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Abstract: In the context of neural network optimization, this study explores the perfor-
mance and computational efficiency of learning rate adjustment strategies applied with
Adam and SGD optimizers. Methods evaluated include exponential annealing, step decay,
and SHAP-informed adjustments across three datasets: Breast Cancer, Diabetes, and Cal-
ifornia Housing. The SHAP-informed adjustments integrate feature importance metrics
derived from cooperative game theory, either scaling the global learning rate or directly
modifying gradients of first-layer parameters. A comprehensive grid search was conducted
to optimize the hyperparameters, and performance was assessed using metrics such as
test loss, RMSE, R2 score, accuracy, and training time. Results revealed that while step
decay consistently delivered strong performance across datasets, SHAP-informed methods
often demonstrated even higher accuracy and generalization, such as SHAP achieving the
lowest test loss and RMSE on the California Housing dataset. However, the computational
overhead of SHAP-based approaches was significant, particularly in targeted gradient
adjustments. This study highlights the potential of SHAP-informed methods to guide opti-
mization processes through feature-level insights, offering advantages in data with complex
feature interactions. Despite computational challenges, these methods provide a founda-
tion for exploring how feature importance can inform neural network training, presenting
promising directions for future research on scalable and efficient optimization techniques.

Keywords: SHAP; Adam optimizer; learning rate adjustments; neural networks; grid
search; performance evaluation

MSC: 68T05

1. Introduction
1.1. Background

The optimization of neural networks remains a pivotal aspect of deep learning research
and applications [1]. Among the various components influencing the training of neural
networks, the choice of the optimizer and the learning rate strategy are paramount. These
elements dictate the efficiency, speed, and performance of the learning process, impacting
the model’s ability to generalize from the training data to unseen test data.

The Adam (Adaptive Moment Estimation) optimizer, introduced by Kingma and Ba
in 2014, has become one of the most widely used optimization algorithms in deep learning.
Adam combines the advantages of two other popular methods: AdaGrad, which works
well with sparse gradients, and RMSProp, which adjusts the learning rate based on recent
gradient magnitudes [2]. By maintaining per-parameter learning rates that are adapted
based on the first and second moments of the gradients, Adam optimizes the learning
process by converging faster and more efficiently, particularly in complex, large-scale
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problems [3,4]. Alongside Adam, SGD (Stochastic Gradient Descent) remains a widely
used optimizer due to its simplicity, scalability, and ability to avoid certain overfitting
issues when combined with effective regularization methods. Both Adam and SGD are
commonly used in practice, and their performance can often be improved with effective
learning rate strategies.

Despite the efficacy of Adam and SGD, there is ongoing research to further enhance
their performance through complementary techniques. This study explores the integra-
tion of global learning rate and gradient adjustment methods with the Adam and SGD
optimizers to assess their collective impact on neural network performance.

Learning rate adjustment methods are designed to control the training process by
modifying the magnitude of updates to the model’s parameters during backpropagation.
These adjustments help the optimization process converge more efficiently and avoid issues
such as overshooting or becoming trapped in local minima. In this study, three specific
learning rate adjustment methods are examined:

1. Learning Rate Annealing: Learning rate annealing gradually decreases the learning
rate according to a predefined schedule, typically following an exponential decay.
This method aims to fine-tune the model’s weights as training progresses, thereby
reducing the risk of overshooting and aiding in more precise convergence [5].

2. Step Decay: In step decay, the learning rate is reduced by a factor at specified intervals
(epochs). This approach is straightforward yet effective, as it helps the model stabilize
and converge more accurately during later stages of training [6].

3. SHAP-Informed Adjustments: SHAP (SHapley Additive exPlanations) values, based
on cooperative game theory, provide a unified measure of feature importance [7].
These adjustments aim to incorporate feature importance into the optimization process
to guide parameter updates. In this study, two distinct SHAP-informed adjustment
methods are explored:

a. SHAP-Informed Learning Rate Adjustment: This approach scales the global
learning rate based on the aggregated importance of features. At specified inter-
vals during training, SHAP values are computed and normalized to adjust the
magnitude of parameter updates uniformly across all layers. This adjustment
serves as a dataset-wide optimization influence, leveraging feature-derived
insights to guide global learning rate adaptation.

b. SHAP-Informed Gradient Adjustment: In contrast, this method applies SHAP
values directly to the gradients of individual parameters in the first layer of
the neural network. By prioritizing updates for more influential features, the
SHAP-informed gradient adjustment introduces a fine-grained, feature-specific
influence on optimization. This approach dynamically adjusts the gradients dur-
ing backpropagation, enabling the model to focus more on the most important
features while learning.

In recent years, interpretability and feature importance have become essential con-
siderations in deep learning, especially as models grow in complexity and applicability.
Feature importance provides insights into which input variables most significantly affect
a model’s predictions, offering a foundation for refining optimization strategies. While
techniques like those proposed by Shrikumar et al. [8] and Ribeiro et al. [9] primarily
focus on explaining model predictions post-training, their broader principles highlight the
value of understanding feature influence. These insights, while not rendering the model
itself intrinsically interpretable, can guide adjustments during training by shedding light
on how features affect learning dynamics. This is particularly important in fields where
decision-making transparency is valued, as it allows for better alignment of optimization
strategies with domain-specific requirements.
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Incorporating feature importance into learning rate or gradient adjustments, such
as in SHAP-informed adjustments, leverages interpretability tools to guide the optimiza-
tion process. By prioritizing more significant features during training, SHAP-informed
learning rate adjustments aim to refine learning dynamics and potentially improve model
accuracy. While this approach does not make the model intrinsically interpretable, it uses
interpretable metrics like SHAP values to inform optimization strategies. This integration
represents a novel intersection between interpretability tools and optimization techniques,
demonstrating how signals from feature importance can support more informed learning
rate adjustments.

The choice of learning rate adjustment strategy significantly impacts the convergence
speed and final performance of neural network models, with different strategies offer-
ing unique advantages depending on the specific training scenario [10]. Past studies
have shown that combining adaptive optimizers like Adam with advanced learning rate
schedules can yield substantial improvements in training efficiency and model accuracy,
underscoring the importance of continual innovation in optimization techniques [11]. In-
tegrating interpretability tools such as SHAP into the optimization process not only has
the potential to enhance model performance but also provides insights into the learning
dynamics, enabling researchers to refine optimization strategies more effectively.

The primary aim of this research is to evaluate the efficacy of integrating global learn-
ing rate adjustments with the Adam and SGD optimizers. The specific objectives include:

1. Performance Assessment: Compare the performance of neural networks optimized
with standalone Adam and SGD versus those using these optimizers with learning
rate annealing, step decay, and SHAP-informed adjustments. Performance metrics
include test loss, RMSE (Root Mean Square Error), R2 (coefficient of determination),
accuracy (for classification tasks), and training time.

2. Feature-importance Based Gradient Updates: Introduce a novel method where SHAP-
informed feature importance is directly applied to scale the gradients of individual
parameters in the first layer. This targeted adjustment replaces the global learning rate
scaling used in earlier experiments, providing a more granular approach to learning
rate adjustments.

3. Computational Efficiency: Analyze the trade-offs between performance improvements
and computational efficiency, particularly focusing on the SHAP-informed method,
which is computationally intensive due to the calculation of SHAP values.

Optimizing neural networks’ learning rates is a critical aspect of enhancing their
performance. While the Adam optimizer is well-regarded for its adaptive capabilities, the
potential improvements through systematic global learning rate adjustments remain an
area of active investigation. This study’s findings contribute to the understanding of these
combined methods, offering insights into best practices for neural network training and
highlighting the practical benefits and limitations of each approach.

Combining global learning rate adjustments with the Adam optimizer is relatively
conventional in contemporary deep learning practices. Researchers often employ various
strategies to optimize neural networks, making the integration of these techniques a natural
progression. However, the systematic comparison and evaluation presented in this study,
especially involving SHAP values for targeted parameter adjustments, provide a novel and
valuable addition to the existing body of knowledge.

1.2. Related Work

Research on optimization techniques for training neural networks has been extensive,
with various methods developed to improve convergence rates and overall model perfor-
mance. Among these, the Adam optimizer, proposed by Kingma and Ba [3], has become
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one of the most widely used due to its adaptive learning rate capabilities, which adjust the
learning rate for each parameter individually based on estimates of the first and second
moments of the gradients.

Several studies have explored enhancements to the Adam optimizer to further im-
prove its efficiency and convergence properties. For instance, Kabiri et al. introduced
AMAdam (2024) [12], an adaptive modifier of the Adam method that addresses challenges
in gradient-based optimization. Their approach demonstrated promising improvements
in both training speed and final model accuracy across various tasks. Similarly, Huang
et al. presented the Nostalgic Adam optimizer in 2019 [13], which emphasizes the im-
portance of past gradients more heavily when designing the adaptive learning rate. This
method demonstrated superior performance in terms of convergence speed and robustness
compared to the original Adam.

Beyond Adam, SGD (Stochastic Gradient Descent) remains a widely used foundational
optimization algorithm in neural network training. Despite its simplicity, SGD often
benefits from enhancements like momentum or learning rate scheduling. The impact of
momentum and learning rate scheduling on SGD has been empirically evaluated, showing
significant improvements in convergence speed and generalization performance. For
instance, the use of momentum in SGD helps accelerate convergence by navigating along
the relevant directions and dampening oscillations, leading to more efficient training
processes [14].

In addition to optimizer-specific enhancements, various learning rate scheduling
techniques have been developed to further improve training dynamics. These include
exponential annealing, step decay, and adaptive schedules. For example, studies on step
decay have shown its effectiveness in stabilizing the training process during later epochs,
leading to more precise convergence [6]. Similarly, learning rate annealing has been widely
adopted for its ability to gradually refine model parameters, especially in the final stages of
training [5]. These strategies have been integrated with both Adam and SGD to evaluate
their collective impact on neural network performance.

The use of SHAP-informed adjustments for learning rate scaling is a relatively novel
approach that intersects the domains of interpretability and optimization. SHAP values,
based on cooperative game theory, provide a consistent and unified measure of feature
importance, which has been primarily used for explaining model predictions [7]. Ear-
lier works by Shrikumar et al. [8] and Ribeiro et al. [9] emphasized the importance of
interpretability in understanding neural network behavior. While these studies primarily
focused on post-hoc explanations for model predictions, our work leverages SHAP values
during the training process to inform optimization dynamics.

In particular, our recent adaptation of SHAP-informed adjustments represents a signif-
icant innovation by targeting gradients of individual parameters rather than just uniformly
scaling a global learning rate. This approach aligns with broader trends in machine learn-
ing to incorporate feature importance into model optimization. By dynamically scaling
parameter updates based on feature importance, our method facilitates targeted learning
and potentially enhances model convergence and performance.

Research integrating feature importance with optimization techniques remains limited.
Notably, Luo et al. [15] investigated adaptive gradient methods with dynamic learning rate
bounds, which demonstrated improved stability and efficiency. Their approach parallels
our use of SHAP-informed adjustments, as both methods emphasize dynamic scaling to
improve training dynamics. Similarly, Droguett et al. [16] proposed a feature selection
framework within deep neural networks that identifies and prioritizes critical input features
during training, enhancing both interpretability and performance. By integrating feature
importance directly into the learning process, their method exemplifies how optimization
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strategies can benefit from feature-driven adjustments, aligning with the principles behind
SHAP-informed modifications.

Our study extends these ideas by leveraging SHAP values not just as a tool for
interpretability but as a mechanism for real-time adjustments during training. By in-
tegrating SHAP-informed methods into both Adam and SGD optimizers, our experi-
ments provide new insights into how feature importance metrics can guide and enhance
optimization strategies.

This work is situated within the broader context of neural network optimization re-
search. While adaptive optimizers like Adam have seen extensive study and modifications,
our focus on integrating global and targeted learning rate adjustments with both Adam
and SGD represents a unique contribution. In particular:

1. The evaluation of SHAP-informed targeted gradient updates and learning rate scaling
provides a new avenue for incorporating feature importance directly into optimization,
enhancing performance.

2. The systematic comparison of learning rate scheduling methods—step decay, anneal-
ing, and SHAP-informed adjustments—within both Adam and SGD expands the
scope of optimization research. This work highlights their combined effects, address-
ing gaps in the literature regarding how feature importance-driven methods compare
to conventional learning rate strategies.

3. By using datasets of varying sizes and types (Breast Cancer, Diabetes, and California
Housing), this study ensures that findings are robust and applicable to a range of
real-world scenarios.

2. Materials and Methods
2.1. Theory and Explanation

In this section, we use bold symbols (e.g., gt, mt, θt) to denote vector quantities, while
non-bold symbols (e.g., ϕi, α, β1, ϵ) represent scalars. All operations involving vectors
(e.g., addition, multiplication) are applied element-wise unless otherwise specified.

The Adam optimizer is an adaptive learning rate optimization algorithm designed to
handle sparse gradients on noisy problems. Adam combines the advantages of two other
popular optimization methods: AdaGrad and RMSProp. The main equations for Adam are:

mt = β1mt−1 + (1 − β1)gt

vt = β2vt−1 + (1 − β2)g2
t

m̂t =
mt

1 − βt
1

v̂t =
vt

1 − βt
2

θt+1 = θt − α
m̂t√

v̂t + ϵ

where θ represents the parameters (weights) of the neural network, gt is the gradient at time
step t, mt and vt are the first and second moment estimates, m̂t and v̂t are the bias-corrected
moment estimates, α is the learning rate, β1 and β2 are the decay rates for the moment
estimates, and ϵ is a small constant to prevent division by zero.

Stochastic Gradient Descent (SGD), on the other hand, is one of the simplest yet widely
used optimization algorithms for training neural networks. Unlike Adam, which adaptively
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scales the learning rate for each parameter, SGD updates the parameters by moving in the
direction of the negative gradient of the loss function. The equation for SGD is:

θt+1 = θt − αgt

where θ is the parameter vector, gt is the gradient of the loss with respect to θ at time step
t, and α is the global learning rate. SGD does not include moment estimates or adaptive
scaling of the learning rate, making it computationally simpler but potentially slower to
converge without further enhancements like momentum or learning rate schedules.

2.1.1. SHAP Values

SHAP (SHapley Additive exPlanations) values provide a unified measure of feature
importance based on cooperative game theory. SHAP values are computed for each feature
xi in the input data. These values represent the contribution of each feature to the prediction.

For a given model f and an instance x, the SHAP value ϕi for feature i is defined as:

ϕi = ∑
S⊆N\i

|S|!(|N| − |S| − 1)!
|N|! [ f (S ∪ i)− f (S)]

where N is the set of all features, S is a subset of features, f (S) is the model prediction for
the subset S, and f (S ∪ i) is the model prediction including feature i.

SHAP values are derived from cooperative game theory and ensure that the contri-
bution of each feature to a model’s prediction is consistently computed across instances.
This consistency arises from SHAP’s adherence to properties such as additivity and sym-
metry, which provide a theoretical basis for attributing importance in a model-agnostic
manner [17]. While parameter weights inherently represent a model’s learned relationships,
they often reflect only the internal state of the network and lack a direct, interpretable map-
ping to input feature significance. SHAP values, in contrast, offer insights into the external
importance of features as observed through their marginal contributions to the output.

In optimization, SHAP values complement parameter weights by guiding adjustments
with an additional layer of interpretability tied to the dataset’s feature space. Although not
a substitute for weight magnitudes, SHAP values provide actionable information when
normalized, enabling strategies like dynamic learning rate or gradient adjustments to focus
more effectively on impactful features. This approach aligns with established practices
in adaptive optimizers like RMSProp and AdaGrad, which prioritize parameter updates
based on gradients but do not inherently incorporate feature-specific information from
the data.

2.1.2. Integrating SHAP with Learning Rate Adjustment

In our first approach, we integrate SHAP values with the learning rate adjustment
mechanism. SHAP values are used to periodically adjust the learning rate for the neural
network parameters during training. This is achieved through the following steps:

1. Compute SHAP Values: At specified intervals during training, compute the SHAP
values for the features in the training data.

2. Calculate Feature Importances: Determine the average absolute SHAP value for each
feature, representing its importance.

mean_importancei =
1
m

m

∑
j=1

∣∣∣ϕ(j)
i

∣∣∣
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where m is the number of samples in the training data, and ϕ
(j)
i is the SHAP value for

feature i in sample j.

3. Normalize Feature Importances: Normalize the feature importances to obtain the
normalized importance values.

normalized_importancei =
mean_importancei

max(mean_importance)

4. Adjust Learning Rates: Use the normalized importance values to adjust the learning
rates for the neural network parameters. The learning rate for each parameter is scaled
by the sum of the normalized importances of all features. This integration ensures
that the learning rate is generally impacted by features by a single figure derived from
SHAP values which encode general meaning from the features.

α′ = α·
n

∑
i=1

normalized_importancei

where α is the base learning rate, α′ is the adjusted learning rate, and n is the total number
of features.

Integrating the SHAP-informed learning rate adjustment into the Adam optimizer
involves modifying the learning rate in the Adam and SGD update rules. The adjusted
learning rate α′ is applied to the Adam and SGD formulas as follows:

θt+1 = θt − α′ m̂t√
v̂t + ϵ

θt+1 = θt − α′gt

Unlike adaptive optimizers like AdaGrad, where learning rate adjustments diminish
continuously based on accumulated gradients, the periodic recalculation and application
of the aggregated adjustment in this method prevent such diminishing effects. By intro-
ducing recalculated adjustments at fixed intervals during training, this approach retains
its influence throughout later epochs, enabling the optimizer to maintain progress even as
the loss landscape becomes more complex. The recalculated adjustment acts as a consis-
tent stabilizing factor, smoothing extreme parameter updates and moderating the risk of
overshooting during optimization. Additionally, the periodic recalibration serves as a form
of external intervention, introducing renewed influences on the optimization process that
may help navigate saddle points or shallow local minima in the optimization landscape.

This method complements Adam’s parameter-specific adjustments by applying a
global multiplier derived from external calculations. While Adam inherently adapts learn-
ing rates at the parameter level, this recalculated multiplier provides a fresh influence on
the global optimization dynamics. By applying a uniform adjustment across all parameters,
the method smooths fluctuations caused by individual parameter updates, thereby stabiliz-
ing the optimization process. This stability is particularly beneficial in high-dimensional
optimization problems, where the interaction of numerous parameters and gradients can
exacerbate noise and overfitting. The scheduled recalculated adjustment helps mitigate
these effects, aligning the optimization trajectory with broader trends in the dataset without
overemphasizing individual parameter influences.

The rationale for applying a recalculated multiplier lies in its ability to act as a bridge
between theoretical feature relevance and practical optimization dynamics. While the
aggregated adjustment itself is derived from a summation of feature contributions, its
application to the learning rate does not require direct interpretability of the value. Instead,
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the value’s incremental application reflects a form of external regularization that promotes
smoother transitions in parameter updates, particularly in non-convex optimization spaces.
Comparable mechanisms have been observed in other adaptive strategies, such as AdaGrad,
which rely on accumulated gradients to scale learning rates. Similarly, this adjustment
provides a dataset-wide influence that balances stability and adaptivity, explaining the
observed improvements in generalization and convergence.

2.1.3. Integrating SHAP with Gradient Adjustment

In our second approach, the normalized SHAP values are integrated directly into the
gradient adjustment process to prioritize parameter updates based on feature importance.
This method ensures that gradients associated with more influential features are scaled
appropriately, enhancing the learning dynamics of both Adam and SGD optimizers.

The integration of SHAP values into gradient scaling is rooted in the idea that the first
layer of a neural network directly interacts with the input features, making its gradients
the most interpretable and impactful for feature-specific adjustments. Gradients determine
the magnitude of parameter updates and scaling them based on SHAP-derived feature
importance ensures that these updates are guided by data-specific relevance. By focusing
adjustments on the first layer, this approach leverages the fact that the initial transformation
of input features has a cascading influence on downstream layers.

While the gradient updates are minor in magnitude, their cumulative effect across
training epochs contributes to aligning the network’s optimization dynamics with the
dataset’s most important features. This method introduces a fine-grained focus, amplifying
updates for critical features and attenuating noise from less influential ones, thereby
promoting generalization and reducing overfitting.

Limiting SHAP-based gradient adjustments to the first layer balances computational
efficiency with optimization effectiveness. The first layer’s gradients are most closely tied
to the input feature dimensions, allowing the SHAP values to act as precise modifiers.
This selective approach avoids unnecessary complexity in deeper layers, where gradients
represent abstract transformations rather than direct feature relationships. Additionally,
applying SHAP adjustments at the first layer introduces a stabilizing effect that propagates
through the network, ensuring that the most important features influence optimization
without disrupting the broader training dynamics.

The integration process involves the following steps:

1. Compute Gradients:

a. At each training step, compute the gradient of the loss function gt with respect
to the model parameters θt.

b. The gradient vector gt is calculated as:

gt = ∇θtL(θt)

where L(θt) is the loss function.
2. Scale Gradients Using SHAP Importances

a. Normalize the SHAP importances for each feature i as before.

normalized_importancei =
mean_importancei

max(mean_importance)

b. Update the parameter gradient gti to a new scaled gradient g′ti by applying each
normalized_importancei, where i refers to the corresponding feature.

g′ti = gti · normalized_importancei
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In this context, each feature i in the input data corresponds to a parameter in the
first layer of the neural network. Gradients g′ti are computed for these parameters
during backpropagation.

3. Gradient Update with Adam Optimizer

a. In the Adam optimizer, the scaled gradient g′t is used to update the first and
second moment estimates:

m′
t = β1mt−1 + (1 − β1)g′t

ν′
t = β2vt−1 + (1 − β2)g′t

2

Here, m′
t is the updated first moment estimate, and ν′

t is the updated second
moment estimate.

b. The bias-corrected estimates are then calculated as:

m̂′
t =

m′
t

1 − βt
1

v̂′
t =

ν′
t

1 − βt
2

c. Finally, the parameters are updated as:

θt+1 = θt − α
m̂′

t√
v̂′

t + ϵ

4. Gradient Update with SGD Optimizer

a. In the SGD optimizer, the scaled gradient g′t is used directly for parameter updates:

θt+1 = θt − αg′t

This integration of SHAP values into the gradient adjustment process leverages feature
importance to prioritize updates for more significant parameters. The approach ensures
that both Adam and SGD optimizers dynamically adjust their updates, reflecting the
importance of individual features.

Like the learning rate adjustment method, these gradient adjustments are calculated
at fixed intervals, taking a different direction from AdaGrad. Rather than diminishing
adjustments over time, this method recalculates SHAP values periodically to maintain
adaptability to the dataset’s evolving loss landscape. This interval-based recalibration
equips the optimizer to better navigate complex optimization dynamics, handle high-
dimensional spaces, and address challenges such as overfitting and local minima.

By scaling the gradient vector gt using SHAP-derived feature importance values,
this method introduces a novel mechanism that combines externally calculated feature
importance with optimization. The SHAP-informed gradient adjustment offers potential
improvements in model accuracy, especially in scenarios where externally derived feature
importance provides additional guidance for training beyond what is captured by the
model’s parameters.

2.2. Methodology

Our study focuses on evaluating the effectiveness of various learning rate adjustment
methods integrated with the Adam and SGD optimizers in neural network training. Specif-
ically, we assess the performance of each base optimizer alone, each base optimizer with
step decay, with annealing, and with SHAP-informed adjustments on three datasets: Breast
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Cancer, Diabetes, and California Housing. The experimental setup is designed to ensure
comprehensive evaluation through grid search optimization of key hyperparameters.

2.2.1. Data Preprocessing

We utilize three widely recognized datasets for this study:

1. Breast Cancer Dataset: This dataset contains 569 instances of breast cancer diagnoses,
with 30 features representing various characteristics of cell nuclei present in the
digitized image of a fine needle aspirate (FNA) of a breast mass. The target variable is
binary, indicating whether the cancer is malignant or benign.

2. Diabetes Dataset: This dataset consists of 442 instances with 10 features representing
physiological measurements and a target variable indicating a quantitative measure
of disease progression one year after baseline.

3. California Housing Dataset: This dataset contains 20,640 instances collected from the
1990 California census, with 8 features representing socio-economic and geographical
characteristics such as median income, average number of rooms, and population per
household in each block group. The target variable is a continuous value indicating
the median house value for each block group, expressed in hundreds of thousands
of dollars.

For each of datasets, we perform standard preprocessing steps. First, we normalize the
feature values to ensure that all features are on a comparable scale. After normalization, the
data is randomly shuffled and split into three subsets: 70% for training, 15% for validation,
and 15% for testing.

2.2.2. Model Architecture

We employ a simple feedforward neural network for each of the datasets. The network
architecture consists of three fully connected layers with ReLU activation functions and
dropout for regularization. The architecture is as follows:

1. Input Layer: The number of nodes equals to the number of features in the dataset.
2. Hidden Layer 1: 128 nodes with ReLU activation and dropout.
3. Hidden Layer 2: 64 nodes with ReLU activation and dropout.
4. Output Layer: A single node for regression tasks (Diabetes dataset and California

Housing) or a single node with sigmoid activation for binary classification tasks
(Breast Cancer dataset).

2.2.3. Optimization Methods

We investigate the following optimization methods:

1. Adam: The base optimizer used in all experiments. Adam combines the advantages
of two other extensions of stochastic gradient descent: AdaGrad and RMSProp. It
computes adaptive learning rates for each parameter [3].

2. SGD (Stochastic Gradient Descent): A simple and widely used optimization algo-
rithm that updates model parameters by moving in the direction of the negative
gradient of the loss function. Despite its simplicity, it serves as a robust baseline and
can be enhanced with techniques like momentum and learning rate scheduling.

3. Step Decay: The learning rate is decreased by a factor after a set number of epochs.
This method helps the model converge by making larger steps in the initial phase and
smaller steps as it approaches the minima.

4. Annealing: A technique where the learning rate is exponentially decayed over epochs.
This gradual reduction helps in fine-tuning the weights during the later stages of
training [11].
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5. SHAP-informed Learning Rate Adjustments: SHAP values, which provide a mea-
sure of feature importance, are used to guide global learning rate adjustments. In this
method, the aggregated feature importance across each of the features is calculated at
specified intervals during training, and the learning rate is scaled uniformly across all
parameters based on this importance.

6. SHAP-Informed Gradient Adjustments: Here, SHAP values for each feature are
directly integrated into the corresponding gradient calculations at the parameter
level. This method adjusts the gradients during backpropagation by scaling each
parameter’s gradient proportionally to its associated feature importance. By priori-
tizing updates for more influential features, this method introduces feature-specific
adjustments to the optimization process.

2.2.4. Experimental Setup

In this experiment, we utilize a well-defined procedure for training and evaluating
each model across various hyperparameter configurations to ensure robust and accurate
results. The experiment is performed in two stages: a grid search over hyperparameters
and the selection of the best model based on validation set performance, followed by a final
evaluation on the test set.

Upon constructing the neural network model, the weights (often referred to as kernels)
of the layers are initialized using PyTorch’s (version 2.1.1, Meta, Menlo Park, CA, USA)
default initialization method. Specifically, for fully connected layers (‘torch.nn.Linear’), the
weights are initialized with a small random distribution following the Xavier initialization
method, which is designed to maintain the variance of activations across layers. Biases
are initialized to zero. This initialization is crucial as it sets the starting point for the
optimization process, influencing the convergence behavior of the model during training.

The dataset is shuffled and split into three subsets: 70% for training, 15% for validation,
and 15% for testing. The training set is used to train the model and adjust its weights,
while the validation set is used to evaluate the model during training and select the
best hyperparameters. The test set is used for final evaluation to assess the model’s
generalization performance. This process is repeated across multiple trials to ensure
consistent results and robust model performance evaluation.

To address the computational demands of SHAP calculations on the larger California
dataset, we implemented a subsampling strategy. At specified intervals during training, a
random subset of 500 samples from the training data was selected for SHAP value compu-
tation. This subset size was determined empirically to balance computational efficiency
and maintain the representation of feature importance distributions. The calculated SHAP
values from this subset were then used to guide gradient and learning rate adjustments.

Each optimization method (e.g., Adam, SHAP-informed, etc.) is evaluated using a
grid search across the following hyperparameters:

• Learning Rate: [0.01, 0.001, 0.0001]

• SGD + certain SHAP methods required [0.00001] and gradient clipping.

• Dropout Rate: [0.1, 0.3, 0.7]
• Epochs: [25, 50, 100]
• Additional Parameters: These vary depending on the method, such as decay rates

for annealing and step decay, and SHAP update intervals labeled SHAP10, SHAP20,
SHAP40 (every 10, 20, 40 epochs for diabetes dataset, and every 20, 40, 60 epochs for
breast cancer dataset).

During the training phase, for each combination of hyperparameters, models are
trained on the training set, with the model’s weights being updated over multiple epochs
using the training data. After each epoch, the model is evaluated on the validation set. The
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validation phase is crucial for hyperparameter tuning, as it allows us to assess the model’s
performance on unseen data and helps in identifying the best-performing configuration.
The model with the lowest validation loss across all hyperparameter combinations is
selected as the best model.

Once the best model is selected based on its performance on the validation set, it is
evaluated on the test set using the following evaluation metrics:

• Test Loss: The average of the model’s prediction errors on the test data. It indicates
how well the model generalizes to new, unseen data.

• Root Mean Square Error (RMSE): A standard way to measure the error of a regression
model (used in the diabetes dataset). RMSE is the square root of the average of squared
differences between actual and predicted values.

• Accuracy: Used in classification tasks (for the breast cancer dataset), accuracy measures
the percentage of correct predictions made by the model out of all predictions.

• R2 Score: A statistical measure of how well the model explains the variance in the test
data. It provides insight into the goodness of fit of the model.

• Training Time: The total time taken to train the model, including all epochs.

This evaluation process is repeated across 10 trials, where the dataset is shuffled and
split anew for each trial. This ensures that the results are robust and not dependent on a
specific data split. The results from the test set are averaged across these trials, and the final
performance metrics are reported as the mean ± standard deviation.

3. Results
3.1. Breast Cancer Dataset
3.1.1. Breast Cancer Dataset: Adam Optimizer Base

The results from our extensive experiments on the Breast Cancer dataset reveal im-
portant insights into the efficacy of different learning rate adjustment methods when used
in conjunction with the Adam optimizer. This section presents the performance metrics,
including test loss, accuracy, and training time, for each method. The summary of results is
presented in Table 1.

Table 1. Summary of average performance metrics across various optimization methods on the
breast cancer dataset. Each method’s results include average test loss, average accuracy, and average
training time along with their respective standard deviations. The table provides a direct comparison
of methods, with SHAP-informed learning rate adjustments (SHAP20, SHAP40, SHAP60) and SHAP-
informed gradient adjustments (SHAP10 g, SHAP20 g) showing some improvements in accuracy but
generally requiring longer training times.

Method Test Loss Accuracy Training Time

Adam only 0.0063 ± 0.0018 0.9233 ± 0.0295 1.8535 ± 0.2920
Adam + Annealing 0.0063 ± 0.0022 0.9337 ± 0.0202 1.6946 ± 0.4909
Adam + SHAP20 0.0054 ± 0.0021 0.9407 ± 0.0204 40.8644 ± 9.4052
Adam + SHAP40 0.0068 ± 0.0028 0.9186 ± 0.0227 25.9194 ± 5.6558
Adam + SHAP60 0.0077 ± 0.0056 0.9209 ± 0.0441 18.0186 ± 2.8206

Adam + Step Decay 0.0049 ± 0.0016 0.9407 ± 0.0267 1.9208 ± 0.0355
Adam + SHAP10 g 0.0057 ± 0.0017 0.9221 ± 0.0351 112.6715 ± 5.0572
Adam + SHAP20 g 0.0069 ± 0.0024 0.9209 ± 0.0269 60.1762 ± 12.1188

Bold values indicate the best-performing method for each metric, while italic values indicate the second-best
performing method for each metric.

The breast cancer dataset results provide a detailed comparison of the tested optimiza-
tion methods, highlighting both the strengths and limitations of each approach.
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Key Observations:

• Test Loss: The SHAP20 method achieved a test loss of 0.0054, performing better than
SHAP40, SHAP60, and Annealing. However, Step Decay yielded the lowest test loss
(0.0049), outperforming all other methods in this regard.

• Accuracy: SHAP20 and Step Decay both achieved the highest average accuracy
(0.9407), marginally outperforming Adam (0.9233) and Annealing (0.9337). SHAP40
and SHAP60 had slightly lower accuracy values at 0.9186 and 0.9209, respectively.

• Training Time: The SHAP-informed methods incurred a significant increase in training
time due to the computational overhead of calculating SHAP values. SHAP20 took an
average of 40.8644 s, followed by SHAP40 at 25.9194 s and SHAP60 at 18.0186 s. In
contrast, Adam, Annealing, and Step Decay demonstrated much faster training times,
with Step Decay showing the fastest time (1.9208 s).

• Standard Deviations: The standard deviations for both accuracy and training time
reveal the consistency of each method’s performance. The SHAP methods exhibit
relatively higher variability in training time, particularly SHAP20 with a standard
deviation of 9.4052 s, compared to the lower variability seen in non-SHAP methods
like Step Decay (0.0355).

The results highlight the competitive performance of SHAP-informed methods, par-
ticularly Adam + SHAP20, which achieved the lowest test loss and matched the highest
accuracy observed. However, this improvement came at the cost of significantly higher
training times compared to Step Decay, which maintained a strong balance of efficiency
and performance. These findings underscore the trade-off between leveraging SHAP-based
feature relevance and computational overhead, suggesting that SHAP methods may offer
value in scenarios where accuracy takes precedence over training efficiency.

3.1.2. Breast Cancer Dataset: SGD Optimizer Base

The results from our experiments using the SGD optimizer as the base for training on
the Breast Cancer dataset provide further insights into the impact of various learning rate
adjustment strategies. These results are presented in Table 2 and include test loss, accuracy,
and training time, alongside their respective standard deviations.

Key Observations:

• Test Loss: The SGD + SHAP20_gradient method achieved the lowest test loss
(0.00824 ± 0.00114), marginally outperforming other SHAP-informed methods and
SGD alone (0.00972 ± 0.00167). However, it was comparable to SGD + Step_Decay
(0.00935 ± 0.00110), which also demonstrated strong performance.

• Accuracy: SGD + SHAP20_gradient also exhibited the highest accuracy (0.922 ± 0.027),
demonstrating the effectiveness of SHAP-informed targeted parameter updates in im-
proving classification performance. This method outperformed SGD only (0.913 ± 0.026)
and SGD + Step_Decay (0.911 ± 0.023). Conversely, SGD + SHAP10_gradient showed
reduced accuracy (0.886 ± 0.011), indicating that the SHAP update interval plays a
significant role in determining the efficacy of the gradient-based adjustments.

• Training Time: Similar to the Adam experiments, SHAP-informed methods with SGD re-
sulted in increased training time compared to non-SHAP methods.
SGD + SHAP20_gradient required the highest training time (58.07 ± 7.28 s), followed by
SGD + SHAP10_gradient (114.20 ± 17.95 s). In contrast, SGD + Step_Decay and SGD
only required significantly less training time (1.25 ± 0.49 s and 0.86 ± 0.50 s, respectively).
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Table 2. Summary of average performance metrics across various optimization methods on the
breast cancer dataset. Each method’s results include average test loss, average accuracy, and average
training time along with their respective standard deviations. The table provides a direct comparison
of methods, with SHAP-informed learning rate adjustments (SHAP20, SHAP40, SHAP60) and SHAP-
informed gradient adjustments (SHAP10 g, SHAP20 g).

Method Test Loss Accuracy Training Time

SGD only 0.0097 ± 0.0017 0.9128 ± 0.0266 0.8608 ± 0.5045
SGD + Annealing 0.0152 ± 0.0035 0.8558 ± 0.0251 1.03728 ± 0.4938
SGD + SHAP20 0.0104 ± 0.0021 0.9070 ± 0.0379 43.3277 ± 11.1142
SGD + SHAP40 0.0098 ± 0.0013 0.91406 ± 0.0255 21.5104 ± 8.5463
SGD + SHAP60 0.0105 ± 0.0023 0.9023 ± 0.0290 16.3279 ± 5.8155

SGD + Step_Decay 0.0094 ± 0.0011 0.9116 ± 0.0239 1.2524 ± 0.4924
SGD + SHAP10 g 0.0118 ± 0.0029 0.8860 ± 0.0114 114.2087 ± 17.9569
SGD + SHAP20 g 0.0082 ± 0.0011 0.9221 ± 0.0275 58.8706 ± 7.2843

Bold values indicate the best-performing method for each metric, while italic values indicate the second-best
performing method for each metric.

3.1.3. Breast Cancer Dataset: Additional Low Epoch Results

To supplement the main findings, additional experiments were conducted to evaluate
the performance of SHAP20, Annealing, Step Decay, and Adam-only methods at lower
epoch counts (5, 10, 20, 40, and 50 epochs). These tests aimed to assess the impact of
reduced training cycles on model performance and convergence behavior for the Breast
Cancer dataset. The key results are summarized in Table 3.

Table 3. Performance metrics for optimization methods on the Breast Cancer dataset at lower epoch
settings (5, 10, 20, 40, 50 epochs). The table reports average test loss, standard deviation of test loss,
average RMSE, standard deviation of RMSE, average R2, standard deviation of R2, average training
time, and standard deviation of training time.

Method Test Loss Accuracy Training Time

Adam 0.0063 ± 0.0017 0.9267 ± 0.0280 0.9215 ± 0.0919
Adam + Annealing 0.0065 ± 0.0014 0.9291 ± 0.0257 0.9175 ± 0.0745
Adam + SHAP20 0.0067 ± 0.0022 0.9244 ± 0.0271 23.2167 ± 4.3548

Adam + Step Decay 0.0070 ± 0.0024 0.9279 ± 0.0328 0.9140 ± 0.0881
Bold values indicate the best-performing method for each metric, while italic values indicate the second-best
performing method for each metric.

The low-epoch results for the Breast Cancer dataset reveal that while SHAP20 demon-
strated competitive performance, it did not outperform simpler methods such as Annealing
or Step Decay in terms of accuracy or test loss. Annealing showed strong consistency with
an average accuracy of 92.91%, while Step Decay delivered slightly higher accuracy at
92.79%, despite marginally increased test loss.

3.2. Diabetes Dataset
3.2.1. Diabetes Dataset: Adam Base Optimizers

The results for the Diabetes dataset provide insights into the performance of SHAP-
informed learning rate adjustments compared to more traditional methods. The metrics for
each method, including test loss, RMSE, R2, and training time, are summarized in Table 4.

Key Observations:

• Test Loss: The Step Decay method achieved the lowest test loss (134.445), marginally
outperforming SHAP10, SHAP20, and SHAP40, as well as Adam and Annealing.
SHAP20 g, which was expected to perform better, achieved a slightly higher test loss
at 135.464.
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• RMSE: Step Decay also recorded the lowest RMSE (11.421), which indicates a better
fit to the data compared to the SHAP methods and other optimizers. SHAP20 g again
had the second best RMSE of 11.503.

• R2 Score: While Step Decay again performed well with the second highest R2 score
(0.498), SHAP20 g and SHAP10 g showed slightly better results, achieving R2 scores of
0.507 and 0.505, respectively. Adam had the lowest R2 value at 0.425, demonstrating
its comparatively lower explanatory power in this context.

• Training Time: Similar to the Breast Cancer dataset, SHAP-informed methods had
substantially longer training times due to the computational complexity involved in
SHAP value calculations. SHAP10 g, in particular, had the longest average training
time at 56.922 s, compared to the non-SHAP methods.

Table 4. This table presents the average performance metrics from the grid search for each method on
the Diabetes dataset. It includes values for average test loss, RMSE, R2, and training time along with
their respective standard deviations. Each row corresponds to a specific learning rate adjustment
with a base optimizer of Adam.

Method Test Loss RMSE R2 Training Time

Adam only 135.506 ± 26.987 11.583 ± 1.158 0.425 ± 0.136 1.169 ± 0.406
Adam + Annealing 142.553 ± 25.729 11.890 ± 1.091 0.443 ± 0.061 0.635 ± 0.302
Adam + SHAP10 137.926 ± 27.510 11.684 ± 1.187 0.433 ± 0.069 51.718 ± 20.022
Adam + SHAP20 137.023 ± 32.803 11.620 ± 1.412 0.426 ± 0.086 27.240 ± 8.190
Adam + SHAP40 142.746 ± 28.640 11.881 ± 1.259 0.450 ± 0.070 18.892 ± 3.375

Adam + Step Decay 134.445 ± 51.251 11.421 ± 2.003 0.498 ± 0.095 0.908 ± 0.483
Adam + SHAP10 g 139.392 ± 46.801 11.6683 ± 1.801 0.505 ± 0.052 56.922 ± 28.972
Adam + SHAP20 g 135.464 ± 40.692 11.503 ± 1.774 0.507 ± 0.077 45.522 ± 8.776

Bold values indicate the best-performing method for each metric, while italic values indicate the second-best
performing method for each metric.

The SHAP-informed methods did not substantially outperform traditional optimiza-
tion methods like Step Decay in terms of test loss or RMSE on the Diabetes dataset. However,
SHAP gradient methods maintained competitive performance in terms of on test loss and
RMSE and even offered slightly more explanatory ability in terms of R2 scores, suggesting
that SHAP gradient methods could be more beneficial when feature importance plays a
critical role in model interpretation and generalization. The trade-off between higher train-
ing times and modest improvements in model performance remains a factor to consider
when scaling this approach to larger datasets or more complex architectures.

3.2.2. Diabetes Dataset: SGD Base Optimizers

The results from the Diabetes dataset provide insights into the performance of SHAP-
informed learning rate adjustments compared to traditional methods when paired with the
SGD optimizer. The metrics for each method, including test loss, RMSE, R2, and training
time, are summarized in Table 5.

Key Observations:

• Test Loss: Among the tested methods, SGD only achieved the lowest test loss (137.441),
demonstrating the strength of a straightforward approach. SGD + Annealing followed
as the second-best, with a test loss of 165.152, showcasing its effectiveness in certain
scenarios. Notably, the SHAP20 g method showed promise with a test loss of 274.564,
though it exhibited greater variability. This suggests that while SHAP-informed
gradient adjustments can drive improvements, further optimization is needed to
reduce inconsistency.
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• RMSE: Similar to test loss, SGD only again performed the best with the lowest RMSE
(11.637), indicating a better fit to the data. SGD + Annealing came second with an
RMSE of 12.723. The inclusion of SHAP20_gradient and SHAP10_gradient methods
demonstrates potential for improved model fitting, although their RMSE metrics
(15.634 and 16.4510, respectively) highlight room for refinement in reducing variability.

• R2 Score: SGD + Annealing achieved the highest R2 score (0.442), reflecting its ability
to explain more variance in the data compared to other methods. SGD only followed
closely with an R2 score of 0.378. While the SHAP methods, such as SHAP10 g and
SHAP20 g, yielded negative R2 values (−0.0099 and −0.0088, respectively), indicating
that they explained less variance than a simple baseline, this could be attributed to the
exhibited variability in the SHAP-informed gradient adjustments.

• Training Time: SGD + Annealing exhibited the fastest training time (0.8485 ± 0.5180),
narrowly outperforming SGD only (0.8987 ± 0.2036) while SHAP associated method
exhibited higher training times proportional to how often SHAP values were calculated.

Table 5. This table presents the average performance metrics from the grid search for each method on
the Diabetes dataset. It includes values for average test loss, RMSE, R2, and training time along with
their respective standard deviations. Each row corresponds to a specific learning rate adjustment
with a base optimizer of SGD.

Method Test Loss RMSE R2 Training Time

SGD only 137.441 ± 34.428 11.637 ± 1.423 0.378 ± 0.135 0.899 ± 0.204
SGD + Annealing 165.152 ± 46.205 12.723 ± 1.810 0.442 ± 0.117 0.848 ± 0.518
SGD + SHAP10 1287.276 ± 252.710 35.712 ± 3.454 −3.852 ± 0.435 79.712 ± 9.581
SGD + SHAP20 1382.738 ± 298.472 36.967 ± 4.015 −3.760 ± 0.424 44.374 ± 4.561
SGD + SHAP40 1311.710 ± 229.291 36.073 ± 3.232 −4.078 ± 0.763 25.727 ± 3.363

SGD + Step Decay 1277.564 ± 186.158 35.650 ± 2.578 −4.011 ± 0.365 1.452 ± 0.053
SGD + SHAP10 g 247.279 ± 53.595 15.634 ± 1.686 −0.010 ± 0.052 87.398 ± 13.780
SGD + SHAP20 g 274.564 ± 65.803 16.451 ± 1.982 −0.009 ± 0.0681 41.094 ± 9.304

Bold values indicate the best-performing method for each metric, while italic values indicate the second-best
performing method for each metric.

3.2.3. Diabetes Dataset: Additional Low Epoch Results

Additional experiments with a lower range of epochs (5, 10, 20, 40, 50) were also
performed for the SHAP20, Annealing, Step Decay, and Adam-only methods to assess their
performance under different training constraints. The complete findings of these trials are
presented below in Table 6.

Table 6. Performance metrics for optimization methods on the Diabetes dataset at lower epoch
settings (5, 10, 20, 40, 50 epochs). The table reports average test loss, standard deviation of test loss,
average RMSE, standard deviation of RMSE, average R2, standard deviation of R2, average training
time, and standard deviation of training time.

Method Test Loss RMSE R2 Training Time

Adam 142.962 ± 38.743 11.846 ± 1.622 0.484 ± 0.027 0.543 ± 0.185
Adam+Annealing 148.125 ± 40.829 12.054 ± 1.678 0.424 ± 0.089 0.327 ± 0.235
Adam+SHAP20 123.883 ± 33.401 11.035 ± 1.452 0.493 ± 0.081 17.159 ± 4.353

Adam+Step Decay 139.864 ± 50.955 11.648 ± 2.047 0.472 ± 0.074 0.559 ± 0.109
Bold values indicate the best-performing method for each metric, while italic values indicate the second-best
performing method for each metric.

On the Diabetes dataset, SHAP20 exhibited superior performance with the lowest
average test loss (123.88) and RMSE (11.04). This suggests that SHAP-informed adjustments
could provide meaningful improvements, especially under shorter training schedules. It is
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important to note that while the SHAP update interval is set to 20, there is an initial calcula-
tion of SHAP values used to impact the learning rate before training has progressed even
when epochs are set anywhere from 5–20. This suggests that a single SHAP update could
be effective in specific scenarios. Nevertheless, the increased computational time associated
with SHAP20 (17.16 s) remains a notable trade-off compared to the more computationally
efficient Adam and Step Decay methods.

These results reinforce the trade-offs discussed in the main analysis—highlighting the
balance between accuracy, efficiency, and computational cost. Future work could explore
strategies for optimizing SHAP-based methods to make them more practical for shorter
training durations and large-scale applications.

3.3. California Housing Dataset
3.3.1. California Housing Dataset: Adam Base Optimizers

The results for the California Housing dataset with the Adam optimizer provide valu-
able insights into the performance of a more advanced base optimizer adjustment methods
used with the methods mentioned before. Table 7 summarizes the results, including average
test loss, RMSE, R2, and training time, along with their respective standard deviations.

Key Observations:

• Test Loss: The Adam + SHAP40 method achieved the lowest test loss (0.0153), show-
casing its effectiveness in improving performance through SHAP-informed learning
rate adjustments. Following closely, Adam + SHAP20 demonstrated the second-best
test loss (0.0154), highlighting the consistency of SHAP-based methods in reducing
test error. These results emphasize the potential of SHAP-informed strategies to
outperform traditional learning rate methods such as step decay and annealing in
this dataset.

• RMSE: For RMSE, Adam + SHAP40 again emerged as the top performer with an
RMSE of 0.1237, indicating its ability to minimize prediction error. The Adam + Step
Decay method followed with an RMSE of 0.1242, demonstrating its robustness as a
non-SHAP learning rate adjustment method. These findings underline the competitive
nature of SHAP-informed adjustments while also showing that step decay remains a
strong alternative.

• R2 Score: In terms of R2, Adam + SHAP40 achieved the highest score (0.6332), further
affirming its superior predictive capability. Adam + SHAP20 achieved the second-best
R2 value of 0.6262, showing its consistency across multiple metrics. These results
highlight the value of SHAP-informed adjustments in enhancing the model’s ability to
explain variance in the dataset.

• Training Time: When considering training time, Adam + Annealing required the least
time (23.3203), followed by Adam Only (33.1513).

3.3.2. California Housing Dataset: SGD Base Optimizers

The results for the California Housing dataset with the SGD optimizer provide valu-
able insights into the performance of traditional learning rate adjustment methods and
SHAP-informed gradient adjustments. Table 8 summarizes the results, including average
test loss, RMSE, R2, and training time, along with their respective standard deviations.

Key Observations:

• Test Loss: SGD + SHAP20 achieved the lowest test loss (0.0377), demonstrating its
ability to effectively minimize prediction errors on this dataset. SGD + SHAP10
followed closely with a test loss of 0.0380, further showcasing the potential of SHAP-
informed gradient adjustments in optimizing performance.
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• RMSE: The lowest RMSE was also achieved by SGD + SHAP20 (0.1939), underscoring
its effectiveness in reducing prediction error. SGD + Step_Decay was the second-best
with an RMSE of 0.1946, followed closely by SGD + SHAP10, which achieved an RMSE
of 0.1948. This consistency across SHAP-informed methods highlights their robustness
in improving error metrics.

• R2 Score: SGD + SHAP20 delivered the best R2 score (0.0973), indicating a potential
ability to explain the variance in the data. SGD + Step_Decay achieved the second-best
R2 score of 0.0863, demonstrating its effectiveness.

• Training Time: SGD only exhibited the fastest training time (29.4050 s), followed by
SGD + Annealing with a training time of 25.0927 s. While SHAP-informed methods,
such as SGD + SHAP20 and SGD + SHAP10, demonstrated strong performance in test
loss and RMSE, they required significantly more computational time, with training
times of 80.9005 s and 103.6750 s, respectively.

Table 7. This table presents the average performance metrics from the grid search for each method
on the California Housing Dataset. It includes values for average test loss, RMSE, R2, and training
time along with their respective standard deviations. Each row corresponds to a specific learning rate
adjustment with a base optimizer of Adam.

Method Test Loss RMSE R2 Training Time

Adam only 0.0160 ± 0.0008 0.1267 ± 0.0031 0.6165 ± 0.0212 33.1513 ± 11.1284
Adam + Annealing 0.0372 ± 0.0079 0.1918 ± 0.0223 0.0947 ± 0.1870 23.3203 ± 13.4268
Adam + SHAP10 0.0155 ± 0.0003 0.1243 ± 0.0013 0.6290 ± 0.0070 163.1697 ± 24.9437
Adam + SHAP20 0.0154 ± 0.0005 0.1244 ± 0.0022 0.6262 ± 0.0142 89.6517 ± 22.2274
Adam + SHAP40 0.0153 ± 0.0006 0.1237 ± 0.0022 0.6332 ± 0.0142 105.1233 ± 22.5448

Adam + Step Decay 0.0154 ± 0.0009 0.1242 ± 0.0038 0.6296 ± 0.0188 57.2143 ± 7.3544
Adam + SHAP10 g 0.0155 ± 0.0005 0.1244 ± 0.0021 0.6284 ± 0.0123 159.9094 ± 43.4865
Adam + SHAP20 g 0.0158 ± 0.0008 0.1258 ± 0.0031 0.6237 ± 0.0141 104.0662 ± 20.7780

Bold values indicate the best-performing method for each metric, while italic values indicate the second-best
performing method for each metric.

Table 8. This table presents the average performance metrics from the grid search for each method
on the California Housing dataset. It includes values for average test loss, RMSE, R2, and training
time along with their respective standard deviations. Each row corresponds to a specific learning rate
adjustment method with a base optimizer of SGD.

Method Test Loss RMSE R2 Training Time

SGD only 0.0497 ± 0.0044 0.2228 ± 0.0010 −0.1878 ± 0.1029 29.4050 ± 29.4050
SGD + Annealing 0.0419 ± 0.0012 0.2046 ± 0.0029 −0.0049 ± 0.0119 25.0927 ± 7.2815
SGD + SHAP10 0.0380 ± 0.0032 0.1948 ± 0.0085 0.0775 ± 0.0791 103.6750 ± 38.5406
SGD + SHAP20 0.0377 ± 0.0046 0.1939 ± 0.0121 0.0973 ± 0.0950 80.9005 ± 30.5020

SGD + Step Decay 0.0380 ± 0.0046 0.1946 ± 0.0123 0.0863 ± 0.1034 35.6515 ± 15.0702
SGD + SHAP10 g 0.0687 ± 0.0060 0.2618 ± 0.0115 −0.6554 ± 0.1275 72.3938 ± 37.3120
SGD + SHAP20 g 0.0736 ± 0.0059 0.2712 ± 0.0109 −0.7410 ± 0.1190 57.1104 ± 27.2620

Bold values indicate the best-performing method for each metric, while italic values indicate the second-best
performing method for each metric.

4. Discussion
This study systematically evaluated the impact of global learning rate or gradient

adjustments on neural network training, focusing on SHAP-informed adjustments, learning
rate annealing, and step decay methods, all applied in conjunction with the Adam and
SGD optimizers. The experiments were conducted on three distinct datasets—Breast
Cancer, Diabetes, and California Housing—to explore the efficacy and computational cost
of each method.
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The SHAP-informed learning rate adjustment demonstrated clear performance ad-
vantages in terms of accuracy and generalization in most cases, though it exhibited mixed
results across dataset and base optimizer combinations. For the Breast Cancer dataset,
overall, Adam + SHAP20 achieved the tied highest accuracy (94.07% ± 0.0204) with a lower
deviation compared to Adam + Step Decay (94.07% ± 0.0267). Although Adam + Step
Decay demonstrated the lowest test loss (0.0049 ± 0.0016), with Adam + SHAP20 closely fol-
lowing at 0.0054 ± 0.0022. SGD + SHAP20 g (92.21%, test loss: 0.0082) and SGD + SHAP40
(91.41%) ranked first and second, respectively for SGD tests on this dataset. The strong
performance of targeted gradient method (SGD + SHAP20 g) paired with SGD aligns
with findings by Potharlanka and Bhat (2024), who demonstrated that feature importance
feedback mechanisms can enhance optimization processes in ensemble-based models by
prioritizing influential features [18]. These results suggest that step decay’s gradual learning
rate reduction allowed the model to adapt effectively to the dataset’s characteristics, while
the SHAP-informed methods provided an advantage by integrating either aggregated or
gradient level feature importance into the learning process. However, the computational
overhead of SHAP methods was evident, as these required significantly longer training
times than both Adam-only and step decay methods.

On the Diabetes dataset, overall, Adam + SHAP20 (low epoch) again emerged as
the best-permforming model with test loss 123.88 and RMSE of 11.035. Beyond that,
Adam + Step Decay followed as the next closest-performing method with a test loss
of 134.45 and an RMSE of 11.42. Adam + SHAP20 g ranked third with a test loss of
135.46 and an RMSE of 11.50. In the SGD context for this dataset SGD-only (137.44)
and SGD + Annealing (165.15). Interestingly, while the targeted SHAP gradient adjust-
ment (SHAP20 g) for SGD reduced RMSE compared to other SHAP implementations
(e.g., SHAP10 and SHAP40), it still did not surpass the performance of SGD-only and
SGD + Annealing. This finding indicates that while SHAP gradient adjustments enhance
model learning by focusing on feature importance, their effectiveness likely varies depend-
ing on the optimizer and dataset characteristics. For this dataset, Adam + Step Decay likely
excelled due to its smooth adjustment of learning rates, which helped the model better
converge on this moderately sized tabular dataset.

The California Housing dataset presented a similar trend. Overall, Adam + SHAP40
achieved the best test loss (0.0153) and RMSE (0.1237), followed by Adam + Step Decay
(0.0154, RMSE: 0.1242). Focusing on the SGD context, SGD + SHAP20 ranked first (test
loss: 0.0377) and SGD + SHAP10 s (test loss: 0.0380). Notably, SGD + SHAP20g performed
the worst among the evaluated methods, which could be attributed to the subsampling
of 500 records used for SHAP calculations to reduce training time on this larger dataset.
While this subsampling successfully mitigated computational burden, it may have limited
the method’s ability to fully capture the feature importance distribution required for SHAP
gradient updates, potentially compromising performance.

Across datasets, the SHAP-informed methods demonstrated consistent performance
gains, with Adam + SHAP20 achieving the best results on the Breast Cancer and Diabetes
datasets and Adam + SHAP40 performing best on the California Housing dataset. These
results suggest that the aggregated importance multiplier applied to the global learning
rate may have facilitated enhanced generalization by aligning optimization dynamics with
dataset-informed scaling. While the aggregated SHAP value is not directly interpretable as a
standalone measure, its use as a global multiplier introduces a form of uniform adjustment
that is expected to stabilize learning by moderating extreme parameter updates. This
mechanism likely aids in navigating high-dimensional spaces where individual feature-
specific adjustments may introduce instability or overfitting. Comparable effects have been
observed in approaches such as adaptive gradient methods, where scaling factors derived
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from global statistics have been shown to improve convergence and generalization [19].
This aggregated strategy appears to provide a balance between integrating dataset-wide
feature relevance and maintaining scalability, which could explain its superior performance
across diverse datasets in this study.

The interval of SHAP updates also played a noticeable role in model performance.
SHAP20, which updates every 20 epochs, generally outperformed SHAP40 and SHAP60
in terms of accuracy and RMSE, indicating that more frequent updates provide better
adaptability to unseen data. However, this comes at the cost of longer training times and is
not always the case. For example, SHAP40 showed competitive results on the California
dataset, suggesting that less frequent updates may be more suitable for smaller datasets or
tasks with fewer feature variations. Further research is needed to establish optimal SHAP
intervals for various dataset characteristics.

The varying effectiveness of SHAP-informed methods across datasets highlights the
importance of dataset-specific characteristics. For example, learning rate adjusting SHAP
methods were particularly beneficial on the California dataset, likely because the sampled
size of 500 records (from an original 20,000) for SHAP calculations reduced computational
costs while still preserving enough variance in feature importance for effective SHAP global
learning rate adjustments. In contrast, on the Diabetes dataset, where the relationships
between features and targets are more linear, simpler methods like step decay and SGD-
only outperformed both types of SHAP-informed adjustments. These findings suggest that
SHAP-informed methods may be more advantageous or useful for datasets with complex
feature interactions or non-linear relationships [7].

One clear drawback of the SHAP-informed approach was the substantial increase in
training time due to the computational overhead of calculating SHAP values at regular
intervals. This increased cost is a critical factor for large-scale deployments and real-time
applications [20]. While SHAP values offer valuable externally calculated measures of
feature importance that inform more targeted gradient or learning rate adjustments, this
resource-intensive process emphasizes the trade-off between leveraging advanced feature
importance metrics and computational efficiency. The overhead may limit the applicability
of SHAP-informed methods in environments requiring real-time or large-scale processing,
emphasizing the need for optimization to make this approach more viable.

Beyond performance metrics alone, the SHAP-based adjustments hold considerable
promise for applications in fields requiring transparency and informed decision-making,
such as healthcare, finance, or legal contexts. By integrating externally derived feature
importance into the training process, SHAP-informed adjustments can provide additional
insights into the relative influence of features on the optimization process. While the
computational cost of these methods remains a challenge, their ability to incorporate
feature importance into optimization strategies may justify their use in critical, high-stakes
environments where accurate and reliable models are essential [19].

Potential optimization strategies for the SHAP-informed approach could include re-
ducing the frequency of SHAP calculations by adjusting the SHAP update interval, striking
a balance between the anticipated performance gains and computational cost. Incremental
calculation methods for SHAP values would be beneficial, allowing for reduced compu-
tational load with each update. Additionally, leveraging parallel processing techniques
tailored to SHAP calculations—such as distributing feature importance computations
across multiple processors or GPUs—could further decrease training time by optimizing
resource utilization [21].

Incorporating SHAP derived feature importance into learning rate or gradient adjust-
ment process demonstrates promise for enhancing model performance. Future research
could further refine SHAP value scaling or related methods within other optimization
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frameworks, potentially uncovering even more effective training methodologies. Exploring
the development of structured rules for implementing and testing these types of learning
rate modifications represents a non-trivial, intriguing research direction [22]. Notably,
future studies should prioritize optimizing the SHAP-informed approach to reduce com-
putational overhead, alongside assessing its applicability across various neural network
architectures, datasets and other base optimizers like RMSprop and AdaGrad. Investigating
the combination of SHAP-informed adjustments with other advanced optimizers may also
yield deeper insights into improving neural network training processes.

In conclusion, while the SHAP-informed approach incurs a higher computational
cost, its performance benefits make it a compelling option for applications where accuracy
and model generalization are paramount. This study contributes to the growing body
of knowledge on learning rate optimization techniques, offering a novel perspective by
integrating SHAP values into the optimization process.
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