A Chaotic Decomposition-Based Approach for Enhanced Multi-Objective Optimization
<p>Illustration of the search space and the objective space of a two-objective optimization problem.</p> "> Figure 2
<p>The contributions of the proposed chaotic decomposition-based approach.</p> "> Figure 3
<p>The distribution function <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics></math> used in the TPO operator.</p> "> Figure 4
<p>The distribution function <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mfenced separators="|"> <mrow> <mi>x</mi> </mrow> </mfenced> </mrow> </semantics></math> used in the LIO operator.</p> "> Figure 5
<p>Flowchart of the overall CMOA process.</p> "> Figure 6
<p>Comparison of CMOA’s Pareto front with the true Pareto front on five ZDT problems.</p> ">
Abstract
:1. Introduction
- We propose a novel chaotic decomposition-based multi-objective optimization algorithm that enhances solution diversity and convergence by incorporating chaotic maps.
- TPO and LIO are introduced to refine the Pareto front and improve the accuracy of the solutions.
- We analyze the impact of chaotic maps on optimization, highlighting their potential in balancing exploration and exploitation in multi-objective search spaces.
2. Related Work
3. Preliminaries
3.1. Basic Concepts
3.2. Chaotic Maps
3.3. CGA Algorithm
Algorithm 1: Chaotic Golden Section Search Method (CGA) | |
Step (1) Initialization . is the number of iterations to achieve the proper feasible subspace. is the number of scanning steps in the golden section search algorithm. is a random value in the range | |
Calculating the subarea under the global optimum | Step (2) Generating points in the domain by: Step (3) If then ; Step (4) If then else fix in place. Step (5) If then else fix in place. Step (6) Generating by the map, Step (7) Repeating steps 2thru-6 until the stop criteria is reached. |
Golden section search algorithm | Suppose is the novel feasible space. Step (8) , and calculate , Step (9) If , the global optimum must be in thus , fix in place, Else the global optimum must be in thus fix in place. Step (10) If the stop criteria satisfied, go to stop and put out as the best solution, otherwise go to step 8. |
4. The Proposed Chaotic Multi-Objective Algorithm
4.1. Chaotic Sequence Initialization
- Step 1: Parameter Initialization
- Define the stopping criterion, the number of generated chaotic points, and the number of weight vectors, where.
- Ensure the sum of weight vectors satisfies.
- Compute the Euclidean distances between any two weight vectors and select the closest weight vectors.
- Step 2: Chaotic Population Generation
- Generate chaotic points using the logistic map.
- Initialize the cost function with as the starting point.
Algorithm 2: Chaotic Initialization |
, weight vectors λ, Logistic map parameters |
weight vectors |
5. Output: Initialized chaotic population |
4.2. Chaos-Based Correction
- Step 3: Three-Point Operator (TPO) (Algorithm 3)
- Select three chaotic points from.
- Apply the control parameter for generating a new search point .
Algorithm 3: Three Point Operator (TPO) |
. |
3. Output: New search point |
- Step 4: Local Improvement Operator (LIO) (Algorithm 4)
- Improve by applying mutation using control parameter.
Algorithm 4: Local Improvement Operator (LIO) |
1. Apply mutation to using:+*() |
2. Ensure remains within search space bounds |
3. Output: Improved solution |
4.3. Updating Based on Tchebycheff Decomposition
- Step 5: Update Process (Algorithm 5)
- Compute the ideal vector solution by the CGA method:
- Update the best solution using:
Algorithm 5: Tchebycheff-Based Updating |
2. Update solutions using: If then . |
3. Check stopping criteria, else repeat |
5. Experimental Studies
5.1. Multi-Objective Test Problems and Parameter Settings
5.2. Analysis and Discussion
5.3. Comparison Experiments on CEC09 UF Problems
5.3.1. Comparison with Decomposition-Based MOEAs
5.3.2. Comparison with State-of-the Art Methods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H. MOEA/D: A multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, Z.; Chen, P.; Huang, Z.; Huang, T. A simple chaotic model with complex chaotic behaviors and its hardware implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 3676–3688. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, J.; Qin, Z. A secure and efficient image transmission scheme based on two chaotic maps. Complexity 2021, 2021, 1898998. [Google Scholar] [CrossRef]
- Qian, K.; Xiao, Y.; Wei, Y.; Liu, D.; Wang, Q.; Feng, W. A robust memristor-enhanced polynomial hyper-chaotic map and its multi-channel image encryption application. Micromachines 2023, 14, 2090. [Google Scholar] [CrossRef]
- Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the strength Pareto evolutionary algorithm for multi-objective optimization. In EUROGEN 2001-Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems; Giannakoglou, K.C., Tsahalis, D.T., Périaux, J., Papailiou, K.D., Fogarty, T., Eds.; International Center for Numerical Methods in Engineering (CIMNE): Barcelona, Spain, 2001; pp. 95–100. [Google Scholar]
- Zhang, Q.; Zhou, A.; Zhao, S.; Suganthan, P.N.; Liu, W.; Tiwari, S. Multi-objective Optimization Test Instances for the CEC 2009 Special Session and Competition. Mech. Eng. 2008, 264, 1–30. [Google Scholar]
- Long, Q.; Wu, C.; Huang, T.; Wang, X. A genetic algorithm for unconstrained multi-objective optimization. Swarm Evol. Comput. 2015, 30, 1–14. [Google Scholar] [CrossRef]
- Savsani, V.; Tawhid, M.A. Non-dominated sorting moth flame optimization (NS-MFO) for multi-objective problems. Eng. Appl. Artif. Intell. 2017, 31, 20–32. [Google Scholar] [CrossRef]
- Zhan, Z.H.; Li, J.; Cao, J.; Zhang, J.; Chung, H.S.; Shi, Y.H. Multiple populations for multiple objectives: A co-evolutionary technique for solving multi-objective optimization problems. IEEE Trans. Cybern. 2013, 43, 445–463. [Google Scholar] [CrossRef]
- Huo, J.; Liu, L. An Improved Multi-Objective Artificial Bee Colony Optimization Algorithm with Regulation Operators. Information 2017, 8, 18. [Google Scholar] [CrossRef]
- Qin, F.; Zain, A.M.; Zhou, K.Q.; Yusup, N.B.; Prasetya, D.D.; Jalil, R.A.; Abidin, Z.Z.; Bahari, M.; Kamin, Y.; Majid, M.A. Hybrid Harmony Search Algorithm Integrating Differential Evolution and Lévy Flight for Engineering Optimization. IEEE Access 2025, 13, 13534–13572. [Google Scholar] [CrossRef]
- Koupaei, J.A.; Hosseini, S.M.; Ghaini, F.M. A new optimization algorithm based on chaotic maps and golden section search method. Eng. Appl. Artif. Intell. 2016, 30, 201–214. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Z.; Yi, P. Computational efficiency of accelerated particle swarm optimization combined with different chaotic maps for global optimization. Neural Comput. Appl. 2017, 28, 1245–1264. [Google Scholar] [CrossRef]
- Aslimani, N.; El-Ghazali, T.; Ellaia, R. A new chaotic-based approach for multi-objective optimization. Algorithms 2020, 13, 204. [Google Scholar] [CrossRef]
- Alikhani Koupaei, J.; Hosseini, S.M.M. A new hybrid algorithm based on chaotic maps for solving systems of nonlinear equations. Chaos Solitons Fractals 2015, 81, 233–245. [Google Scholar] [CrossRef]
- Firouznia, M.; Faez, K.; Amindavar, H. Exploring chaotic attractors in nonlinear dynamical system under Fractal theory. Multidimens. Syst. Signal Process. 2017, 29, 1643–1659. [Google Scholar]
- Tavazoei, M.S.; Haeri, M. Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl. Math. Comput. 2007, 187, 1076–1085. [Google Scholar] [CrossRef]
- Kiefer, J. Sequential minimax search for a maximum. Proc. Am. Math. Soc. 1953, 4, 502–506. [Google Scholar] [CrossRef]
- He, Y.Y.; Zhou, J.Z.; Xiang, X.Q.; Chen, H.; Qin, H. Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling. Chaos Solitons Fractals 2009, 42, 3169–3176. [Google Scholar] [CrossRef]
- Ma, X.; Liu, F.; Qi, Y.; Wang, X.; Li, L.; Jiao, L.; Yin, M.; Gong, M. A multi-objective evolutionary algorithm based on decision variable analyses for multi-objective optimization problems with large-scale variables. IEEE Trans. Evol. Comput. 2016, 20, 275–298. [Google Scholar] [CrossRef]
- Yang, D.; Li, G.; Cheng, G. On the efficiency of chaos optimization algorithms for global optimization. Chaos Solitons Fractals 2007, 34, 1366–1375. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Z.; Zhou, J. Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 1229–1246. [Google Scholar] [CrossRef]
- Akyildiz, Ö.D.; Míguez, J. Nudging the particle filter. Stat. Comput. 2020, 30, 305–330. [Google Scholar] [CrossRef]
- Dong, N.; Dai, C. An improvement decomposition-based multi-objective evolutionary algorithm using multi-search strategy. Knowl. Based Syst. 2019, 1, 572–580. [Google Scholar] [CrossRef]
- Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B. A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2016, 20, 773–791. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Q.; Zhang, T. Decomposition based algorithms using Pareto adaptive scalarizing methods. IEEE Trans. Evol. Comput. 2016, 20, 821–837. [Google Scholar] [CrossRef]
- Lin, Q.; Li, J.; Du, Z.; Chen, J.; Ming, Z. A novel multi-objective particle swarm optimization with multiple search strategies. Eur. J. Oper. Res. 2015, 247, 732–744. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Cort’es, N.C. Solving multi-objective optimization problems using an artificial immune system. Genet. Program. Evolvable Mach. 2005, 6, 163–190. [Google Scholar] [CrossRef]
- Schott, J.R. Fault tolerant design using single and multi-criteria genetic algorithm optimization. DTIC Doc. Tech. Rep. 1995, 199–200. [Google Scholar]
- Tian, Y.; Zhang, X.; Cheng, R.; Jin, Y. A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 5222–5229. [Google Scholar]
- Benmessahel, I.; Xie, K.; Chellal, M. A new competitive multiverse optimization technique for solving single-objective and multi-objective problems. Eng. Rep. 2020, 2, e12124. [Google Scholar] [CrossRef]
- Khodadadi, N.; Khodadadi, E.; Abdollahzadeh, B.; EI-Kenawy, E.S.M.; Mardanpour, P.; Zhao, W.; Gharehchopogh, F.S.; Mirjalili, S. Multi-objective generalized normal distribution optimization: A novel algorithm for multi-objective problems. Clust. Comput. 2024, 27, 10589–10631. [Google Scholar] [CrossRef]
- Mirjalili, S.; Saremi, S.; Mirjalili, S.M.; Coelho, L.d.S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Syst. Appl. 2016, 47, 106–119. [Google Scholar] [CrossRef]
- Lotfi, S.; Karimi, F. A Hybrid MOEA/D-TS for Solving Multi-Objective Problems. J. AI Data Min. 2017, 5, 183–195. [Google Scholar]
- Dai, C.; Lei, X. A Multi-objective Brain Storm Optimization Algorithm Based on Decomposition. Complexity 2019, 1, 1–11. [Google Scholar]
- Guo, X.; Wu, Y.; Xie, L.; Cheng, S.; Xin, J. An adaptive brain storm optimization algorithm for multi-objective optimization problems, in Advances in Swarm and Computational Intelligence. Lect. Notes Comput. Sci. 2015, 9140, 365–372. [Google Scholar]
- Shi, Y.; Xue, J.; Wu, Y. Multi-objective optimization based on brain storm optimization algorithm. Int. J. Swarm Intell. Res. 2013, 4, 1–21. [Google Scholar] [CrossRef]
- Reddy, M.J.; Kumar, D.N. Multi-objective differential evolution with application to reservoir system optimization. J. Comput. Civ. Eng. 2007, 21, 136–146. [Google Scholar] [CrossRef]
- Tawhid, M.A.; Savsani, V. Multi-objective sine-cosine algorithm (MO-SCA) for multi-objective engineering design problems. Neural Comput. Appl. 2019, 31, 915–929. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Song, S. A decomposition based multi-objective evolutionary algorithm with self-adaptive mating restriction strategy. Int. J. Mach. Learn. Cybern. 2018, 10, 3017–3030. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Gao, X.Z.; Song, S. Self-organizing multi-objective optimization based on decomposition with neighborhood ensemble. Neurocomputing 2016, 173, 1868–1884. [Google Scholar] [CrossRef]
- Zapotecas-Martínez, S.; García-Nájera, A.; López-Jaimes, A. Multi-objective grey wolf optimizer based on decomposition. Expert Syst. Appl. 2019, 120, 357–371. [Google Scholar] [CrossRef]
- Tiwari, S.; Fadel, G.; Koch, P.; Deb, K. Performance assessment of the hybrid archive-based micro-genetic algorithm (AMGA) on the CEC’09 test problems. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation, CEC 2009, Trondheim, Norway, 18–21 May 2009; IEEE: New York, NY, USA, 2009; pp. 1935–1942. [Google Scholar]
- Ekici, B.; Chatzikonstantinou, I.; Sariyildiz, S.; Tasgetiren, M.F.; Pan, Q.K. A multi-objective self-adaptive differential evolution algorithm for conceptual high-rise building design. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; IEEE: New York, NY, USA, 2016; pp. 2272–2279. [Google Scholar]
- Tavakkoli-Moghaddam, R.; Akbari, A.H.; Tanhaeean, M.; Moghdani, R.; Gholian-Jouybari, F.; Hajiaghaei-Keshteli, M. Multi-objective boxing match algorithm for multi-objective optimization problems. Expert Syst. Appl. 2024, 239, 122394. [Google Scholar] [CrossRef]
Name | Equation | Source | |
---|---|---|---|
Chebyshev | [18] | ||
Logistic | [18] | ||
Circle | [19] | ||
Gaussian | [18] | ||
ICMIC | [20] | ||
Sine | [21] | ||
Kent | [22] |
Problem | M | N | Range | Characteristics |
---|---|---|---|---|
ZDT1 | 2 | 30 | separable, unimodal, convex Pareto front | |
ZDT2 | 2 | 30 | separable, unimodal, concave Pareto front | |
ZDT3 | 2 | 30 | is is multimodal, discontinuous | |
ZDT4 | 2 | 30 | is is local Pareto-optimal fronts | |
ZDT6 | 2 | 30 | separable, multimodal, concave Pareto front, with a non-uniform search space | |
UF1 | 2 | 30 | complicated Pareto set | |
UF2 | 2 | 30 | complicated Pareto set | |
UF3 | 2 | 30 | complicated Pareto set | |
UF4 | 2 | 30 | complicated Pareto set | |
UF5 | 2 | 30 | complicated Pareto set, discontinuous | |
UF6 | 2 | 30 | complicated Pareto set, discontinuous | |
UF7 | 2 | 30 | complicated Pareto set | |
UF8 | 3 | 30 | complicated Pareto set | |
UF9 | 3 | 30 | complicated Pareto set, discontinuous | |
UF10 | 3 | 30 | complicated Pareto set |
IGD | ZDT1 | ZDT2 | ZDT3 | ZDT4 | ZDT6 | |
---|---|---|---|---|---|---|
CMOA | Mean SD | 8.304 × 10−5 2.949 × 10−7 | 2.943 × 10−4 5.902 × 10−4 | 2.122 × 10−3 1.303 × 10−3 | 9.125 × 10−5 8.095 × 10−7 | 5.708 × 10−5 1.678 × 10−8 |
NSGA-II [1] | Mean SD | 4.760 × 10−3 2.180 × 10−4 | 4.708 × 10−3 1.870 × 10−4 | 1.894 × 10−2 3.380 × 10−2 | 9.921 × 10−3 1.840 × 10−3 | 9.476 × 10−2 5.090 × 10−2 |
MOEA-DVA [21] | Mean SD | 5.761 × 10−1 6.410 × 10−2 | 7.789 × 10−1 1.510 × 10−1 | 7.428 × 10−1 1.760 × 10−1 | 5.153 1.550 | 6.552 × 10−1 1.170 × 10−6 |
MOEA-IGD-NS [31] | Mean SD | 3.823 × 10−3 3.690 × 10−5 | 3.819 × 10−3 1.860 × 10−5 | 1.469 × 10−2 1.450 × 10−2 | 1.350 × 10−2 2.390 × 10−3 | 3.105 × 10−1 1.010 × 10−1 |
MOEA/D-MS [25] | Mean SD | 3.826 × 10−3 8.750 × 10−6 | 3.782 × 10−3 1.110 × 10−5 | 5.125 × 10−3 2.470 × 10−4 | 9.579 × 10−3 3.220 × 10−3 | 3.082 × 10−3 4.700 × 10−7 |
MOEA/D [2] | Mean SD | 5.080 × 10−4 1.900 × 10−4 | 4.510 × 10−4 1.300 × 10−4 | 1.620 × 10−3 6.800 × 10−4 | 1.080 × 10−2 7.100 × 10−3 | 1.440 × 10−4 3.000 × 10−5 |
RVEA [26] | Mean SD | 4.668 × 10−3 3.760 × 10−4 | 4.947 × 10−3 6.450 × 10−4 | 1.106 × 10−2 7.180 × 10−3 | 5.033 × 10−2 1.210 × 10−2 | 3.463 × 10−3 2.800 × 10−4 |
MOEA/D-PaS [27] | Mean SD | 3.953 × 101 2.800 × 101 | 6.347 × 101 2.840 × 101 | 4.080 × 101 3.850 × 101 | 1.163 × 102 1.350 × 102 | 3.144 × 10−3 2.960 × 10−5 |
MMOPSO [28] | Mean SD | 1.870 × 10−3 1.380 × 10−5 | 1.910 × 10−3 2.100 × 10−5 | 2.100 × 10−3 4.490 × 10−5 | 1.840 × 10−3 1.870 × 10−5 | 1.560 × 10−3 4.720 × 10−5 |
MOCMVO [32] | Mean SD | 4.96 × 10−4 1.81 × 10−4 | 4.05 × 10−4 7.54 × 10−5 | 3.18 × 10−2 1.40 × 10−4 | 7.75 × 10−3 4.75 × 10−3 | 3.52 × 10−3 8.92 × 10−4 |
MOGNDO [33] | Mean SD | 5.00 × 10−4 6.00 × 10−5 | 5.01 × 10−4 9.00 × 10−5 | 3.50 × 10−4 3.00 × 10−5 | 5.72 × 10−2 7.82 × 10−2 | 6.33 × 10−3 8.26 × 10−3 |
SP | ZDT1 | ZDT2 | ZDT3 | ZDT4 | ZDT6 |
---|---|---|---|---|---|
CMOA | 5.041 × 10−3 | 1.591 × 10−3 | 1.098 × 10−2 | 5.001 × 10−3 | 9.367 × 10−4 |
MOGWO [34] | 7.709 × 10−3 | 7.138 × 10−3 | 1.078 × 10−2 | 4.734 × 10−2 | 9.773 × 10−3 |
RMOABC [11] | 3.603 × 10−3 | 3.305 × 10−3 | 9.279 × 10−3 | N/A | 1.646 × 10−1 |
MOEA/D [2] | 2.430 × 10−2 | 2.245 × 10−2 | 4.087 × 10−2 | N/A | 4.250 × 10−2 |
NSGA-II [1] | 6.247 × 10−3 | 7.629 × 10−3 | 7.031 × 10−3 | 7.600 × 10−3 | 1.770 × 10−1 |
W-MOEA/D [35] | 2.063 × 10−2 | 1.420 × 10−2 | 2.258 × 10−3 | 1.880 × 10−2 | 1.880 × 10−2 |
T-MOEA/D [35] | 1.884 × 10−2 | 1.138 × 10−2 | 9.341 × 10−3 | 1.265 × 10−2 | 1.265 × 10−2 |
MOCMVO [32] | 6.660 × 10−3 | 6.790 × 10−3 | 1.230 × 10−2 | 7.120 × 10−2 | 2.090 × 10−3 |
MOGNDO [33] | 9.090 × 10−3 | 1.043 × 10−2 | 1.028 × 10−2 | 1.073 × 10−2 | 9.873 × 10−2 |
Xtornado-TM[15] | 1.140 × 10−2 | 1.610 × 10−2 | 4.690 × 10−2 | 1.450 × 10−2 | 6.460 × 10−2 |
GD | ZDT1 | ZDT2 | ZDT3 | ZDT6 |
---|---|---|---|---|
CMOA | 3.438 × 10−5 | 3.332 × 10−5 | 9.076 × 10−5 | 2.549 × 10−5 |
MBSO/D [36] | 9.000 × 10−4 | 8.000 × 10−4 | 1.200 × 10−3 | 9.000 × 10−4 |
MBSO-DE [37] | 1.100 × 10−3 | 8.000 × 10−4 | 1.200 × 10−3 | 4.000 × 10−3 |
MBSO-C [38] | 9.120 × 10−2 | 9.050 × 10−2 | 5.890 × 10−2 | 8.130 × 10−2 |
NSGA-II [1] | 3.330 × 10−2 | 7.240 × 10−2 | 1.140 × 10−1 | 4.490 × 10−2 |
MODE [39] | 5.800 × 10−3 | 5.500 × 10−3 | 2.150 × 10−2 | N/A |
MO-SCA [40] | 2.850 × 10−4 | 2.480 × 10−4 | 1.210 × 10−3 | N/A |
MOEA/D [2] | 1.384 × 10−2 | 2.575 × 10−2 | 7.918 × 10−3 | 6.100 × 10−3 |
RMOABC [11] | 2.947 × 10−4 | 2.947 × 10−4 | 7.796 × 10−4 | 6.100 × 10−3 |
MOCMVO [32] | 1.520 × 10−4 | 9.650 × 10−5 | 7.010 × 10−2 | 2.52 × 10−2 |
MOGNDO [33] | 1.610 × 10−3 | 1.580 × 10−3 | 1.700 × 10−4 | 1.054 × 10−1 |
Xtornado-TM [15] | 2.380 × 10−3 | 6.610 × 10−4 | 2.450 × 10−3 | 3.880 × 10−3 |
Categories | Algorithm | Reference | Characteristics |
---|---|---|---|
Evolutionary algorithm (stochastic-based methods) | NSGA-II | [1] |
|
MOEA-DVA | [21] | ||
MOEA-IGD-NS | [31] | ||
MOEA/D-MS | [25] | ||
MOEA/D | [2] | ||
RVEA | [26] | ||
MOEA/D-PaS | [27] | ||
MMOPSO | [28] | ||
Chaotic-based method | CMOA |
|
Algorithm | UF1 | UF2 | UF3 | UF4 | UF5 | UF6 | UF7 | UF8 | UF9 | UF10 | p-Value (Wilcoxon vs. CMOA) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CMOA | Mean Std. | 4.03 × 10−3 9.17 × 10−4 | 1.55 × 10−3 1.88 × 10−3 | 1.15 × 10−2 5.41 × 10−4 | 1.78 × 10−3 8.17 × 10−5 | 4.35 × 10−1 1.29 × 10−1 | 2.33 × 10−2 8.77 × 10−3 | 6.96 × 10−3 1.58 × 10−3 | 2.87 × 10−3 7.36 × 10−4 | 1.52 × 10−3 2.57 × 10−4 | 6.66 × 10−3 1.72 × 10−5 | - |
MOEA/D-MS [25] | Mean Std. | 5.46 × 10−2 1.47 × 10−2 | 9.43 × 10−3 4.88 × 10−4 | 1.89 × 10−1 1.06 × 10−1 | 7.51 × 10−2 6.36 × 10−3 | 2.12 × 10−1 2.45 × 10−2 | 1.22 × 10−1 1.18 × 10−2 | 2.70 × 10−2 2.42 × 10−3 | 1.68 × 10−1 6.77 × 10−2 | 2.41 × 10−1 5.26 × 10−2 | 3.62 × 10−1 6.48 × 10−2 | 0.0488 (Significant) |
MOEA/D-MRS [41] | Mean Std. | 1.08 × 10−3 9.05 × 10−5 | 3.03 × 10−3 4.68 × 10−4 | 1.11 × 10−2 8.10 × 10−3 | 4.68 × 10−2 1.74 × 10−3 | 2.54 × 10−1 2.91 × 10−2 | 6.77 × 10−2 8.06 × 10−3 | 2.44 × 10−3 5.52 × 10−4 | 5.72 × 10−2 1.19 × 10−2 | 2.58 × 10−2 8.46 × 10−3 | 4.44 × 10−1 5.50 × 10−2 | 0.3223 (Not significant) |
MOEA/DVA [21] | Mean Std. | 4.13 × 10−3 9.90 × 10−5 | 4.10 × 10−3 4.90 × 10−5 | 2.27 × 10−2 7.26 × 10−3 | 3.50 × 10−2 1.01 × 10−3 | 3.25 × 10−2 4.68 × 10−3 | 5.61 × 10−2 1.37 × 10−2 | 3.76 × 10−3 4.64 × 10−5 | 5.77 × 10−2 1.20 × 10−2 | 1.23 × 10−1 1.62 × 10−1 | 1.03 × 10−1 3.30 × 10−3 | 0.1602 (Not significant) |
MOEA/D-PaS [27] | Mean Std. | 1.44 × 10−2 5.45 × 10−3 | 3.18 × 10−2 2.74 × 10−2 | 2.50 × 10−1 3.33 × 10−1 | 7.79 × 10−2 6.17 × 10−3 | 6.36 × 10−1 1.60 × 10−1 | 1.01 × 10−1 6.99 × 10−3 | 1.70 × 10−2 1.06 × 10−2 | 3.12 × 10−1 1.46 × 10−1 | 3.09 × 10−1 2.25 × 10−2 | 3.09 × 10−1 1.31 × 10−1 | 0.00195 (Highly significant) |
RVEA [26] | Mean Std. | 9.75 × 10−2 3.02 × 10−2 | 7.13 × 10−2 9.69 × 10−3 | 3.14 × 10−1 2.04 × 10−2 | 9.12 × 10−2 7.05 × 10−3 | 3.29 × 10−1 9.24 × 10−2 | 1.79 × 10−1 9.24 × 10−2 | 1.75 × 10−1 1.38 × 10−1 | 3.42 × 10−1 1.03 × 10−2 | 3.30 × 10−1 1.03 × 10−2 | 5.60 × 10−1 1.04 × 10−1 | 0.0137 (Significant) |
SMOEA/D [42] | Mean Std. | 1.71 × 10−3 1.97 × 10−4 | 5.76 × 10−3 2.32 × 10−3 | 7.92 × 10−3 6.47 × 10−3 | 5.20 × 10−2 3.39 × 10−3 | 2.84 × 10−1 4.23 × 10−2 | 6.55 × 10−2 7.19 × 10−3 | 2.38 × 10−3 5.23 × 10−4 | 4.16 × 10−2 8.78 × 10−3 | 3.13 × 10−2 6.75 × 10−3 | 7.40 × 10−1 1.20 × 10−1 | 0.2754 (Not significant) |
MOGWO/D [43] | Mean Std. | 7.66 × 10−2 2.00 × 10−3 | 3.86 × 10−2 1.00 × 10−3 | 2.00 × 10−1 6.20 × 10−2 | 1.01 × 10−1 4.00 × 10−3 | 3.54 × 10−1 5.50 × 10−2 | 3.29 × 10−1 8.60 × 10−2 | 3.62 × 10−2 2.00 × 10−3 | 8.44 × 10−2 3.80 × 10−2 | 7.71 × 10−2 5.30 × 10−2 | 4.06 × 10−1 1.14 × 10−1 | 0.0195 (Significant) |
Algorithm | UF1 | UF2 | UF3 | UF4 | UF5 | UF6 | UF7 | UF8 | UF9 | UF10 |
---|---|---|---|---|---|---|---|---|---|---|
NS-MFO [9] | 4.21 × 10−3 | 7.62 × 10−3 | 6.72 × 10−2 | 3.29 × 10−2 | 6.29 × 10−2 | 4.54 × 10−2 | 2.02 × 10−2 | 6.29 × 10−2 | 2.00 × 10−1 | 4.33 × 10−1 |
MOEA-IGD-NS [31] | 1.06 × 10−1 | 5.23 × 10−2 | 2.45 × 10−1 | 4.62 × 10−2 | 3.13 × 10−1 | 2.51 × 10−1 | 1.35 × 10−1 | 2.51 × 10−1 | 2.22 × 10−1 | 3.71 × 10−1 |
AMGA [44] | 3.59 × 10−2 | 1.62 × 10−2 | 7.00 × 10−2 | 4.06 × 10−2 | 9.41 × 10−2 | 1.29 × 10−1 | 5.71 × 10−2 | 1.71 × 10−1 | 1.89 × 10−1 | 3.24 × 10−1 |
OW-MOSaDE [45] | 1.22 × 10−2 | 8.10 × 10−3 | 1.03 × 10−1 | 5.13 × 10−2 | 4.30 × 10−1 | 1.92 × 10−1 | 5.85 × 10−2 | 9.45 × 10−2 | 9.83 × 10−2 | 7.43 × 10−1 |
MO-BBO_ACO [9] | 5.79 × 10−3 | 7.84 × 10−3 | 6.93 × 10−2 | 3.59 × 10−2 | 3.79 × 10−2 | 5.53 × 10−2 | 2.14 × 10−2 | 9.93 × 10−2 | 1.17 × 10−1 | 1.79 × 10−1 |
MOGWO [34] | 9.62 × 10−2 | 4.98 × 10−2 | 2.73 × 10−1 | 5.64 × 10−2 | 8.57 × 10−1 | 3.29 × 10−1 | 8.48 × 10−2 | 1.10 × 10−0 | 2.57 × 10−1 | 2.04 × 10−0 |
MOBMA [46] | 1.20 × 10−2 | 2.67 × 10−3 | 1.38 × 10−2 | 5.29 × 10−3 | 1.08 × 10−4 | 3.49 × 10−2 | 1.71 × 10−2 | 5.91 × 10−2 | 3.59 × 10−2 | 2.12 × 10−2 |
MOGNDO [33] | 3.89 × 10−3 | 2.43 × 10−3 | 1.47 × 10−2 | 2.18 × 10−3 | 6.14 × 10−1 | 4.92 × 10−2 | 7.63 × 10−3 | 4.91 × 10−3 | 3.87 × 10−3 | 1.29 × 10−2 |
CMOA | 4.03 × 10−3 | 1.55 × 10−3 | 1.15 × 10−2 | 1.78 × 10−3 | 4.35 × 10−1 | 2.33 × 10−2 | 6.96 × 10−3 | 2.87 × 10−3 | 1.52 × 10−3 | 6.66 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alikhani Koupaei, J.; Ebadi, M.J. A Chaotic Decomposition-Based Approach for Enhanced Multi-Objective Optimization. Mathematics 2025, 13, 817. https://doi.org/10.3390/math13050817
Alikhani Koupaei J, Ebadi MJ. A Chaotic Decomposition-Based Approach for Enhanced Multi-Objective Optimization. Mathematics. 2025; 13(5):817. https://doi.org/10.3390/math13050817
Chicago/Turabian StyleAlikhani Koupaei, Javad, and Mohammad Javad Ebadi. 2025. "A Chaotic Decomposition-Based Approach for Enhanced Multi-Objective Optimization" Mathematics 13, no. 5: 817. https://doi.org/10.3390/math13050817
APA StyleAlikhani Koupaei, J., & Ebadi, M. J. (2025). A Chaotic Decomposition-Based Approach for Enhanced Multi-Objective Optimization. Mathematics, 13(5), 817. https://doi.org/10.3390/math13050817