shows that the proposed methodology can be used for the
attention of psychosocial risk factors in real companies’ cases.

Keywords: optimization method; mapping; MKP benchmark; simulated annealing algorithm; psy-
chosocial risks

1. Introduction

In any company, adequate attention to psychosocial risk (PSR) factors and the gener-
ation of efficient institutional policies regulating interpersonal relationships allow antici-
pating risks associated with a low productivity level. Looking to the future, algorithmic
management, rapid changes in the structure of work and the workforce [1,2] pose an un-
known situation, which possibly increased the risks of work stress. Problems such as high
staff turnover, difficulties in communications, poor leadership, psycho-logical stressors,
coping mechanisms, family work relationship, among other factors, constitute a barrier
to the progress and evolution of organizations [3,4]. The benefits of attending to these
psychosocial aspects include boosting productivity, wellbeing of their employees, moving
towards a highly competitive company and improving market positioning [5,6].

In addition, in Industry 4.0, current digital tools (a new generation of sensors) and
recent developments in information technologies (Big Data, Machine Learning, Artificial
Intelligence, Internet-of-Things) play an essential role in the development of more com-
petitive and globalizing companies. Furthermore, these new developments impact the
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workforce by obtaining advantages to improve worker motivation, implementing policies
for organizational and human aspects and promoting health in the workplace [7–9].

A large number of quality publications in the existing literature promote workers’
health. For example, the international ISO-45003 standard proposes implementing “good
practices” to avoid PSRs and having a healthy work environment [10,11]. Likewise, the
European Union Information Agency for Occupational Safety and Health (EU-OSHA) and
the Spain National Institute for Safety and Health at Work (INSST) promoting the improve-
ment of occupational safety and health conditions to decrease occupational hazards, work
accidents, and occupational diseases [12].

Furthermore, Cox et al. [13] identify ten potentially dangerous work psychosocial
characteristics, classifying them according to their relationship with the work context. In
Kompier and Levi [14], the checklists of the European Foundation for the Improvement of
Living and Working Conditions (Eurofound) are discussed. In [15], the Guide to the Actions
of the Labor and Social Security Inspectorate on Psychosocial Risks points out the advantage
of quickly, validly, and reliably information collecting using questionnaires complying with
established requirements such as reliability and validity. In Sebastián et al. [16], several
treatment recommendations and ergonomic and psychosocial evaluations are given.

The attention of occupational PSR factors has led to the developing and compliance
of regulations that consider that an unfavorable work environment can cause physical
and mental illnesses [10]. These regulations aim to improve work environments so that
workers’ activities develop favorably.

Concerning the instruments identifying PSR factors, in Spain, both the Psychosocial
Evaluation Procedure called Psychosocial Factors (FPSICO, for its acronym in Spanish)
of the National Institute of Occupational Safety and Health (INSHT, for its acronym in
Spanish) and the Copenhagen Psychosocial Questionnaire (CoPsoQ) of the Union Institute
of Labor, Environment, and Health (ISTAS) contain questionnaires for diverse types of
companies [17,18]. Furthermore, the European Working Conditions Surveys (EWCS) [19]
develop instruments to identify the employment situation, such as the Labor Day planning
and duration, the work organization, training and learning, and physical and psychosocial
risk factors. On the other hand, the Official Mexican Standard NOM-035 [10] establishes
the elements to identify, analyze and prevent PSR factors, and to promote a favorable
organizational environment in the workplace.

In particular, in Leka et al. [20], the policy context for managing work-related PSRs
in the European Union (EU) is discussed. They highlight the importance of properly
managing these risks, with the financial benefits for workers’ insurance premium payments.
In Sureda [21], PSR factors in one public hospital are evaluated with the FPSICO procedure,
composed of 75 ten-level Likert items and seven factors: mental workload, temporal
autonomy, job content, supervision-participation, role definition, worker’s interest, and
personal relationships.

In light of these works, it can be seen that PSR assessment is becoming increasingly
important for research on occupational safety and health. However, in [22], it is pointed
out that even though several sources guide the identification of PSRs, the probability and
statistical evaluation of PSRs remain poorly studied. For example, in [23], a significant
correlation between work resources and work-related stress symptoms is shown.

As in other disciplines of knowledge, several propositions incorporate computational
tools and artificial intelligence techniques to improve risk attention and occupational health.
In Khakzad [24], a heuristic is applied for using imprecise probabilities in a Bayesian
network for system safety assessment under uncertainty. In Han et al. [25], the Random
Forest classification heuristic is implemented to select the optimal feature set work-related
stress measured by physiological signals of electrocardiograms (ECG) and respiration
(RSP). The detection of work stress was carried out with the support of a wearable device,
concluding that excessive stress decreases work efficiency and leads to negative emotions
and various diseases.
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In one particular case, job rotation is a successful strategy used in manufacturing
systems. Job rotation helps prevent musculoskeletal disorders, eliminates boredom, and
increases job satisfaction and morale, providing benefits to both workers and the com-
pany. Asensio-Cuesta et al. [26] developed a genetic algorithm for this problem, and
Song et al. [27] implemented a heuristic using factors related to workload ergonomic evalu-
ation data generated in the workplace. On the other hand, Yan et al. [28] developed data
processing algorithms with real-time warning indicators for evaluating and signaling risk
positions through a smartphone.

Concerning optimization processes, the Multi-dimensional Knapsack Problem (MKP)
has been adapted to diverse problems requiring the selection of elements with capacity
restrictions in containers. MKP has been applied to solve various practical problems in the
industry, such as resource allocation, transportation [29], and production planning [30,31].
In [32], a survey of the multiple applications of 0–1 MKP is presented, emphasizing
that the most popular approaches are based on metaheuristics, highlighting population-
based strategies such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and
Ant Colony Optimization (ACO). Most of these procedures are evaluated using various
benchmarks to demonstrate their effectiveness. Furthermore, Drake et al. [33] propose a
hyper-heuristic to select the arguments of crossover operators to solve a group of instances
obtained from three well-known benchmark libraries (OR-Lib, SAC-94, and that presented
by Glover and Kochenberger). In [34], an approach was proposed in which a greedy
algorithm is first used to reduce the search space, and then a linear programming algorithm
is used to obtain the optimal values of some instances of the OR-Lib. In Dzalbs et al. [35], a
variant for population selection in a GA using several instances of two benchmark libraries
(OR-Lib and Glover and Kochenberg) is presented. Finally, in [36,37], both ACO and PSO
are used to solve several SAC-94 instances, achieving the optimal value in all of them.

From the existing occupational risk attention literature, and to the best of our knowl-
edge: (1) There is no evidence that some methodology uses an optimization technique
generating a subset of risk factors to be included in a plan for PSR factors’ attention.
(2) There are no proposals considering a budget assigned to each area or department of the
company for making decisions about the prioritization of occupational risk care.

This article proposes a new methodology to find the combination of PSR factors that
maximizes the company’s attention level, considering the company’s budgets for each of its
departments. The risk factors are first identified using the questionnaires recommended by
the applicable regulations. Then, the problem of optimizing PSR is modeled as a Multiple
Knapsack Problem (MKP). Finally, an optimal solution for this problem is found using an
adaptation of the simulated annealing (SA) algorithm.

2. Materials and Methods

This section describes the materials and methods used to carry out the mapping
scheme to build an MKP from a PSR optimization problem, and the adaptation of the SA
algorithm to find a solution.

2.1. Materials and Background
2.1.1. Psychosocial Risk Factors

According to the 1984 Joint International Labour Office (ILO)/World Health Organiza-
tion (WHO) Committee on Occupational Health, the PSR are “the interactions between and
among work environment, job content, organizational conditions, and workers’ capacities,
needs, culture, personal extra-job considerations that may, through perceptions and experi-
ence, influence health, work performance, and job satisfaction” [38]. 2014/2015 European
Healthy Work Campaign asserts that “psychosocial factors are linked not only to health
outcomes but also to performance-related outcomes such as absenteeism, workability and
especially job satisfaction” [39]. For the determination of PSR factors, multiple models and
variables have been proposed, and a classification of them is needed. The related literature
shows the dimensions coinciding in most of the models [4]:
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• Psychosocial stressors: These imply stressful worker demands such as the workload,
autonomy offered by the position, support, or harassment from the boss.

• Coping strategies: These are related to the internal processes of the individual, such
as their perception and the way they react to events, among others.

• Family work relationships: These are the extra-work aspects that affect the work
environment. This relationship is a dimension little considered in the workplace.

In particular, the most common PSR factors are workload, dealing with other people,
lack of resources (equipment or materials to carry out the work), lack of support (imply-
ing the perception of insufficient support, cooperation, and recognition), poor working
conditions (excessive noise and heat), and other work aspects that are annoying for the staff.

Among the benefits of addressing these PSR factors are preventing and promoting a
safe work environment. Additionally, more direct benefits are obtained, such as:

• Improve the ability to respond to regulatory compliance issues.
• Avoid incidents and thus reduce costs to companies.
• Reduce downtime and downtime costs.
• Reduce the cost of insurance premiums.
• Reduce absences and employee turnover rates.
• Recognition for having achieved an international goal (which in turn can influence

clients who are concerned about their social responsibilities).

The effects of poor PSR management translate into high rates of temporary work
disability for accidents and insurance policy claims. Therefore, the attention given to PSRs
does not differ from the generic risk management process in any company. Both the Inter-
national Standard ISO-45003 and the Mexican NOM-035 contemplate the following steps:
identification of risk, evaluation of its impact/effect on the organization, determination
of the best actions to follow, and finally, their application to generate maximum benefit in
the organizational environment. Additionally, several countries’ regulations require the
introduction of procedures promoting improvements in the safety and health of workers at
their workplace. In the European Union, the European Framework Directive 89/391/EEC
establishes a legal framework indicating the need for a continuous risk assessment and its
reduction. This implies a continuous improvement process that must be repeated within a
period established in the organizational context [20,40,41].

2.1.2. Multidimensional Knapsack Problem

MKP is a 0–1 combinatorial optimization problem that has been extensively stud-
ied [42,43]. MKP is classified as an NP-hard problem [44]. The MKP is represented
by the optimization model depicted in Equations (1) to (3) [44]. In Martello and Toth’s
books [45,46], there is an extensive explanation of the properties and algorithms for MKP
resolution and its variants.

max f = max
n

∑
j=1

pjxj (1)

Subject to
∑n

j=1 aijx .
J
≤ ci i = 1, . . . , m (2)

xj ∈ {0, 1} j = 1, . . . , n (3)

MKP is described as a set of n elements with gain pj > 0, j = {1, . . . , n}, and m resources
(backpacks) with capacities ci > 0 i = {1, . . . , m}. Each j-th element consumes an amount
aij > 0 of each i-th resource. Equation (1) represents the objective function, that is, to choose
a subset from the n elements maximizing the total gain value. This selection must not
exceed the maximum capacity of each backpack m, expressed in the set of constraints in
inequalities (2). Finally, Equation (3) indicates that x variables take only binary values, i.e.,
xj = 1, if the j-th element is selected, and xj = 0 otherwise. An MKP graphical representation
is shown in Figure 1, where there are n boxes with a profit pj represented by a specific color
in Figure 1a. Each j-th box contains different shapes with a weight aij, shown in Figure 1b.
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When selecting the j-th box, each shape is stored in the backpack corresponding to it. Each
backpack has a specific maximum weight capacity, which cannot be exceeded.
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2.1.3. The Simulated Annealing Algorithm

Simulated Annealing (SA) is a local search algorithm. It is named simulated annealing
by analogy to the physical process of annealing solids, where a solid crystalline structure
is first heated and then slowly cooled until it reaches a stable state (a state of minimum
energy) that is free from defects of crystallization. The SA algorithm is inspired by this
thermodynamic behavior, which is compared to the search for an optimum value for
discrete optimization problems [47–49]. Due to its simple implementation, convergence
properties, and local optimal escape ability, SA has become a popular heuristic for solving
complex problems in recent decades. Since many engineering, planning, and manufactur-
ing problems can be modeled as minimizing or maximizing a cost function [50], they can
be solved using SA-based approaches.

When an optimization problem is solved, in each SA iteration, the objective function
improvement is valued by comparing two solutions, the current one and one randomly
selected from its neighborhood. The best solutions are always accepted, while only a
fraction of “not good” solutions are accepted to escape from one local optimum and
continuing the search for better solutions. The probability of accepting “not good” solutions
(i.e., moving to solutions that generate a worse value in the objective function) depends
on the acceptance criterion of SA based on the Boltzmann distribution. By gradually
decreasing the temperature to zero, the worst movements will be accepted less frequently,
and the distribution of the solution associated with the inhomogeneous Markov chain
modeling the algorithm behavior converges to a distribution, in which the probability is
concentrated in a more significant part in the set of optimal solutions. It is necessary to
specify the set of algorithm parameters [51–53] presented in Table 1.
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Table 1. SA parameters.

Parameter Description

w0 Initial candidate solution

T External cycle control parameter

T0 Initial value of the control parameter

α Control coefficient (0 < α < 1)

L Markov chain size

f Cost function

Ω Neighborhood

β Stop criterion coefficient

Tf Final value of the control parameter

2.2. Propoused Methodology

Figure 2 shows the methodological stages for optimizing the attention of PSR factors.
These stages are described in the following paragraphs:

• Identify each j-th PSR factor vj and its level of required attention pj, by applying
NOM035, ISTAS-CoPsoQ, or F-Psico-based questionnaire [10,16] or using any instru-
ment for PSR prevention of company workers, and qualify them according to the
scales integrated into the instrument.

• Construct the cost matrices of the areas or departments that address the PSR factors
(a minimum of four is suggested: training, communication, industrial safety with non-
conformity mechanisms, and human resources with social support actions). Assign
the maximum budget for each department.

• Map the PSR optimization problem as an MKP using the previously obtained data.
• Tune and apply the SA algorithm to solve the PSR factors optimization problem.
• Generate reports to comply with regulations and provide the maximum benefit to the

company’s labor wellbeing.
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The first four stages are detailed in the next sub-sections. Stage five of this methodol-
ogy is developed in the next section.

2.2.1. Identification of PSR Factors and Generation of Cost Matrices

Reference guide number III, included in the Mexican NOM-035 standard, identifies
25 dimensions, ten domains, and five categories of psychosocial risks in the workplace [10].
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Additionally, NOM-035 contains instructions to determine the risk level. For this investiga-
tion, a study case in a company is shown in Figure 3, named CASE-1. This figure shows
that the highest of the five risk levels occurs in work time management. Table 2 describes
the four company departments addressing these risk factors and the actions that would be
feasible to apply by each one of them.
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Table 2. Actions by department for the work time management risk.

Training Communication Industrial Safety Human Resources

Schedule and
develop time

management courses

Design brochures or posters
that graphically remind

workers to organize their time
so as not to be overloaded

by work

Implement a nonconformity
mechanism. Through a module on
the company’s website where the
worker can comment or suggest
alternatives for workload issues
associated with their position or

organizational climate

Program actions that promote
social support-publicize strategies

or support schemes both by the
company and among colleagues,

an example would be to facilitate a
mechanism to share excess work or

cover in special events

The company’s departments must apply budget resources, either monetary or not, to
obtaining a budget consumption matrix. For CASE-1, the matrix has five rows and four
columns, as shown in Table 3. This matrix contains the monetary costs incurred to attend
to each of the company’s risk aspects. The company’s departments must also indicate the
maximum budget that will be applied to address these risks. By maximizing attention to
the psychosocial risk-weighted elements subject to departments’ budget, decision makers
are provided with essential information for organizational wellbeing.

Table 3. CASE-1. Cost for each department in each aspect of risk.

Departments Budget

Psychosocial Risk Factors

Risk Level

560 825 354 428 247

Mental
Workload

Work Time
Management Job Content Supervision-

Participation
Temporal

Autonomy

j = 1, . . . , n

Training (T) $600

i = 1, . . . , m

450 300 280 550 310

Communication (C) $850 200 150 210 480 750

Industrial safety (I) $930 480 200 300 350 150

Human resources (H) $545 130 180 200 320 350



Mathematics 2021, 9, 1126 8 of 23

2.2.2. Mapping the PSR Optimization Problem as an MKP

The variables used to build the PSR optimization model are obtained from the first
two stages of the proposed methodology. Each vj, j = {1, . . . , n}, represents a PSR factor
identified through the questionnaire applied and evaluated following the selected instru-
ment. Each PSR factor has a value pj, indicating the attention level required to provide the
organization’s benefits. The aij cost of attending the j-th PSR factor for the i-th department
is defined in the consumption matrix. Finally, ci, i = {1, . . . , m} represents the budget
limit of each i-th department. According to the optimization model presented in (1) to (3),
one backpack represents one company’s department. Constraints defined by inequalities
(2) indicate that the departments cannot spend more than their budget limits. The objective
function (1) is related to maximize the level of attention pj given with the subset of selected
PSR represented by the binary variable xj, following the constraints defined by Equation
(3).

Figure 4 shows the adaptation of the PSR optimization problem as an MKP. Each box
represents a PSR using one color, indicating its risk level (see Figure 3). The attention of
each PSR generates a cost according to the department where it is applied.
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Figure 4. MKP mapping scheme: (a) The PSRs with a specific risk level represented by a color;
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with a limited budget.

Inside each box, the shapes represent the departments where the risk will be addressed
(4 different shapes, one for each department), consuming part of their budget. The selection of
the boxes should generate a maximum benefit of attending to the risks, considering that the
sum of the costs of the selected risks should not exceed the budget limit of each department.

By using the costs associated with each department, risk levels, and the budget limit
assigned to each department in the Case-1 problem, the problem solution is to attend two
risks (“Work time management” and “Job Content”) in all departments, with a level of
attention of 1179 (total profit of v2 and v3). The budget limits are $580, $360, $500, and $380
for the Training, Communication, Industrial Safety, and Human Resources departments.
It is interesting to note that if the Training department’s budget is reduced to $560, the
solution would be to attend to the risk factor “Work time management” only. This change
implies reducing the budget use from 96.7% to 53.6%, from 42.4% to 17.6%, from 53.8%
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to 21.5%, and from 69.7% to 33.0%, in Training, Communication, Industrial Safety, and
Human resources departments, respectively.

2.2.3. The SA Algorithm Structure

The SA-based algorithm used for this work is described in the following paragraphs.
First, one candidate solution w is defined by the set of selected PSR factors, and the
associated costs in each department, as follows:

w = {Profit, (x1, . . . , xn), (b, . . . , bm)} (4)

where Profit is the total profit of attending the selected PSRs. xj ∈ {0,1}, for j = {1, . . . , n},
indicates if a PSR factor is attended or not, and bi, i = {1, . . . , m}, is the budget consumed by
each department attending the selected PSRs.

The cost function f (w) is the total profit of the set of selected PSR factors. The current
solution’s neighborhood Ω is defined as the set of feasible solutions generated by including
or eliminating a selected risk element.

The initial solution, w0, is generated as follows: first, a sequence of n zeros is created.
Next, using a random number r ∈ [1, n], the zero value in the r-th position is replaced
by a value 1. This replacing process is iteratively applied until the budget limit of any
department is exceeded. The resulting binary sequence is used as the initial solution to the
SA algorithm.

For constructing a neighboring solution (Figure 5), a neighborhood function η(w) to
swap and shift values on the current solution is defined. Figure 5a shows the swap process,
consisting of the generation of two random numbers to obtain a new sequence. Figure 5b
shows the shifting process consisting of generating a random number indicating from
which element the shifting is performed. A normal random variable with mean 0.5 is used
to decide whether swap or shift is applied: if it is greater than 0.5, the swap process is
chosen; otherwise, a shift is performed.
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The SA algorithm adaptation used in this work is shown in Algorithm 1. First, the
fSD, Vm, and T0 parameter values are defined (line 1). fSD is a multiple of the standard
deviation computed using a set of solutions randomly generated [51]. Vm is a factor to
determine the Markov chain size. T0 is the SA initial temperature. T0 is set using the fSD
value. Next, the initial solution w0 is created (line 2). Then, in line 3, both current solution
w and the optimal solution wopt are set using w0. Additionally, current temperature T is set
with T0 and the size of the Markov chain M is computed as follows:

M = Vm × (n × m) (5)
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where n is the number of PSR factors, and m the company’s number of departments.
After that, the M value is used to determine the number of iterations of the SA searching
procedure. In this procedure, named the Metropolis cycle, new solutions are created and
accepted using the Boltzmann criterion (lines 6–20). The current temperature is reduced
at the end of each step of the SA external cycle (lines 4–22) using the α coefficient. At
the end of the external cycle, the SA algorithm returns its current solution as the best
problem solution.

The accepting criterion of new solutions in the Metropolis cycle is as follows: First, a
new solution is created (line 7) using the swap and shift operations previously described.
Next, the difference ∆ between new and current solutions’ fitness values is computed
(line 8). Then, if ∆ is greater than 0, the new solution is selected as the current one (line 10).
In the other case, if ∆ is not greater than 0, the not improved solution can be selected as the
current solution using the Boltzmann criterion (lines 12–15).

Algorithm 1. Simulated annealing.

1 Introduce fSD and Vm; Assign T0 = fSD
2 Calculate a feasible initial solution w0
3 Assign w = w0; wopt = w0, T = T0; M = Vm * (n × m)
4 repeat
5 Initialize counter m = 0
6 for m = 0 to M do
7 Generate new solution w’ = Ω(w)
8 Calculate ∆ = f (w’) − f (w)
9 if ∆ > 0 then
10 w = w’
11 else
12 Generate random ρ(0,1)
13 if ρ ≤ e∆/T then
14 w = w’
15 end if
16 end else
17 if wopt < w then
18 wopt = w
19 end if
20 end for
21 T = α × T
22 until T ≤ β × T0

Regarding parameter tuning, a sensitivity analysis was performed as follows: for the
α parameter, it started from 0.95 to 0.99, where the best was determined to be 0.98. For the
β parameter, between 0.01 to 0.001, it was set as 0.001. Two scenarios were tested for the
initial SA parameters (T0 and Vm). Table 4 shows the parameter values for these scenarios.
The first, called SA-high, T0 = SD and Vm was set between 3 and n, and the second one,
named SA-fast, used 0.5 for both parameters. In this way, the solutions generated for all
instances are contrasted. A procedure was developed to compute the standard deviation
of one hundred random solutions, where the value is recorded in a flat file that is read as
input data for the SA algorithm.

Table 4. SA tuned parameters.

Algorithm T0 = fSD Vm α β

SA-high 1 SD 3 0.98 0.001

SA-fast 0.5 SD 0.5 0.98 0.001
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3. Results

In the next paragraphs, the results of the experimental study are detailed. We ana-
lyze two test scenarios: first, the results of the HP1 MKP benchmark problem, and then
thirty MKP benchmarking instances. This study is carried out on a computer DESKTOP-
AQV7GQH, Intel Core i5-8250U CPU, 1.80 GHz, 8.00 GB RAM produced by DELL Tech-
nologies, Austin, Texas, USA, using a Windows 10 operating system with a Microsoft
Visual C ++ 2012.

3.1. Test Scenario for the HP1 MKP Benchmark Problem

According to the MKP model mapped for the PSR optimization problem presented in
Section 3, vector p contains the attention levels required by PSR factors, vector x is a binary
sequence, where value zero indicates that the PSR is not included, and value one indicates
that it is selected. The budget consumption matrix A contains the amounts to attend to
each j-th PSR factor of each i-th department, and vector c has the department’s maximum
budgets. The HP1 instance of the SAC-94 benchmark [54,55] is applied, containing 28 PSR
factors with four departments to attend them subject to ceiling budgets. The PSR factors are
described in Table 5. A total of 25 PSR factors are used, in accordance with the NOM-035
norm, plus three additional factors from the organizational environment.

Table 5. NOM-03 risk factors.

Item Description Item Description

V1 Dangerous and unsafe conditions V15 Influence of work outside the workplace

V2 Poor and unsanitary conditions V16 Influence of family responsibilities

V3 Dangerous works V17 Poor clarity of functions

V4 Quantitative loads V18 Leadership characteristics

V5 Accelerated work rates V19 Social relationships at work

V6 Work time management V20 Poor relationship with collaborators

V7 Emotional psychological loads V21 Workplace violence

V8 High responsibility work V22 Little or no performance feedback

V9 Contradictory or inconsistent uploads V23 Little or no recognition and compensation

V10 Lack of control and autonomy over work V24 Limited sense of belonging

V11 Limited or no possibility of development V25 Job instability

V12 Insufficient participation in management V26 Job satisfaction

V13 Limited or no training V27 Motivation

V14 Extensive working hours V28 Attitude

In Table 6, the values of the risk level for each PSR factor are shown in the third
row. Each department’s budget limits are shown in the second column of the table, and
the first column shows the department names. The budget consumption matrix for each
department of the company is shown in the center of Table 6. The amounts corresponding
to the V1 factor are presented in column 4 (40, 16, 38, 38), while those for factor V2 are
presented in in column 5 (91, 92, 39, 52), and so on.

Three solutions to this problem obtained using the SA algorithm are shown in Table 7.
Figure 6 shows the percentages of solutions obtained in 30 independent runs. In Table 7, it
can be seen that the Human Resources department applies the total of the assigned budget.
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Table 6. HP1 values for the psr optimization problem.

Department Budget cj aij

PSR Factors, Vj

Risk Level, Pj

560 1125 68 328 47 122 196 41 25 115 82 22 631 132 420 86 42 103 81 26 49 316 72 71 49 108 116 90

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28

j = 1, . . . , n

T 219

i = 1, . . . , m

40 91 3 12 3 18 25 1 1 8 1 1 49 8 21 6 1 5 8 1 0 42 6 4 8 0 10 1

C 203 16 92 4 18 6 0 8 2 1 6 2 1 70 9 22 4 1 5 6 0 4 8 4 3 0 10 0 6

I 208 38 39 5 40 8 12 15 0 1 20 3 0 40 6 8 0 6 4 4 1 5 8 2 8 0 20 0 0

H 180 38 52 7 20 0 3 4 1 2 4 6 1 18 15 38 10 4 8 0 3 0 6 1 3 0 3 5 4

Table 7. Results for the HP1 benchmark problem using the SA algorithm.

Total
Profit

Budget Consumed
by Each

Department
Binary Value 1 Indicates That Vj Is Selected

T C I H X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28

3404 217 198 206 180 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1

3405 216 198 197 180 1 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 1

3418 216 199 201 180 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1
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The optimal solution is shown in the last row of Table 7, as follows:

w = {3418, (1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1), (216, 199, 201, 180)} (6)

In this solution, the attention levels giving the maximum profit of 3418 units selects
the following PSR factors: dangerous and unsafe conditions (V1), poor and unsanitary
conditions (V2), quantitative loads (V4), accelerated work rates (V5), high responsibility
work (V8), lack of control and autonomy over the work (V10), limited or no possibility
of development (V11), insufficient participation in management (V12), influence of work
outside the workplace (V15), poor clarity of functions (V17), workplace violence (V21), little
or no recognition and compensation (V23), limited sense of belonging (V24), job instability
(V25), job satisfaction (V26), motivation (V27), and attitude (V28). As shown in Table 6,
the departments’ budget expenditure is as follows: Training $216, Communication $199,
Industrial Safety $201, and Human Resources $180.

As shown in Figure 6, the optimal solution reported for this instance in the existing
literature was obtained in 66.6% of the 30 runs executed to the SA algorithm. This proposal
dramatically simplifies the preparation of the PSR factors attention plan in a company.
When the optimization model is solved, the subset of PSR factors to be addressed is
obtained, with a near-optimal benefit level. These factors were adjusted to the budgets of
all the departments that correspond to each one. The departments should only generate a
budget consumption matrix for each risk factor that they are involved in addressing.

The advantage of using a heuristic such as the SA algorithm to solve the PSR opti-
mization problem is that a set of near-optimal solutions is obtained. Each one is adjusted
to the budgets assigned for all departments. These results give the company the possibility
of choosing the plan that best suits its needs. In the three solutions shown in Table 7,
the solution with 3405 of profit consumes 99% of the budgets of departments 1 and 3,
and 98% of that of department 2. This percentage is higher than the optimal solution
(3418), but with a budget use of 98% for departments 1 and 2 and 97% for department 3.
This fact could be a reasonable justification for the decision maker better implementing
the solution with the profit of 3405, indicating a different selection of risk factors only
from the following PSR factors: contradictory or inconsistent uploads (V9), insufficient
participation in management (V12), poor clarity of functions (V17), and poor relationship
with collaborators (V20).

3.1.1. Test Scenario for Thirty MKP Benchmark Problems

Thirty benchmark problems described in Drake et al. [33] and Chu [56] are used
to verify the SA algorithm’s performance and compare its two sets of parameter values:
SA-high, SA-fast. The SAC-94 library of MKP instances, taken from various articles in the
existing literature, represents data from different real-life problems. Most of these instances
are small, and their optimal value is known. On the other hand, the GK benchmark [57]
presents instances with up to 2500 elements and 100 backpacks. Furthermore, ORLib
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is a set of 270 instances grouped by the number of elements {100, 250, 500}, number of
backpacks {5, 10, 30} and tightness ratio {0.25, 0.50, 0.75}. Most of these studies report only
the upper bound obtained. However, in [34,35], global optima were obtained for several
OR-Lib instances. These values were obtained using the MIP CPLEX library, but consumed
significant amounts of processing time to solve large problem instances. In [34], using a
greedy search heuristic considerably reduced the processing time required to find values
close to the global optimum, reaching an RE of 0.04%. This heuristic made it possible
to discard non-promising search-space areas, using the profit and weights of the MKP
elements. The combined use of the greedy approach and Linear Programming (LP) reduced
the processing time from 5 h to less than 10 min. The use of metaheuristics for this research
makes it possible to solve the problem quickly and easily, with an acceptable RE, allowing
its use in real-time decision-making systems in a company. It is also important to clarify
that metaheuristics are needed to treat large instances where the processing time grows
exponentially, since MKP is classified as an NP-Complete problem [44].

Table 8 shows the characteristics of the 30 benchmarks used in this test scenario. The se-
lected problem size in this work ranges from 28 elements with 4 backpacks up to 250 elements
with 30 backpacks. The SA is run 100 times for each of these benchmark instances.

Table 8. MKP benchmark instances.

Elements Depts. MKP Benchmark Problems

28 4 SAC-94 hp1

35 4 SAC-94 hp2

40 30 SAC-94 pb6

37 30 SAC-94 pb7

50 5 SAC-94 pet 7

60 30 SAC-94 sento 2

40 2 SAC-94 weish08

60 5 SAC-94 weish16

90 5 SAC-94 weish30

105 2 SAC-94 weing 8

100 15 GK gk01

200 50 GK gk6

100 5 ORLib OR5X100_0.25_6 OR5X100_0.5_4 OR5X100_0.75_

100 10 ORLib OR10X100_0.25_5 OR10X100_0.5_4 OR10X100_0.75_4

100 30 ORLib OR30X100_0.25_5, OR30X100_0.5_1, OR30X100_0

250 5 ORLib OR5X250_0.25_9,
OR5X250_0.5_4, OR5X250_0.75_

250 10 ORLib OR10X250_0.25_7, OR10X250_0.5_2, OR10X250_0

250 30 ORLib OR30X250_0.25_3, OR30X250_0.5_3, OR30X250_0

Table 9 shows the main results for both SA-high and SA-fast versions. The first column
in this table shows the benchmark instance with the type of PSR optimization problem,
where the elements and departments are detailed in Table 8. The second column shows
the optimal value for the benchmark instance or the Upper Bound UB* (highlighted using
an asterisk) reported in the existing literature. For example, the hp1 instance contains
28 PSR factors attended by four company departments. This table shows the maximum and
minimum values reached and the average and mode of the results obtained by running the
algorithm 100 times for each instance. According to this table, the mode value is equal to the
optimal value in most instances with smaller sizes. It can also be observed that the SA-high



Mathematics 2021, 9, 1126 15 of 23

version obtained the best results. Alternatively, the SA-fast version equaled the SA-high
version results only in the smaller instances and in the OR30X100_0.5_1 instance. Regarding
the worst value found (the minimum) by both versions, the SA-fast version found the
worst values, except for the following large instances: OR5X250_0.75_4, OR10X250_0.75_4,
OR30X250_0.25_3, OR30X250_0.5_3, and OR30X250_0.75_3. With respect to the average
values (Avg), the SA-fast version found the worst values for all instances. According to
the results shown in Table 9, the SA-high version performance was better than the SA-fast
version when maximizing the objective function of the MKP.

Table 9. Results for the thirty MKP benchmark problems using the SA algorithm.

Instance Optimum/UB*
SA-High SA-Fast

Max Min Avg Mode Max. Min. Avg Mode

hp1 3418 3418 3404 3412.6 3418 3418 3404 3412.4 3418

hp2 3186 3186 3148 3178.4 3186 3186 3087 3129 3167

pb6 776 776 776 776 776 776 776 776 776

pb7 1035 1035 1035 1035 1035 1035 1028 1033.4 1035

pet 7 16,537 16,537 16,448 16,487.8 16,448 16,537 16,347 16,409 16,448

sento 2 8722 8722 8722 8722 8722 8722 8714 8720.4 8722

weish08 5605 5605 5605 5605 5605 5605 5603 5604.6 5605

weish16 7289 7289 7287 7288.6 7289 7289 7214 7269.29 7289

weish30 11,191 11,191 11,157 11,183.74 11,191 11,191 11,084 11,170.45 11,191

weing 8 624,319 624,319 605,714 618,194.8 620,060 621,086 578,923 595,697.9 621,086

gk01 3766 3745 3713 3727.26 3727 3744 3696 3725.17 3721

gk6 7680 * 7620 7589 7601.4 7609 7611 7573 7596.11 7599

OR5X100_0.25_6 24,613 24,613 23,998 24,346.41 24,321 24,487 23,737 24,221.75 24,386

OR5X100_0.5_4 45,090 45,090 44,641 44,849.66 44,911 45,033 44,265 44,674.13 44,398

OR5X100_0.75_5 61,091 61,079 60,503 60,766.61 60,845 60,975 60,090 60,516.07 60,757

OR10X100_0.25_5 22,751 22,654 22,157 22,411.1125 22,395 22,581 21,705 22,211.21 22,147

OR10X100_0.5_4 45,624 45,475 44,660 45,102.77 45,103 45,365 44,533 44,994.75 44,885

OR10X100_0.75_4 61,966 61,833 61,364 61,603.17 61,570 61,810 61,206 61,520.3 61,474

OR30X100_0.25_5 21,844 21,814 21,460 21,586.55 21,534 21,720 21,160 21,494.64 21,500

OR30X100_0.5_1 40,767 40,630 40,288 40,415.63 40,630 40,630 40,019 40,313.99 40,302

OR30X100_0.75_3 58,052 57,992 57,687 57,786.75 57,721 57,963 57,330 57,712.06 57,721

OR5X250_0.25_9 61,885 61,470 60,674 61,139.98 61,075 61,232 59,998 60,752 60,545

OR5X250_0.5_4 109,383 108,643 108,048 108,381.5 108,190 108,595 107,658 108,160.53 108,187

OR5X250_0.75_4 152,130 151,497 150,375 150,964.31 150,767 151,115 150,755 150,944.4 150,767

OR10X250_0.25_7 58,704 58,158 57,122 57,643.21 57,763 58,085 56,935 57,470.91 57,416

OR10X250_0.5_2 108,717 108,622 108,048 108,384 108,190 108,595 107,658 108,160.53 108,187

OR10X250_0.75_4 151,324 150,808 149,618 150,244.78 150,127 150,479 149,884 150,204.4 150,767

OR30X250_0.25_3 56,614 56,215 55,461 55,797.85 55,658 55,982 55,589 55,753.8 55,741

OR30X250_0.5_3 106,442 105,957 105,357 105,577.653 105,711 105,775 105,480 105,631.8 105,774

OR30X250_0.75_3 153,158 * 152,711 152,054 152,283.94 152,223 152,370 152,151 152,294.2 152,283

The SA runtime was compared with those obtained in five algorithms used to solve
the instances shown in Table 10. The compared were as follows:

• CF-LAS (Choice Function-Late acceptance strategy) [33] is a hyper-heuristic with crossover
operator performed on an Intel Core 2 Duo 3GHz CPU machine with 2 GB RAM.

• RSH (Reduce and Solve Heuristic) [34] coded in C ++ and tested on a PC Intel i5
2.6 GHz CPU, 6 GB RAM.

• ICA (Imperialist Competitive Algorithm) [35] also coded in C ++ and run on an AMD
Threadripper 2990WX, 3.0 GHz CPU, 64 GB RAM, Windows 10 Pro.

• ACO DI (Ant colony optimization with Dynamic Impact) [36] coded in C ++.
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• 3R-SACRO-PSO (Three-ratio Self-Adaptive Check and Repair Operator-inspired Par-
ticle Swarm Optimization) [37] implemented in C and tested using an Intel Core i7
3.4 GHz CPU, 16 GB RAM.

Table 10. Comparative efficiency and efficacy with other algorithms to MKP benchmark.

No Instance Optimum/UB

SA-High SA-Fast CF-LAS
[33]

RSH
[34]

ICA
[35]

ACO DI
[36]

3R-SACRO
-PSO [37]

Time RE Time RE Time RE Time RE Time RE Time RE Time RE
s s s s s s s

1 hp1 3418 2.54 0.00 0.64 0.00 - 0.00 - - - - 0.75 0.00 0.00

2 hp2 3186 8.00 0.00 0.06 0.00 - 0.00 - - - - 36.65 0.00 0.00

3 pb6 776 18.00 0.00 5.37 0.00 - 0.00 - - - - 0.14 0.00 0.00

4 pb7 1035 20.00 0.00 16.74 0.00 - 0.00 - - - - 4.6 0.00 0.00

5 pet 7 16,537 1.24 0.00 0.19 0.00 - 0.00 - - - - 67.62 0.00 -

6 sento 2 8722 94.00 0.00 47.61 0.00 - 0.00 - - - - 1.94 0.00 - 0.00

7 weish08 5605 8.81 0.00 1.13 0.00 - 0.00 - - - - 0.7 0.00 - -

8 weish16 7289 6.00 0.00 2.98 0.00 - 0.00 - - - - 0 0.00 - 0.00

9 weish30 11,191 10.00 0.00 5.48 0.00 - 0.00 - - - - 0.01 0.00 - 0.00

10 weing 8 624,319 77.53 0.00 3.55 0.52 - 0.63 - - - - 0.01 0.00 - 0.00

11 gk01 3766 31.70 0.56 7.00 0.58 - 0.57 - - - 0.61 - 0.14 - -

12 gk6 7680 * 787.70 0.74 186.00 0.90 - 1.15 - - - 0.52 - 0.26 - -

13 OR5X100_0.25_6 24,613 8.47 0.00 1.27 0.51 - 1.16 14.41 0.00 - 0.00 - - - -

14 OR5X100_0.5_4 45,090 34.49 0.00 7.79 0.13 - 0.53 50.07 0.00 - 1.52 - - - -

15 OR5X100_0.75_5 61,091 41.56 0.02 0.68 0.19 - 0.40 21.18 0.00 - 0.00 - - - -

16 OR10X100_0.25_5 22,751 58.80 0.43 7.39 0.75 - 2.00 104.09 0.00 - 0.00 - - - -

17 OR10X100_0.5_4 45,624 55.71 0.33 12.20 0.57 - 1.02 77.79 0.00 - 0.17 - - - -

18 OR10X100_0.75_4 61,966 27.61 0.21 7.20 0.25 - 0.58 46.96 0.00 - 0.00 - - - -

19 OR30X100_0.25_5 21,844 353.25 0.14 30.00 0.57 - 3.45 90.25 0.19 - - - - - -

20 OR30X100_0.5_1 40,767 271.39 0.34 67.80 0.34 - 1.56 116.82 0.00 - - - - - -

21 OR30X100_0.75_3 58,052 307.72 0.10 66.30 0.15 - 0.92 109.4 0.00 - - - - - -

22 OR5X250_0.25_9 61,885 144.58 0.67 16.20 0.96 - 0.42 170.52 0.00 - - - - - -

23 OR5X250_0.5_4 109,383 143.10 0.57 35.00 0.68 - 0.20 194.52 0.00 - - - - - -

24 OR5X250_0.75_4 152130 85.15 0.42 22.80 0.67 - 0.13 162.2 2.32 - - - - - -

25 OR10X250_0.25_7 58,704 326.00 0.93 71.00 1.05 - 0.83 201.31 0.00 - - - - - -

26 OR10X250_0.5_2 108,717 490.00 0.09 90.00 0.11 - 0.39 248.56 0.01 - - - - - -

27 OR10X250_0.75_4 151,324 535.00 0.34 130.10 0.56 - 0.23 222.21 0.04 - - - - - -

28 OR30X250_0.25_3 56,614 2405.00 0.70 390.00 1.12 - 1.55 287.24 0.21 - - - - - -

29 OR30X250_0.5_3 106,442 2260.25 0.46 450.00 0.63 - 0.71 324.08 0.15 - - - - - -

30 OR30X250_0.75_3 153,158* 3933.40 0.29 840.00 0.51 - 0.39 262.54 0.13 - - - - - -

The SA-high and SA-fast versions were implemented in C++, and they were tested on
an Intel Core i5 CPU, 8 GB RAM.

The relative error, RE, was evaluated for each instance using Equation (7), where Vop
is the optimal global value (the optimum). If this value is unknown, the upper bound
reported in the existing literature was used as the reference value. Finally, VSA is the value
computed using the proposed SA-based algorithm.

RE = abs ((Vop − VSA)/Vop) * 100 (7)

Table 10 shows the relative error (RE) obtained by solving 30 MKP instances. The
main comparison was performed using the RE, since some of the compared methods do
not report their running times. This table shows that the metaheuristics proposed in this
work reach competitive results concerning the compared algorithms, highlight the SA-high
version since it obtains the optimal value for the first ten instances. In terms of running
times, the SA-fast version was faster than the SA-high version in all instances. Alternatively,
comparing the REs between algorithms, the following facts are shown: both SA versions
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were better than the CF-LAS method when solving the instance number 10. Furthermore,
in 18 large instances (instances 13–30), the SA-high version was better than the CF-LAS
method. In particular, the SA-high performance was better than RSH in one instance and
obtained the same values in two instances. In the rest of the cases, both SA versions were
competitive with all metaheuristics. The highest RE obtained for the SA-high version was
less than 1, and for the SA-fast version, this was at least 1.12. These results indicate that
the SA versions proposed in this work have outstanding efficiency, and they compete with
the metaheuristics found in the literature for the MKP problem. In Table 10, column 2, the
optimum is the global optimum in most cases, and in very few cases, the optimum is an
upper bound (marked with *), because the global optimum of the MKP is not yet known.

Figure 7 shows the relative error of the thirty benchmark instances. The highest value
for the SA-high scheme is 0.93 and that for the SA-fast scheme is 1.12. For benchmark
instance number 10, the SA-high scheme reached the global optimum, while the SA-fast
scheme had a relative error of 0.52.
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Carrying out one contrast between the two SA parameter schemes, Figure 8 shows
that, on average, the SA-fast scheme solved the benchmark instances 76% faster than the
SA-high scheme.
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Figure 8. Contrast in the resolution time of the two SA schemes.

3.1.2. Statistical Analysis

The algorithms CF-LAS, RSH, and the SA-high version were used to perform the
statistical analysis of the algorithm proposed in this work. The comparison using these
algorithms was performed on the basis of Table 10, since the others were lacking in data. For
the statistical analysis, the results of 18 large instances were used, from the OR5X100_0.25_6
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instance to the OR30X250_0.75_3 instance (Table 11). The null hypothesis H0 used in
this analysis indicates that the means of the results of the algorithms are equal, and the
alternative hypothesis H1 suggests that at least one algorithm had a different behavior.

H0 : X1 = X2 = · · · = Xr (8)

H1 : Not all are the same (9)

Table 11. Data of the algorithms used for statistical analysis.

Algorithm
Instance Number

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SA-high 0 0 0.02 0.43 0.33 0.21 0.14 0.34 0.1 0.67 0.57 0.42 0.93 0.09 0.34 0.7 0.46 0.29

CF-LAS 1.16 0.53 0.4 2 1.02 0.58 3.45 1.56 0.92 0.42 0.2 0.13 0.83 0.39 0.23 1.55 0.71 0.39

RSH 0 0 0 0 0 0 0.19 0 0 0 0 2.32 0 0.01 0.04 0.21 0.15 0.13

Figure 9 presents the normality graph of the three algorithms. From this figure, it can
be concluded that no normality exists in the data since the points are not located on the
diagonal of the graphs.
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The homoscedasticity analysis was performed using the box-and-whisker graph
presented in Figure 10. It can be seen that, for each algorithm, the boxes are not the same,
indicating a difference in variances and that homoscedasticity does not exist. As the two
assumptions of normality and homoscedasticity of the data did not exist for applying a
parametric test such as ANOVA, the robust ANOVA test of Welch and Box [58] was used.

The Welch and Box test [58] was performed in order to perform statistical analysis
with robust ANOVA using the WRS R package [59] to compare the three algorithms using
the 10% of the trimmed means. The obtained p-value was 1.912572 × 10−5, and the null
hypothesis was refuted. The value Fw of the statistician was 18.31316, and the degrees of
freedom were v1 = 2 and v2 = 22.47213.
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4. Discussion

This methodology is used to generate the first plan of attention to PSR factors. In
the case study, the budget consumption matrix is obtained from the hp1 instance. Still,
in a real case, its preparation requires great effort, since multiple meetings between the
company departments are needed to agree on the amounts used to attend each risk factor
and establish the budget ceiling. When solving the optimization model of this instance,
Table 7 shows the three solutions obtained using the budget consumed by each department.
Again, it is essential to emphasize that companies must apply most of their assigned
budget in order to achieve the most significant benefit, since an unconsumed budget would
imply neglecting its purpose or mismanagement. In the instance of hp1, a competitive
solution achieved a profit of 3405, consuming 99% of the budget of departments 1 and
3 and 98% of the budget of department 2. The benefits of using metaheuristics such as
the SA-based approach presented in this work are evident. They can obtain several near-
optimal solutions, and the decision-makers have several scenarios from which to select
that which best aligns with the company’s objectives, such as the use of the greatest budget
to obtain the greatest benefit in addressing psychosocial risks.

The cost matrix generation for each department, even without considering the risk
levels presented in the company, provides the opportunity to incorporate future actions
and move towards the continuous improvement of the organizational environment. In
accordance with various methodologies described in the existing literature, the success
of these projects type (continuous improvement) lies in communication. However, since
this work involves psychosocial aspects, the application of diverse issues such as social
support, the use of mechanisms of disagreement, and well-targeted training will make a
difference. This methodology requires costs to attend to each PSR factor offering important
support in decision making. This proposal reduces the tensions related to the creation of
one intervention plan, since each department generally has its own prevention perspective
according to its own goals and objectives. The generation of the cost matrix per department
enriches the actions, activities and interventions that need to be followed in order to
improve the organizational environment.

Regarding the metaheuristic used to solve the PSR optimization problem, it is clear
that the smallest instances, the solution found by the SA algorithm, is the optimal value
reported in the benchmark literature. For the other instances, the sampling error shown
in Figure 8 validates the two SA schemes’ quality and precision. The SA-fast scheme
has a maximum RE no greater than 1.12%, representing competitive solutions found in a
reasonable time. It is ideal for large PSR optimization problems. This behavior allows the
SA algorithm to be incorporated into the technology platform with the enterprise security
methodology [60–62]. On the other hand, as shown for small instances, the SA-high scheme
presents greater precision, where its implementation brings great benefits.
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Regarding the statistical results, we observe that the proposed SA algorithm is com-
petitive with those contrasted in the existing literature, demonstrating its independence.

Solving the PSR optimization problem has great relevance, due to the changes in the
forms of work that are currently taking place [1,7–9,63]. Algorithmic management [2,64–66],
which assigns tasks and evaluates workers using data-driven systems, has proven to be
efficient. However, at the same time, the present challenges of the psychosocial type should
be considered. This presents a wide field of study for future works.

As future work, we intend to automate the identification of the level of attention
that the PSR factor requires, incorporating, in addition to the questionnaire, information
from interviews, minutes of discussion group meetings, and definitions of performance
indicators aligned to the strategic objectives of the company, among other things.

5. Conclusions

Given the challenges that organizations face regarding digitization and process au-
tomation, technological tools play an essential role in supporting decision making. Changes
in the workforce go hand in hand with job wellness and occupational health, hence the
importance of using algorithms that optimize solutions to address psychosocial risks. In
this work, a methodological scheme was presented that, on the basis of the detection of
psychosocial risk factors in a company, the mapping to an MKP optimization model, and
its solution using the SA algorithm, is able to obtain the subset of risk factors for a com-
pany with a maximum value at the level of care, that is, with a local-optimal solution that
maximizes the benefit to the factors with the highest identified risk. This subset of selected
factors can be incorporated into an optimal PSR treatment plan in the workplace. As shown
by the evaluation of the method, the level of attention to risks is maximized under the
limited budgets of a company’s departments. This methodology favors the organizational
environment and promotes business competitiveness, complying with existing regulations
for the identification, analysis and prevention of PSR factors.

By solving the benchmark instances for MKP, it was shown that the SA algorithm was
able to solve the PSR optimization problem. The algorithm obtained values close to the
optimum (and, in some cases, the global optimum) in the conducted tests.

The suggested metaheuristic was developed using two tuning schemes: SA-high and
SA-fast. It can be observed that the second scheme had a better execution time (almost 80%
faster than the first), sacrificing precision of results by a value within the range of 2–3%.
These results are competitive, since the operation speed is one of the variables of interest
under the new requirements given in the work scheme, such as algorithm management.

The results show that an SA-high scheme is a promising approach, since it achieves
results below 1% for relative error. This implies that the results may be beneficial for a real
PSR problem of a company.

As future work, it is intended to automate the identification of the level of attention
that the PSR factor requires, incorporating, in addition to the questionnaire, information
from interviews, minutes of discussion group meetings, and the definition of performance
indicators aligned to the strategic objectives of the company, among other things.
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