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Abstract: In this paper, we propose a new finite-difference method for nonconvex absolute
value equations. The nonsmooth unconstrained optimization problem equivalent to the
absolute value equations is considered. The finite-difference technique is considered to
compose the linear programming subproblems for obtaining the search direction. The
algorithm avoids the computation of gradients and Hessian matrices of problems. The
new finite-difference parameter correction technique is considered to ensure the monotonic
descent of the objective function. The convergence of the algorithm is analyzed, and
numerical experiments are reported, indicating the effectiveness by comparison against a
state-of-the-art absolute value equations.
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imation gradient; global convergence; multi-directional search
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1. Introduction
1.1. Problem Description Motivation

In this paper, we propose a new finite-difference method for solving the nonconvex
absolute value equations of the following from:

Ax − B|x| = d. (1)

where A, B ∈ Rm×n are m × n matrices, and x ∈ Rn and d ∈ Rm are n-dimensional
and m-dimensional column vectors, respectively. The problem (1) arises frequently in
bimatrix games, contact problems and linear and convex quadratic programming [1–3].
In addition, the importance and practicality of developing numerical algorithms and
theoretical frameworks for absolute value equations are not limited to their theoretical
meanings but also include a wide range of potential applications and enormous economic
value. Therefore, addressing the challenges brought by absolute value equations is not only
valuable in theory but also of significant economic importance.

In order to obtain the solution of Problem (1), we consider solving the following
optimization problem:

min
x∈Rn

f (x) =
m

∑
i=1

|Aix + Bi|x| − di|, (2)
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where Ai and Bi are the i−th row of Matrices A and B, respectively, and di is the i−th
component of d. It is obvious that the optimal solution of Problem (2) is the solution
of Problem (1). Hence, we consider the new algorithm to solve Problem (2). However,
Problem (2) is a nonsmooth problem; thus, it is difficult to obtain the optimal solution of
Problem (2) using traditional smooth optimization algorithms. In this paper, we introduce
the nonsmooth optimization algorithm to obtain the solution of Problem (2).

The nonlinear absolute value equations (AVEs) already have a wide spectrum of
applications, such as economics, engineering, transportation science, and mathematical
programming, especially mixed integer linear programming problems. It is very difficult
to deal with nonlinear and nonsmooth ones. The general form of (1) was first presented
by Rohn [4]. Then, Mangasarian [1,5,6] promoted it in a more general context. In many
cases, AVE problems were equivalent to linear complementarity (LPC) problems (see [7,8]).
Some studies introduced several theoretical results to guarantee the uniqueness of the
solution [9–12]. Furthermore, if an AVE problem was linked to an LCP, then an AVE prob-
lem could be associated with nonlinear complementarity problems (NCPs), taking profit
from the huge amount of literature concerning the existence, uniqueness and numerical
resolution of NCPs (see [13]).

In order to solve AVE problems, various numerical algorithms can be used. Generally
speaking, there are three categories: iterative linear algebra based methods, semi-smooth
Newton-like methods and smoothing methods. The aforementioned methods can solve
AVE problems, but assumption such as P0-matrices and P-matrices are needed [14]. In
addition, Caccetta et al. [15] proposed a smoothing Newton method for AVEs. They showed
that the method has a global and quadratic convergence rate when singular values of A
exceed 1. Li [16] introduced a preconditioned accelerated over-relaxation iterative method
coupled with a preconditioning technique for solving absolute value equations. Studies
have shown that the convergence rate of the preconditioned accelerated over-relaxation
iterative method is better than that of the accelerated over-accelerated over-relaxation
iterative method. Yong [17] proposed a particle swarm optimization (PSO), which was
based on aggregate function for solving AVE problems. They used an aggregate function to
replace the absolute value function, and the nonsmooth AVEs could be solved by solving
smooth nonlinear equations. Moosaei et al. [18] proposed a new algorithm for solving NP-
hard absolute value equations in which the singular values of A exceed 1. Some randomly
generated problems were solved by proposed methods and other other known methods.
The comparison results showed that these methods were more effective than other known
methods. Wu and Li [19] introduced a special shift splitting iteration method for solving
nonlinear absolute value equations. They showed that the special shift splitting iteration
method was absolutely convergent under proper conditions. Yong [20] also introduced an
iterative method for solving AVE problems. He showed that the sequence generated by the
algorithm converged to a solution of AVEs after finite iterations. Finally, this method was
applied to solve a two-point boundary value problem. Saeed Ketabchi et al. [21] created
an algorithm to compute the minimum norm solution to the absolute value equation
(AVE) in a special case. They pointed out that AVEs could be reduced to an unconstrained
minimization problem with a once-differentiable convex objective function by using an
exterior penalty method. Hence, a quasi-Newton method was used for solving this problem.
Ref. [22] studied the optimum correction of the absolute value equation through making
minimal changes in the coefficient matrix and the right-hand side using the l2 norm. Hence,
a genetic algorithm could be used for obtaining the solution of this problem. Moreover,
many methods used for solving absolute value equations were also used to solve partial
differential equations (PDEs); for example, Liu et al. [23] introduced the bilinear neural
network method for solving partial differential equations. Taylor et al. [24] also introduced
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a residual neural network method for solving partial differential equations. These methods
were also useful for solving AVE problems.

1.2. Contribution of This Paper

In order to solve the nonlinear absolute value equation (Equation (1)), a new finite-
difference method is introduced in this paper. The algorithm‘s contributions are as follows:

• The finite-difference method is proposed for finding the solution of Problem (1). We
prove that the sequence generated by the algorithm converges to the solution of
Problem (1).

• The proposed algorithm avoids computing the gradients and Hessian matrices’ infor-
mation to obtain the subproblem for solving the search direction. The finite-difference
technique is only used for proposing the linear programming subproblem to obtain
the search direction.

• Unconstrained nonsmooth optimization problems are established, and their optimal
solutions are guaranteed to be absolute value equations. A new finite-difference
parameter correction technique is used to ensure the monotonic descent of the objective
function of unconstrained nonsmooth optimization problems.

• In contrast to general smooth optimization algorithms for solving absolute value
equations, P0−matrix and P−matrix approximations for Problem (1) are not needed
in this paper for the convergence of the algorithm.

This paper is organized into six sections. The finite-difference linear programming
subproblem is introduced in Section 2. The finite-difference algorithm is introduced in
Section 3. We prove that the sequence generated by the algorithm converges to the solution
of Problem (1) in Section 4. Numerical experiments illustrating the practical performance
of the algorithm are reported in Section 5. The conclusions of this paper are outlined in
Section 6.

2. The Linear Programming Subproblem
In this paper, we consider a new algorithm for obtaining the solution of Problem (1).

First, we consider building the linear programming subproblems using the information
of the gradient of objective function f (x). However, gradient information is not obtained.
Hence, the finite difference is used to approximate the gradient of objective function f (x).
The finite difference relies on an appropriate finite-difference parameter, t.

We define the finite-difference interval, as suggested in [25]. The ith component of the
approximation finite difference which approximates the gradient of f (x) at x is defined by

[g+(x)]i = f (x + tei)− f (x), (3)

[g−(x)]i = f (x − tei)− f (x), (4)

where ei, i ∈ {1, 2, · · · , n} is the n-dimensional unit vector whose ith element is 1.
Using (3) and (4), we define g+(x) and g−(x) as follows:

g+(x) =[g+1 (x), g+2 (x), · · · , g+n (x)]T , (5)

g−(x) =[g−1 (x), g−2 (x), · · · , g−n (x)]T . (6)

Hence, the finite-difference gradient is given as follows:

g(x) =

[
g+(x)
g−(x)

]
. (7)
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We hope that the algorithm can generate a search direction relying on (8). In order to
achieve this goal, i.e., in order to obtain the search direction of Problem (1), we will present
the following subproblem:

min gT
k

[
λ

µ

]
= [g+k ]

Tλ + [g−k ]
Tµ

s.t.
n

∑
i=1

(λi + µi) = 1,

|λi| ≤ ∆k, |µi| ≤ ∆k, i = 1, 2, · · · , n (8)

where ∆k > 0, λ ∈ Rn, µ ∈ Rn, gk = g(xk), g+k = g+(xk), g−k = g−(xk), g(x), g+(x) and
g−(x) are generated by (7), (5) and (6), respectively.

3. Algorithm
In this section, we introduce a new finite-difference method for finding the optimal

solution of Problem (2), and we obtain the solution of Problem (1). The design of the
algorithm is mainly inspired by the idea of a multi-directional search. However, the basic
idea of a multi-directional search is to explore each direction given until a direction that
can cause the objective function to decrease is found. Our algorithm will utilize the theory
of spatial basis in higher algebra and construct a linear programming model to avoid a
one-by -one search.

Remark 1. In Step 6 of the algorithm, we control the finite-difference parameter such that it is also
a step size along the search direction dk.

Remark 2. Algorithm 1 may obtain a local optimal solution of Problem (1) if it is not a convex
optimization problem and this solution is not the solution of Problem (1). From Figure 1, we can
see that if we expand the finite-difference parameter, tk, solving Subproblem (8) will generate a new
descent direction until the algorithm produces a solution to Problem (1). Hence, the parameter
correction plan in Steps 3, 4 and 5 of Algorithm 1 is necessary for finding the solution to Problem (1).

Algorithm 1: FDM
Input: Given initial iteration x0 ∈ Rn, the constants t0 ∈ (0, 1), ∆0 > 0, 0 < σ < 1 < χ and ϵ > 0. Set k = 0.
Main Steps:
1. Calculate the approximate gradient gk = g(xk) using (7).
2. If | f (xk)| ≤ ϵ, then stop; xk is a solution of Problem (1).
3. If min{[g+k ]1, · · · , [g+k ]n, [g−k ]1, · · · , [g−k ]n} > 0, then let t1

k = σtk.
If t1

k > ϵ, compute g1
k = min{[g+k ]11, · · · , [g+k ]1n, [g−k ]11, · · · , [g−k ]1n} where [g+k ]1i = f (xk + t1

kei), [g−k ]1i = f (xk − t1
kei).

Else, g1
k = (1, · · · , 1, 1, · · · , 1), and go to 4.

4. Let t2
k = χtk, compute g2

k = min{[g+k ]21, · · · , [g+k ]2n, [g−k ]21, · · · , [g−k ]2n} where [g+k ]2i = f (xk + t2
kei), [g−k ]2i = f (xk − t2

kei).
5. If min{g1

k , g2
k} ≥ 0, then go to 3.

6. If g1
k ≤ g2

k , then tk = t1
k ; go to 5.

Else tk = t2
k , go to 5.

7. Calculate Subproblem (8) and obtain the search direction dk = λk − µk, where λk = λ(xk) and µk = µ(xk).

8. If f (xk + tkdk) ≤
n
∑

i=1
[λk]i f (xk + tei) +

n
∑

i=1
[µk]i f (xk − tei), then let xk+1 = xk + tkdk.

Else, let dk = πkej0 and xk+1 = xk + dk such that f (xk + πkej0 )− f (xk) = f (xk + dk)− f (xk) = min{ f (xk + tke1)−
f (xk), · · · , f (xk + tken)− f (xk), f (xk − tke1)− f (xk), · · · , f (xk + tken)− f (xk)}.

Set k = k + 1, and go to 1.
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Figure 1. Schematic diagram of selecting parameter tk in Algorithm 1.

Figure 1 shows how parameter tk is selected in Algorithm 1, such that Algorithm 1 can
obtain the solution to Problem (1). The radius of the dashed circle in the four subgraphs
in Figure 1 represents the length of parameter tk. These four subgraphs show that as the
radius increases (parameter tk increases), the dashed circle can intersect with a function
value lower than the center point (current iteration point xk). This indicates that with the
increase in the value of parameter tk, Algorithm 1 can further reduce the problem and
ultimately obtain the solution to Problem (1).

4. Convergence Analysis
In this section, we provide the global convergence analysis of Algorithm 1. Similar

to the convergence proofs in other studies, the convergence proof of the algorithm in
this paper mainly states two points: Firstly, it proves that the algorithm can reduce the
objective function of Problem (2) with each iteration before termination under the general
assumptions mentioned in the other studies. Secondly, it proves that the solution to Problem
(1) can be obtained when Algorithm 1 is terminated. We require the model to satisfy the
following assumption:

Assumption 1. We define the level set as

L(x0) = {x ∈ Rn, f (x) ≤ f (x0)}.

Suppose that the level set is bounded.

Next, we will prove that the limit point x∗ of the sequence {xk} generated by Algorithm
1 is a solution to Problem (1). First, we show that the sequence generated by Algorithm 1 is
such that the objective function of Problem (2) is monotonically decreasing.

Lemma 1. Under Assumption 1, sequence {xk} is generated by Algorithm 1 such that the objective
function of Problem (2) is monotonically decreasing, i.e., for any k and k + 1, we have that

f (xk+1) < f (xk).
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Proof. According to Step 3 of Algorithm 1, if there exists j0 ∈ {1, 2, · · · , n} such that
[g+k ]i < 0 or [g−k ]i < 0, then let λj0 = 1 or µj0 = 1 and λi = 0, i ̸= j0 or µi = 0, i ̸= j0. It is
obvious that either [λT

k , µT
k ] = [0, · · · , [λk]j0 , 0, · · · , 0] or [λT

k , µT
k ] = [0, · · · , [µk]j0 , 0, · · · , 0]

is a feasible solution of Subproblem (8), and we have that

gT
k

[
λk

µk

]
= [g+k ]

Tλk + [g−k ]
Tµk = [g+k ]j0 < 0, (9)

or

gT
k

[
λk

µk

]
= [g+k ]

Tλk + [g−k ]
Tµk = [g−k ]j0 < 0. (10)

If min{[g+k ]1, · · · , [g+k ]n, [g−k ]1, · · · , [g−k ]n} > 0, then, according to Steps 3–6 of Algorithm
1, there exists tk > 0 such that min{[g+k ]1, · · · , [g+k ]n, [g−k ]1, · · · , [g−k ]n} < 0, similar to (9)
and (10). Therefore, we have

gT
k

[
λk

µk

]
< 0. (11)

According to the definition of gk, we obtain

gT
k

[
λk

µk

]
=

n

∑
i=1

[λk]i[gk]
+
i +

n

∑
i=1

[µk]i[gk]
−
i

=
n

∑
i=1

[λk]i[ f (xk + tei)− f (xk)] +
n

∑
i=1

[µk]i[ f (xk − tei)− f (xk)].

If f (xk + tkdk) ≤
n
∑

i=1
[λk]i f (xk + tei) +

n
∑

i=1
[µk]i f (xk − tei), by

n
∑

i=1
(λi + µi) = 1, we have

f (xk + tkdk)− f (xk) = f (xk + tkdk)−
(

n

∑
i=1

[λk]i +
n

∑
i=1

[µk]i

)
f (xk)

≤
n

∑
i=1

[λk]i f (xk + tei) +
n

∑
i=1

[µk]i f (xk − tei)−
(

n

∑
i=1

[λk]i +
n

∑
i=1

[µk]i

)
f (xk)

=
n

∑
i=1

[λk]i( f (xk + tei)− f (xk)) +
n

∑
i=1

[µk]i( f (xk + tei)− f (k))

=gT
k

[
λk

µk

]
< 0. (12)

From (12), we have f (xk + tkdk)− f (xk) < 0, i.e., f (xk + tkdk) < f (xk), which means
that the objective function is monotonically decreasing.

If f (xk + tkdk) >
n
∑

i=1
[λk]i f (xk + tei) +

n
∑

i=1
[µk]i f (xk − tei), according to Step 8 of

Algorithm 1, we have

f (xk+1)− f (xk) = f (xk + dk)− f (xk) = f (xk + πkej0)− f (xk)

=min{ f (xk + tke1)− f (xk), · · · , f (xk + tken)− f (xk),

f (xk − tke1)− f (xk), · · · , f (xk + tken)− f (xk)} < 0. (13)
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Combining (12) and (13), we have that

f (xk+1)− f (xk) < 0,

which means that

f (xk+1) < f (xk), (14)

and the objective function of Problem (2) is monotonically decreasing.

The next theorem shows the convergence of Algorithm 1, i.e., the sequence generated
by Algorithm 1 converges to the solution of Problem (1).

Theorem 1. Under Assumption 1, the sequence generated by Algorithm 1 converges to the solution
of Problem (1), i.e., we have

lim
k→∞

f (xk) = 0.

Proof. For any Index N ∈ {1, 2, · · · }, we have that

f (xN)− f (x0) =
N

∑
k=0

( f (xk+1)− f (xk)).

Hence,

f (xN) =
N

∑
k=0

( f (xk+1)− f (xk)) + f (x0).

By Lemma 1, we can obtain

f (xk+1)− f (xk) < 0,

which means that f (xN) → −∞ as N → +∞. This contradicts the boundedness of function
f (x) in Assumption 1. Hence, we have

lim
k→∞

f (xk) = 0,

which means that the sequence generated by Algorithm 1 converges to the solution of
Problem (1).

5. Numerical Results
In this section, we will use actual examples to test the effectiveness of Algorithm 1. In

order to reflect the computational efficiency of Algorithm 1, we would like to compare the
practical performance of Algorithm 1 with the following codes:

• SM [26]: The nonlinear absolute value equations can be restated as nonlinear comple-
mentarity problems and solved efficiently using smoothing regularizing techniques.
SM is a smooth method for solving nonlinear complementarity problems. It uses a
softmax function that approximates the nonsmooth parts of problems, in which the
main idea is to approximate the complementarity condition via the limit

max
i∈{1,··· ,d}

xi = lim
r↘0

log

(
d

∑
i=1

exi/r

)
,
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which was widely used in many optimization problems.
• IP [27]: The interior method introduced by Haddou, Migot and Omer in 2019 with

the full Newton step for monotone linear complementarity problems. The specificity
of the method was to compute the Newton step using a modified system similar
to that introduced by Darvay in Stud Univ Babe-Bolyai Ser Inform 47:15-26, 2017.
The method considered a general family of smooth concave functions in the Newton
system instead of the square root. The method also possessed the best-known upper
bound complexity.

In order to test the efficiency of our algorithm, we chose five nonlinear absolute value
equations examples from [28–30]. A specific form of the example is as follows:

Example 1. We solve the systems F(x)− |x| = b, where F(x) = Ax, A = tridiag(−1, 4,−1),
x∗ ∈ Rm, B = Ax∗ − |x∗| and x∗ = (1, 2, 1, 2, · · · , 1, 2, · · · )T ∈ Rm.

Example 2. We solve the systems F(x)− |x| = b, where F(x) : R3 → R3 is defined by

F(x) =

 2x1 − 2
2x2 + x3

2 − x3 + 3
x2 + 2x3 + 2x3

3 − 3

,

and we, respectively, consider b1 = (−1,−5, 10)T , b2 = (9,−100, 10)T , b3 = (200, 0, 900)T .

Example 3. We solve the systems F(x)− |x| = b, where F(x) : R4 → R4 is defined by

F(x) =


3x2

1 + x1 + 2x1x2 + 2x2
2 + x3 + 3x4

2x2
1 + x1 + x2

2 + x2 + 10x3 + 2x4

3x2
1 + x1x2 + 2x2

2 + 3x3 + 9x4

x2
1 + 3x2

2 + 2x3 + 4x4

,

and we, respectively, consider b1 = (10, 10,−12, 0)T , b2 = (20,−100,−12, 1)T , b3 =

(200, 10,−5,−5)T .

Example 4. Assume that m is a predetermined positive integer and that n = m2; moreover, suppose
that B = I, A = M + I, where

M(x) =



S −0.5I 0 · · · 0 0
−1.5I S −0.5I · · · 0 0

0 −1.5I S · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · S −0.5I
0 0 0 · · · −1.5I S


∈ Rn×n,

with

S =



5 −0.5 0 · · · 0 0
−1.5 4 −0.5 · · · 0 0

0 −1.5 4 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 4 −0.5
0 0 0 · · · −1.5I 4


∈ Rm×m,

and b = Ax∗ − |x∗|, in which x∗ = (1, 2, 1, 2, · · · , 1, 2, · · · )T .
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Example 5. Let m be a prescribed positive integer and n = m2. Consider Problem (1) with
A = tridiag(−I, S,−I) ∈ Rn×n, where S = tridiag(−1, 8,−1) and B = I.

In order to test the computational efficiency of Algorithm 1, different dimensions were
selected for Examples 1, 4, and 5 for the calculations. Details are outlined in Table 1.

Table 1. Details of Examples 1, 4 and 5.

Example Vector b Error1 Error2 Error3 Error4

Example 1 d = 10 10−3 10−5 10−8 10−10

d = 50 10−3 10−5 10−8 10−10

d = 100 10−3 10−5 10−8 10−10

d = 200 10−3 10−5 10−8 10−10

Example 4 d = 100 10−3 10−5 10−8 10−10

d = 500 10−3 10−5 10−8 10−10

d = 1000 10−3 10−5 10−8 10−10

d = 2000 10−3 10−5 10−8 10−10

Example 5 d = 100 10−3 10−5 10−8 10−10

d = 500 10−3 10−5 10−8 10−10

d = 1000 10−3 10−5 10−8 10−10

d = 2000 10−3 10−5 10−8 10−10

Before solving Examples 1–5, we will introduce the parameters selected in the actual
calculation of the algorithm proposed in this paper:

∆0 = 5, σ = 0.5 and χ = 2.

In order to solve the test problems in Table 1 by using the algorithm in this paper,
we use MATLAB (2014a) to write a computer program. The computer we used was the
ThinkPad T480 (CPU: i7-8850U; main frequency: 2.0 Hz; memory: 16 G).

In order to draw a comparison diagram of the results of the three algorithms, we used
the performance comparison formula of the algorithm proposed by Dolan and More [31] to
calculate the computational efficiency between different algorithms. Specific formulas are
outlined as follows:

rp,s =
τp,s

min{τp,u : u ∈ S} , (15)

where S denotes the set of algorithms. Let P denote the problem sets, ns = |S| and np = |P|.
For ∀t ≥ 1, let

ρs(t) =
1

np
size{p ∈ P : rp,s ≤ t}, (16)

where ρs(t) represents the efficiency of each solver.
We choose Examples 1–5, where the calculation information for Examples 1, 4, and 5 is

shown in Table 1. In actual calculations, we randomly selected 50 different initial points and
used three algorithms to calculate Examples 1–5. The average number of iterations and the
average CPU time are shown in Figures 2 and 3. In Figures 2 and 3, the average number of
iterations and average CPU time taken by the three algorithms to solve the problem when
ϵ selects different termination accuracies are shown, i.e., ϵ = 10−3, ϵ = 10−5, ϵ = 10−8 and
ϵ = 10−10.
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Figure 2. Left of the first row: the comparison results of the iterations of Algorithm 1 with SM and IP
when we chose ϵ = 10−3. Right of the first row: the comparison results of the iterations of Algorithm
1 with SM and IP when we chose ϵ = 10−5. Left of the second row: the comparison results of the
iterations of Algorithm 1 with SM and IP when we chose ϵ = 10−8. Right of the second row: the
comparison results of the iterations of Algorithm 1 with SM and IP when we chose ϵ = 10−10.

Figure 3. Left of the first row: the comparison results of CPU time of Algorithm 1 with SM and IP
when we chose ϵ = 10−3. Right of the first row: the comparison results of CPU time of Algorithm 1
with SM and IP when we chose ϵ = 10−5. Left of the second row: the comparison results of CPU time
of Algorithm 1 with SM and IP when we chose ϵ = 10−8. Right of the second row: the comparison
results of CPU time of Algorithm 1 with SM and IP when we chose ϵ = 10−10.

Figure 2 shows the results that used Algorithm 1, SM and IP for calculating Examples 1–
5. From the subgraph on the left side of the first row, it can be seen that when we chose
the the termination accuracy of the algorithm as ϵ = 10−3, our algorithm had a high
computational efficiency in calculating all cases of Examples 1–5. According to (15) and
(16), the speed at which the red curve, which represents our algorithm, tends to 1 is
relatively fast. At the initial position, the red curve reaches 0.7 (ρs(t) = 0.7), but the green
curve only reaches 0.45 (ρs(t) = 0.45). Meanwhile, the blue curve reaches almost zero.
This means that the algorithm can solve more problems by spending a fewer number of
iterations than other methods. Meanwhile, from other subgraphs, with the improvement in
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the algorithm’s termination accuracy, the initial position values of the red curve are much
higher than other two algorithms, and the speed at which it approaches 1 is also the fastest
among the three algorithms. From the comparison results of the three methods, it can be
seen that our algorithm has a much higher computational efficiency than the other two
algorithms, which means that our algorithm is more efficient in solving test problems.

From Figure 3, we can see that compared with the other three algorithms, the cost of
CPU time of Algorithm 1 also increases with the increase in the algorithm’s termination
accuracy, and our algorithm’s computational efficiency continues to improve. From the
subgraph on the left of the first row, it can be seen that when the termination accuracy of
the algorithm is set to ϵ = 10−3, the value of the red curve at its initial position is much
higher than that of the green curve and blue curve, and the red curve tends towards 1 at
a faster rate. This means that our algorithm has more effective function calculations than
the SM represented by the green curve. Specifically, the cost of CPU time of Algorithm 1
is much smaller than the interior point algorithm, which corresponds to the blue curve.
Similarly, from other subgraphs, it can be seen that although we improved the termination
accuracy of the algorithm, the red curve corresponding to Algorithm 1 still has significant
advantages in terms of the initial position value and the rate at which its speed tends
towards 1. This indicates that Algorithm 1 has a higher computational efficiency than the
other two algorithms when they solve Examples 1–5.

6. Concluding Remarks
This paper proposes a new finite-difference method for obtaining a solution to absolute

value equations. The finite-difference technique is used to avoid computing the gradients
and Hessian matrices of the problem. The search direction is obtained by solving the linear
programming subproblem. In the numerical calculation section, we first chose five absolute
value equations and computed these problems with different dimensions and algorithm
termination accuracy. The finite-difference parameter is important for our algorithm. We
compared our algorithm with SM and IP. The number of iterations and the number of
function evaluations were reported. It can be seen from the comparison results that our
algorithm can successfully solve absolute value equations. In comparison with other
algorithms, it can also be seen that our algorithm has advantages in both the number of
iterations and the cost of CPU time.

With the advent of the big data era, there will inevitably be large-scale absolute value
linear equation system problems. Therefore, inspired by the bilinear neural network method
and bilinear residual network method, we will study more practical and efficient neural
network and residual network methods for solving large-scale absolute value equation
systems to meet practical needs.
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