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Abstract: Intelligent fault diagnosis (IFD) plays a crucial role in reducing maintenance
costs and enhancing the reliability of safety-critical energy systems (SCESs). In recent years,
deep learning-based IFD methods have achieved high fault diagnosis accuracy extracting
implicit higher-order correlations between features. However, the excessive long training
time of deep learning models conflicts with the requirements of real-time analysis for
IFD, hindering their further application in practical industrial environments. To address
the aforementioned challenge, this paper proposes an innovative IFD method for SCES
that combines the particle swarm optimization (PSO) algorithm and the ensemble broad
learning system (EBLS). Specifically, the broad learning system (BLS), known for its low time
complexity and high classification accuracy, is adopted as an alternative to deep learning
for fault diagnosis in SCES. Furthermore, EBLS is designed to enhance model stability and
classification accuracy with high-dimensional small samples by incorporating the random
forest (RF) algorithm and an ensemble strategy into the traditional BLS framework. In
order to reduce the computational cost of the EBLS, which is constrained by the selection
of its hyperparameters, the PSO algorithm is employed to optimize the hyperparameters of
the EBLS. Finally, the model is validated through simulated data from a complex nuclear
power plant (NPP). Numerical experiments reveal that the proposed method significantly
improved the diagnostic efficiency while maintaining high accuracy. In summary, the
proposed approach shows great promise for boosting the capabilities of the IFD models
for SCES.

Keywords: safety-critical energy systems; intelligent fault diagnosis; ensemble broad
learning system; random forest; particle swarm optimization

MSC: 68T05

1. Introduction
1.1. Problem Statement

Safety-critical energy systems (SCESs) refer to complex, large-scale energy systems
where system failures or malfunctions can potentially lead to severe consequences, such as
loss of life, serious injuries, equipment damage, or environmental harm. The nuclear energy
system serves as a typical example of a SCES, as a catastrophic nuclear disaster would have
devastating impacts on all aspects of human society [1,2]. As energy systems continue to
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expand in scale and complexity, higher demands are placed on their security and reliability,
necessitating the early detection and identification of potential abnormalities and faults, as
well as the implementation of real-time fault-tolerant operations to minimize performance
degradation and avoid dangerous situations [3,4]. Fault diagnosis, the process of identifying
or predicting system faults to assess their type, location, and severity, provides powerful
guarantees for the safety and reliability of modern complex, large-scale process systems,
such as SCESs, by delivering accurate and timely fault information [5,6]. Traditionally, fault
diagnosis is heavily dependent on the abundant experience and huge expert knowledge
of engineers. However, in engineering scenarios, system users would like an automatic
method to shorten the maintenance cycle and improve the diagnosis accuracy [7]. Intelligent
fault diagnosis utilizes artificial intelligence technologies in the process of fault diagnosis
to automatically extract features and identify faults, making the process intelligent and
automated while simultaneously reducing the cost of manual feature analysis and avoiding
excessive reliance on prior knowledge [8,9]. Therefore, the development of an efficient and
accurate IFD method specifically tailored for SCES is of paramount importance.

During the last few decades, extensive efforts have been dedicated to IFD, resulting
in the development of a wide array of diagnostic models [10]. Generally, IFD models
can be categorized into model-based and data-driven models [11,12]. Regarding the
model-based methods, accurate quantitative mathematical models need to be established
based on strong assumptions and physical knowledge, and the fault diagnosis is usually
accomplished through residual generation or evaluation concepts [13,14]. Conversely,
whereas for changeable operational conditions and complicated working environment in
SCESs, there are difficulties in accurate fault modeling [15]. Furthermore, model-based
methods, though ideal for systems with limited inputs, outputs, or state variables, become
prohibitively costly and inefficient for complex, large-scale systems with large amounts
of data [16]. It is evident that model-based fault diagnosis methods are not well suited
for the IFD of SCESs. In contrast, data-driven fault diagnosis methods, which are model-
independent methods, can adaptively extracting decision rules from data with no reliance
on precise analytical models and domain knowledge [17–20]. It is clear that the data-driven
methods are better suited for the IFD of SCESs.

Along with the development and integration of big data and artificial intelligence
technology, data-driven methods based on machine learning have been applied widely in
the field of fault diagnosis. Researchers have proposed various methods for IFD, including
neural networks [21], random forest classifiers [22], k-means clustering [23], support vector
machines [24], gaussian process regression [25], logistic regression [26], and many more.
Deep learning, a subset of neural networks, is generally composed of multiple layers to
learn data features with multiple levels of abstraction by mining complex knowledge from
simpler concepts [27]. Due to their powerful feature learning and data analysis capabili-
ties, deep learning methods significantly improve fault diagnosis accuracy. Du et al. [28]
proposed a knowledge-embedded deep belief network method, which was experimen-
tally validated to achieve satisfactory performance in diagnosing electronic–thermal and
thermal–thermal multiple faults of chillers, even when training data for certain faults was
absent. Seghiour et al. [29] proposed a deep learning method based on an autoencoder
neural network, validated with monitored data from a real photovoltaic system in Algeria,
demonstrating its effectiveness in detecting and classifying various photovoltaic system
fault types. Harrou et al. [30] proposed a semi-supervised deep learning method for fault
detection in photovoltaic systems, demonstrating exceptional performance in accurately
identifying faults such as partial shading, inverter failures, and others. However, these
deep structures suffer from a mass of iterative training processes that consume time and
computational resources due to their large number of parameters and complicated hand-
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designed structures. What is more, it is not easy to rapidly update its deep architecture
parameters, because it involves the entire network when facing newly added samples [31].

The broad learning system (BLS) is the new model proposed by C. L. Philip Chen,
which can replace deep learning for data training [32]. Compared to deep learning, BLS
is a low-cost, high-performance method that overcomes the drawbacks of time consump-
tion, excessive hyperparameters, and complex structures [33]. The BLS can adaptively
expand the width of a model by adjusting its feature set, neural nodes, and input sam-
ples, effectively avoiding the time-consuming challenges associated with deep stacking
structures [34]. Moreover, BLS tends to process data more efficiently and achieve better
diagnostic results in small-sample fault diagnosis tasks. Deep learning typically requires
large amounts of data to extract meaningful features, and small samples can lead to over-
fitting, poor generalization, and less reliable results in fault diagnosis. In contrast, BLS,
which focuses on learning from a broader set of features rather than relying on deep hierar-
chical representations, is more suited to small-sample fault diagnosis due to its ability to
generalize better with small samples. However, the above-mentioned BLS-based method
investigation is partial to low-dimensional data scenarios.

High-dimensional data often refer to datasets with hundreds or even thousands of
features [35,36]. Given the complex inherent system composition of the SCES, coupled
with numerous and various of equipment, SCESs generate a multitude of monitoring
variables, leading to high-dimensional characteristics in the operational data [37]. In high-
dimensional classification, if features substantially outnumber instances, classifiers might
not generalize well using the characteristics of the training data [36]. Therefore, in the field
of intelligent fault diagnosis for safety-critical energy systems, high-dimensional data has
emerged as a critical challenge that must be addressed for effective model training. Recently,
multi-learner ensemble learning methods have been considered as a promising strategy
to deal with high-dimensional data modeling. Li et al. [38] proposed the semi-supervised
classification model with optimized graph construction and its enhanced framework for hy-
brid subspace ensemble based on optimized graph construction, which integrates multiple
hybrid subspace models by combining predefined graphs, adaptive graphs, and regular-
ization methods to effectively improve the classification performance of high-dimensional
data, and the experimental results showed excellent results. Zhao and Ye [39] proposed the
high-dimensional ensemble learning classification algorithm, which effectively improves
the classification performance of high-dimensional data through feature space reconstruc-
tion and classifier integration and experimentally verifies its research and application value.
Inspired by the idea of integration, scholars have continuously attempted to integrate BLS
with multi-learner ensemble learning. Zhao et al. [40] proposed a novel transformer fault
diagnosis model that utilizes a Filter–Wrapper Combined Feature Selection method and
an AdaBoost-integrated weighted broad learning system. Cheng et al. [41] proposed a
data-driven fault detection and diagnosis method via the intensive integration of principal
component analysis and a BLS, where fast and accurate fault detection and diagnosis
implementation could be easily accomplished. However, the above research works mainly
focused on high-dimensional large-sample scenarios.

1.2. Research Motivation

Inspired by the problem statement, we focused on the strong research motivation to
develop a novel IFD model based on BLS and ensemble learning for high-dimensional,
small-sample fault diagnosis of SCESs. Driven by this motivation, our research aims to
(1) provide a definition of EBLS in the proposed model; (2) propose an algorithm to detail
the fault diagnosis process; (3) apply the proposed model to representative cases to validate
its effectiveness.
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1.3. Research Gap

Although IFD has been widely applied in the industrial sector, methods specifically
designed for IFD in SCESs are still scarce. Most existing fault diagnosis research focuses
on general industrial applications or relatively simpler systems, often overlooking the
unique challenges posed by SCESs. For instance, SCESs typically involve highly complex
structures, massive real-time data streams, and high-dimensional, small-sample data,
making it difficult for traditional fault diagnosis methods to meet the high safety, real-time,
and reliability requirements. In the existing research, Yao et al. proposed a novel IFD
method for SCESs that integrates uncertainty-aware Bayesian deep learning [2]. Süle et al.
proposed a P-graph-based multi-objective risk analysis and redundancy allocation method
for SCESs [1]. However, these methods have limitations when applied to high-dimensional
small samples.

Additionally, to build an efficient and accurate EBLS model, it is often necessary to
fine-tune multiple hyperparameters to achieve optimal performance [42]. Traditionally,
hyperparameter tuning has relied on the researcher’s experience and prior knowledge, with
adjustments made manually over time. However, this process is not only time-consuming
and labor-intensive but also prone to human bias, making it difficult to reach the global
optimum, especially when dealing with complex or large-scale problems [43]. As a result,
optimizing algorithms to automate the hyperparameter tuning of TBLS models has become
increasingly important. Recent advancements in heuristic algorithms have further demon-
strated their versatility and efficiency in solving optimization problems across diverse
domains. For instance, ant colony optimization (ACO) has been effectively employed in 3D
path planning on remote sensing images to achieve energy-efficient solutions [44]. Similarly,
rat swarm optimization (RSO) has shown promising results in addressing combinatorial
optimization problems, such as the quadratic assignment problem [45]. Additionally, hy-
brid approaches like the genetic and penguin search optimization algorithm (GA-PSEOA)
have been utilized for efficient flow shop scheduling, showcasing their potential in multi-
objective optimization tasks [46]. In the context of hyperparameter optimization, ACO is
prone to local optima in high-dimensional spaces, GA’s reliance on crossover and mutation
leads to slow convergence, and SA, though capable of finding the global optimum, suffers
from slow convergence and prolonged escape times from local optima. In contrast, particle
swarm optimization (PSO) stands out for its simplicity, efficiency, and adaptability, making
it particularly suitable for high-dimensional, small-sample problems. By simulating the
collective movement of particles in the search space, PSO efficiently identifies the optimal
hyperparameter configuration, overcoming the limitations of manual tuning. Its reduced
computational demands for global optimization, strong adaptability, and rapid conver-
gence make it ideal for high-dimensional, nonlinear problems, positioning PSO as a reliable
and effective solution for hyperparameter tuning in EBLS models.

1.4. Contribution Statement

Motivated by the above analysis and review, a PSO-based EBLS, including the ensem-
ble broad learning system (EBLS) and the particle swarm optimization (PSO) algorithm, is
proposed in this article. The major contributions contain the following parts:

(1) This paper introduces a novel IFD approach for SCESs, where the BLS method is
employed as an alternative to deep learning techniques for fault diagnosis.

(2) We propose an EBLS framework that integrates the random forest(RF)algorithm
and an ensemble strategy into the traditional BLS model, designed to handle high-
dimensional small samples for improved stability and classification accuracy.

(3) The PSO algorithm is utilized to optimize the hyperparameters of the EBLS framework,
leading to reduced computational costs and improved performance.
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The rest of this paper is organized as follows: In Section 2, the BLS, RF, and PSO
algorithms are introduced. In Section 3, the definitions of the EBLS methods and PSO-EBLS
methods are provided. In Section 4, a detailed analysis, along with graphical and tabular
results, is presented in Section 4. Finally, the paper is concluded in Section 5.

2. Preliminaries
In this section, we will delve into the architecture of the BLS and the RF, along with their

respective mathematical formulations. After that, a brief introduction of PSO algorithm
is given.

2.1. BLS

BLS is an improved flat network comprising three primary components: (1) feature
mapping, (2) enhancement, and (3) dynamic weight update. A typical representation of
BLS is shown in Figure 1, while Figure 2 presents the computational flowchart of BLS, with
its mathematical formulations briefly outlined as follows.

In the feature mapping part, given a training dataset
{
(X, Y)

∣∣X ∈ RN×M, Y ∈ RN×1 }
and n feature mappings ϕ, the feature mapping is as follows:

Zi = ϕ(XWei + βei), i = 1, 2, . . . , n (1)

where N is the number of samples, M denotes the dimension of samples, and Y represents
the target of the fitting, which is a N × 1 dimensional matrix, given that the multi-input
single output modeling problem is the focus of this study. The weight Wei and the bias
term βei are randomly determined to develop the i−th mapping matrix Zi. Therefore, the
output of the n mapping nodes can be represented as

Zn = [Z1, Z2, . . . , Zn] (2)

where Zn represents the entire output of the feature layer.
In the enhancement part, Zn is utilized as the input of the nonlinear function ξ of the

enhancement node. Then, the j−th enhancement node is as follows:

Hj = ξ
(

ZnWhj + βhj

)
, j = 1, 2, . . . , n (3)

where Hj is the output of the j−th enhancement node. Hence, the output of m mapping
nodes can be denoted as

Hm ≜ [H1, H2, . . . , Hn] (4)

The prediction output, without considering the dynamic weight update of incremental
learning, is as follows:

Ŷ = Am
nWm

n = [Zn , Hm]Wm
n (5)

where Wm
n is the weight matrix of the mapping layer and the enhancement layer to the

output layer. It can be calculated using pseudoinverse, as follows:

Wm
n = [Am

n]
+Y

=
[
[Am

n]
T Am

n + λI
]−1

[Am
n]

TY
(6)

where λ is a positive constant, and I is an identity matrix.
BLS provides three incremental learning strategies, namely adding enhancement

nodes, feature mapping nodes, and inputting new data. The first method is considered an
example of interpretation.
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Suppose that p enhancement nodes are added, the new matrix Am+1
n is obtained

as follows:
Am+1

n = [Am
n , Hm+1]

=
[

Am
n , ξm+1

(
ZnWh(m+1) + βh(m+1)

)] (7)

Therefore, the pseudoinverse of matrix Am+1
n can be deduced as follows:

[
Am+1

n

]+
=

[
[Am

n]
+ − DBT

BT

]
(8)

where 
D = [Am

n]
+Hm+1

BT =

{
[C]+[
1 + DT D

]−1DT [Am
n]

+

C = Hm+1 − Am
nD

,
i f C = 0
i f C ̸= 0

(9)

Ultimately, the weight matrix Wm+1
n is updated as follows:

Wm+1
n =

[
Wm

n − DBTY
BTY

]
(10)

Equation (10) indicates that only the weights of the (m + 1)−th group of enhancement
nodes should be computed, thereby supporting the fast-learning characteristics of BLS.

2.2. RF

The RF algorithm operates by constructing a large ensemble of decision trees through
the random sampling of observations and feature variables from the dataset. Each sampled
subset generates a decision tree that establishes rules and prediction values based on its
specific attributes. The final regression result is obtained by aggregating the rules and
prediction values from all the trees in the forest. This approach makes random forest highly
flexible, robust to noise, and less sensitive to data standardization.

2.3. PSO

The search process of the classical PSO algorithm is inspired by the behavior of birds
in searching for food. In this algorithm, each particle represents a candidate solution of the
optimization problem and searches the solution space at a certain speed. During the search
process, each particle considers its current position, individual best position pbsett

i , and the
global best position of the entire population gbsett to adjust its speed and move towards
the direction of the global optimal solution. The velocity and position of the particle pi are
represented as xt

i =
[
xt

i1, xt
i2, . . . , xt

iD
]

and vt
i =

[
vt

i1, vt
i2, . . . , vt

iD
]
, respectively, where D is

the size of the problem. Specifically, each particle updates its velocity and position based
on its historical best position and the global best position, gradually approaching the global
optimal solution:

vt+1
i = ω · vt

i + c1 · r1 ·
(

pbsett
i − xt

i
)
+ c2 · r2 ·

(
gbsett − xt

i
)

(11)

xt+1
i = xt

i + vt+1
i (12)

where ω represents the inertia weight, and the self-awareness and social awareness are
regulated by the learning factors c1 and c2. These three parameters are responsible for
adjusting and coordinating the ability of the algorithm to perform local and global opti-
mization. In addition, two randomly generated numbers, r1 and r2, fall within the range
of (0,1).
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3. Materials and Methods
In this section, classical RF, PSO, and ensemble learning methods are used to enhance

the performance of BLS for high-dimensional, small-sample IFD in SCESs. Initially, a
novel model called the ensemble broad learning system (EBLS) is proposed by combin-
ing BLS with RF, and its structure is introduced. Then, PSO is applied to fine tune the
hyperparameters, resulting in the construction of the PSO-EBLS model.

3.1. Definitions of EBLS Methods

The EBLS maintains the original structure of the BLS but improves its performance
for high-dimensional, small-sample fault diagnosis (IFD) in SCESs by integrating random
forest (RF) and ensemble learning techniques. We apply a RF-based feature selection
strategy to identify key features that enhance the IFD performance. Next, we randomly
sample data from these selected features to create multiple sub-training datasets using
ensemble learning. Independent BLS models are then constructed based on these sub-
training datasets, and their results are combined to provide a final diagnosis. The structure
of the EBLS is shown in Figure 3, and a detailed description of the EBLS is provided below.
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Assume that X ∈ Rn×d represents the input data, where n is the number of samples
and d is the number of features, and Y ∈ Rn represents the corresponding target labels.
xi is a row in X, and the data are often scaled to consistency, resulting in the scaled data
matrix Xa, as shown in the Equation (13).

Xa= StandardScaler(X) (13)

In order to enhance feature representation, a RF model consisting of T decision trees,
is trained on the scaled data. The RF model can be described as a collection of trees, where
each tree tK(X) generates a prediction based on the input data, as shown in Equation (14).

M(X) = {t1(x), t2(x), . . . tT(x)} (14)

where M(X) is a collection of trees.
Instead of using the final predictions, the RF maps xi to the leaf nodes of each tree,

producing a vector of leaf indices Si = [Si1, Si2 . . . , SiT ], which represent the new features
for each sample. By aggregating these vectors, we create a feature matrix Xb, where each
column corresponds to the leaf index output of a tree, as shown in Equation (15).
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Xb = M(X) (15)

This Xb can be combined with Xa to form an enhanced feature set Xc ∈ Rn×(d+T) in
Equation (16).

Xc = [Xa, Xb] (16)

Within the BLS, Xc is transformed by using linear or nonlinear mappings to produce
the mapped features Z. The weights associated with the mapped nodes are represented by
WZ ∈ Rm×(d+T), where m is the number of mapped nodes, as shown in Equation (17).

Z = Xc · WZ (17)

The enhancement layer inputs are generated to enrich the feature space and capture
complex patterns. Enhancement nodes further transform the mapped features, resulting in
enhancement features H, as shown in Equation (18).

H = Z · WE (18)

where WE ∈ Rm×e are the weights for the enhancement nodes, and e is the number of
enhancement nodes.

The final feature matrix input into the BLS is obtained by concatenating the mapped
features and the enhancement features, as shown in Equation (19).

H f = [Z, H] (19)

where H f represents the final feature matrix that is input into the BLS.
Then, the candidate output Ỹ is given by Equation (20).

Ỹ = H f · W f + b f (20)

where W f represents the weights; b f is the bias term.
Finally, the true output Y is optimized by minimizing the regularized loss function, as

given by Equation (21).

min
W f

∥∥∥Ỹ − Y
∥∥∥2

2
+ α

∥∥∥W f

∥∥∥2

2
(21)

where α is the regularization parameter.
The establishment of an EBLS includes the following parts [47]:

(1) Feature selection: Multiple factors are associated with fault occurrence in SCESs;
however, certain faults may have less relevance, which can reduce the model’s
learning capability. Given that many features are independent of one another, we
apply a RF feature selection strategy to automatically identify and filter the most
relevant features.

(2) Establish sub-training datasets: The entire dataset is split into two subsets: a training
dataset (of size N1) and a test dataset (of size N2). ⌊N1 · p⌋ samples are chosen from
the training dataset using the Bootstrapping technique where 0 < p < 1 is the sampling
ratio, and ⌊x⌋ represents the largest integer no more than x. This sampling process is
repeated T times to prepare T different sub-training datasets for training the sub-models.

(3) Build the EBLS models: In this model, each EBLS model is regarded as a weak learner
in the ensemble learning model. Then, we combine multiple weak learners to form
strong learners. Finally, the output of the EBLS model can be computed by
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yp =
yp1 + yp2 + · · ·+ ypT

T
(22)

where ypi is the predicted value of the i−th learner, while yp is final predicted value.

3.2. Definitions of the PSO-EBLS Methods

There are three core parameters for the EBLS: number of feature node windows, num-
ber of nodes in each feature node window, and number of enhancement nodes. The EBLS
model uses the pseudoinverse to compute the output weights instead of backpropagation,
making the initial parameters crucial for the network’s performance. High-quality initial
parameters ensure a stable and accurate diagnosis. We use the PSO algorithm to optimize
the EBLS and find the best initial parameters, then apply the model for diagnosis.

The overall process is visually depicted in Figure 4, where the block diagram illustrates
the following workflow:

Mathematics 2025, 13, x FOR PEER REVIEW 11 of 21 
 

 

 

Figure 4. Flowchart of the PSO-EBLS. 

(1) Start: The starting point of the process, marking the initialization of the workflow. 
(2) Build the original dataset: Construct the original dataset, which includes all rele-

vant data collected from the system to provide the foundation for subsequent processing. 
(3) Random Forest: Apply the RF algorithm to process the data, identify the im-

portance of the features, and perform the initial analysis. 
(4) Derive the importance of features and select features: Extract the importance of 

features based on the results from random forest, and select key features for further mod-
eling. 

Figure 4. Flowchart of the PSO-EBLS.



Mathematics 2025, 13, 797 11 of 20

(1) Start: The starting point of the process, marking the initialization of the workflow.
(2) Build the original dataset: Construct the original dataset, which includes all relevant

data collected from the system to provide the foundation for subsequent processing.
(3) Random Forest: Apply the RF algorithm to process the data, identify the importance

of the features, and perform the initial analysis.
(4) Derive the importance of features and select features: Extract the importance of fea-

tures based on the results from random forest, and select key features for further modeling.
(5) Initialization: Initialize the PSO algorithm by generating the initial particle swarm

and their positions.
(6) Evaluate particles: Evaluate the particles by calculating their fitness values in the

solution space.
(7) Update the best location: Update the best location within the particle swarm,

storing the current optimal solution found so far.
(8) Update particle position: Update the positions of the particles based on the PSO

rules for velocity and position updates.
(9) Stop condition: Check if the stop condition is met. If not, return to updating particle

positions; if yes, proceed to the next step.
(10) Output optimal parameters: Output the optimal parameters obtained through the

PSO optimization for model development.
(11) Develop an optimal PSO-EBLS model: Develop an optimal model based on the

PSO-optimized parameters using the EBLS.
(12) Output diagnostic results: Generate diagnostic results, including fault classifica-

tion of the input data.
(13) Calculate evaluation indicators: Calculate the evaluation metrics to assess the

model’s performance.
(14) Stop: The endpoint of the process, marking the completion of the entire workflow.

4. Experimental Results and Analysis
In this section, we applied the proposed model in an experimental study aimed at

validating its effectiveness. In order to ensure a reliable evaluation of the performance of
the proposed model, we conducted the following statistical verification of the results:

4.1. Experiment Data and Environment
4.1.1. Experiment Data

Nuclear power plants are classic examples of SCESs. In this study, we selected the
nuclear reactor coolant system (NRCS) of the AP1000, a Generation III+ NPP designed by
Westinghouse, as the research object. The NRCS primarily consists of the pressure vessel,
pressurizer, steam generator, hot legs, cold legs, and reactor coolant pump. Heat generated
in the reactor core is transferred to water in the secondary loop via the steam generator. The
cooled reactor coolant is then pumped back into the pressure vessel to complete the cycle.
Due to the unique characteristics of NPPs, operational data under accident conditions are
extremely scarce. To address this issue, data generated by the personal computer transient
analyzer (PCTRAN), as shown in Figure 5, a personal computer-based nuclear power plant
simulator, are utilized to validate the accident diagnosis method.

The diagnostic process simulates one normal operating condition (NO) and four
typical accident conditions, including a small-break loss of coolant accident (SBLOCA), a
large-break loss of coolant accident (LBLOCA), a steam generator tube rupture accident
(SGTR), and a loss of flow accident (LOFA), as shown in Table 1. Below is a detailed
description of the nature of the samples and the methodology used for their collection:
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(1) Nature of the Samples:

(a) NO (L1): Represents operational data under normal conditions, including
steady-state parameters such as coolant temperature, pressure, and flow rate.

(b) SBLOCA (L2): Represents operational data under partial pipe ruptures with
equivalent diameters ranging from 9.5 mm to 25.0 mm. Such accidents result
in a gradual coolant leakage, leading to a decrease in both the NRCS pressure
and the water level in the pressurizer over time. This gradual loss can also
cause an increase in containment temperature and pressure due to heat release
at the rupture site.

(c) LBLOCA (L3): Represents operational data under severe pipe ruptures with
equivalent diameters greater than 34.5 mm. This type of accident leads to rapid
coolant loss, resulting in abrupt changes in system pressure and temperature.

(d) SGTR (L4): Represents operational data related to the failure caused by the rup-
ture of one or more U-tubes in the steam generator. Following a SGTR, coolant
from the primary loop leaks into the secondary loop, leading to a gradual
increase in the radioactive level within the secondary loop. Concurrently, the
pressure in the primary loop and the pressurizer water level decrease, while
the pressure in the secondary loop rises.

(e) LOFA (L5): Represents operational data during a coolant flow loss event caused
by a main pump failure or shutdown. This results in a decrease in coolant
flow, an increase in reactor coolant temperature and pressure, and a rise in
pressurizer level.
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(2) Sample Collection Methodology:

The samples were generated using PCTRAN, and the steps are as follows:

(a) Simulated Operational Environment: The simulator was configured with operational
parameters that mirror real-world NRCS, including a total of 85 fault characteristics.

(b) Data Acquisition: Time series data were collected at regular intervals under different
operational and accident scenarios.
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(c) Fault Labeling: Based on predefined fault scenarios, the data were labeled into
specific categories (L1–L5).

To ensure representativeness, multiple simulation runs were performed under varying
conditions, creating a high-dimensional, small-sample dataset encompassing both normal
and fault states. In our experiment, the PCTRAN simulation reached the normal operational
condition within 100 s; after which, it transitioned into four distinct accident scenarios, each
running for an additional 100 s. Data were collected at a rate of one sample per second,
yielding one hundred samples for each operating condition. Each sample was characterized
by 85 features, providing a detailed representation of the system’s state at each time step.

Table 1. Description of the fault types.

No. Fault Type Name Labels Sample Size Feature
Dimension

1 Normal operating No L1 100 85

2 Small-break loss of
coolant accident SBLOCA L2 100 85

3 Large-break loss of
coolant accident LBLOCA L3 100 85

4 Steam generator tube
rupture accident SGTR L4 100 85

5 Loss of flow accident LOFA L5 100 85

4.1.2. Experiment Environment

The conditions required for simulation testing, including the environment and hard-
ware and software configurations, are shown in Table 2.

Table 2. Conditions of the simulation test.

No. Name Parameter

1 Emulation device Lenovo Legion R9000P (2023 Edition)
(Lenovo, Hong Kong, China)

2 Central processing unit
(CPU)

AMD Ryzen 9 7945HX (AMD, Santa Clara,
CA, USA)

3 Graphics processing unit
(GPU)

NVIDIA GeForce RTX4060 (NVIDIA, Santa
Clara, CA, USA)

4 Operating system Microsoft Windows 11

5 Simulation software MATLAB R2023b

4.2. Comparison and Analysis of the Diagnostic Results
4.2.1. Evaluation Metrics

Evaluation metrics are commonly used to assess the performance of diagnostic mod-
els. For each category of operating condition, the accuracy, precision, and recall rate are
calculated, as shown in Equation (23):

Ai =
(TPi+TNi)

TPi+FPi+FNi+TNi
× 100%

Pi =
TPi

(TPi+FPi)
× 100%

Ri =
TPi

(TPi+TNi)
× 100%

(23)
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where i denotes the i − th operating condition; Ai, Pi, and Ri represent the accuracy,
precision, and recall rate of the i − th operating condition, respectively; TPi, FPi, FNi, and
TNi correspond to the number of samples diagnosed as the i − th operating condition and
actually belonging to it, diagnosed as the i − th operating condition but actually belonging
to other conditions, diagnosed as other conditions but actually belonging to the i − th
operating condition, and diagnosed as other conditions and actually belonging to other
conditions, respectively.

The calculation of accuracy, precision, and recall for all types of operating conditions
is given by Equation (24). 

A =
1
n ∑n

i=1 Ai

P =
1
n ∑n

i=1 Pi

R =
1
n ∑n

i=1 Ri

(24)

where n is the total number of categories of operating conditions categories; A, P, and R
are accuracy, precision, and recall rate, respectively.

4.2.2. Diagnostic Results

To more effectively evaluate the performance of the PSO-EBLS model, five-fold cross-
validation was conducted. After completing all five cycles, the average of the verification
results was calculated as the final performance metric for the model. The proposed ap-
proach was then compared with traditional models, including a convolutional neural
network (CNN), support vector machine (SVM), BLS, and EBLS. Table 3 presents a compre-
hensive list of the key parameters utilized in each method. The results are summarized
in Tables 4–7.

The accuracy results from the five-fold cross-validation are presented in Table 4. Sig-
nificant differences in performance were observed across the models. PSO-EBLS achieved
the highest average accuracy at 98.26%, demonstrating its effectiveness in optimizing
high-dimensional, small-sample data. This was followed by EBLS, which achieved an
average accuracy of 97.40%, benefiting from the ensemble width learning strategy that
enhanced both accuracy and stability. In contrast, BLS, SVM, and CNN showed lower
average accuracy, with SVM performing particularly poorly on small-sample datasets,
which led to a notable decline in performance, reaching only 86.40%.

The precision results from the five-fold cross-validation are presented in Table 5.
Both PSO-EBLS and EBLS demonstrated outstanding performance, achieving an average
precision of 98.20% and 97.30%, respectively. These models were particularly effective in
minimizing false positives during fault diagnosis tasks. Although BLS also achieved high
average precision, its performance instability across folds indicated that misclassifications
might occur in certain fault scenarios. In contrast, SVM showed lower average precision
when dealing with high-dimensional, small-sample data.

The recall rate results from the five-fold cross-validation are presented in Table 6.
In terms of recall, PSO-EBLS and EBLS demonstrated superior performance, achieving
average recall rates of 98.10% and 97.00%, respectively. These consistently high recall
rates ensured comprehensive fault diagnosis, which is crucial for SCESs. While BLS also
performed well, its fluctuating recall rate indicated a higher risk of missing faults in certain
instances. The lower recall rates observed with SVM and CNN suggest that critical faults
may be overlooked.
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Table 3. Parameter settings of CNN, SVM, BLS, EBLS, and PSO-EBLS.

Algorithm Parameter Setting Value

CNN

Learning Rate 0.001

Batch Size 32

Number of Filters 16

Kernel Size 3 × 3

Pooling Size 2 × 2

Pooling Stride 2

Activation Function ReLU

Dropout Rate 0.2

Epochs 100

SVM

Regularization parameter 0.01

Type of kernel function Linear

Kernel parameter 0.001

Tolerance for optimization 0.0001

BLS

Number of feature node windows 5

Number of nodes in each feature node
window 10

Number of enhancement nodes 50

EBLS

Number of trees 100

Maximum depth of each tree 10

Minimum samples required to be at a leaf
node 8

Minimum samples required to split an
internal node 2

PSO-EBLS

Iterations 100

Population 8

Inertia weights 0.7

Individual Learning Factor 2

Social Learning Factor 2

Lower band [10 10 10]

Upper band [100 100 100]

Table 4. The accuracies of 5-fold cross-validation.

Model

NO.

1
(%)

2
(%)

3
(%)

4
(%)

5
(%)

Average Accuracy
(%)

CNN 92.7 93.2 93.0 93.4 93.1 93.08

SVM 78.00 88.00 90.00 86.00 90.00 86.40

BLS 94.5 97.6 93.8 96.3 95.0 95.44

EBLS 97.2 97.5 97.3 97.6 97.4 97.40

PSO-EBLS 98.1 98.3 98.2 98.4 98.3 98.26
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Table 5. The precisions of 5-fold cross-validation.

Model

NO.

1
(%)

2
(%)

3
(%)

4
(%)

5
(%)

Average Precision
(%)

CNN 92.8 93.3 92.9 93.4 93.1 93.10

SVM 80.38 89.53 90.10 88.68 90.69 87.88

BLS 94.2 97.8 95.7 96.1 93.9 95.54

EBLS 97.1 97.4 97.2 97.5 97.3 97.30

PSO-EBLS 98.0 98.3 98.2 98.4 98.1 98.20

Table 6. The recall rates of 5-fold cross-validation.

Model

NO.

1
(%)

2
(%)

3
(%)

4
(%)

5
(%)

Average Recall Rate
(%)

CNN 92.7 93.2 93.0 93.4 93.1 93.08

SVM 78.00 88.00 90.00 86.00 90.00 86.40

BLS 93.0 97.1 92.5 96.0 94.2 94.56

EBLS 96.8 97.0 96.9 97.2 97.0 97.00

PSO-EBLS 97.9 98.2 98.1 98.3 98.0 98.10

Table 7. The evaluation times of 5-fold cross-validation.

Model

NO.

1
(s)

2
(s)

3
(s)

4
(s)

5
(s)

Average Evaluation Time
(s)

CNN 30.5 32.0 31.0 30.7 31.8 31.2

SVM 3.37 3.69 4.02 3.84 3.74 3.73

BLS 3.4 3.3 3.5 3.3 3.4 3.38

EBLS 3.8 3.9 3.7 3.8 3.9 3.82

PSO-
EBLS 4.1 4.0 4.2 4.1 4.0 4.08

The evaluation time results from the five-fold cross-validation are presented in Table 7.
Regarding time performance, BLS emerged as the fastest model, with an average evaluation
time of 3.38 s, making it well suited for real-time applications. EBLS and PSO-EBLS
also demonstrated strong efficiency, with average evaluation times of 3.82 s and 4.08 s,
respectively, offering a good balance between accuracy and speed. In contrast, SVM and
CNN exhibited longer evaluation times, with CNN taking 31.2 s, which limits its suitability
for real-time diagnosis.

4.2.3. Comparison and Analysis

Compared to existing methods, the proposed PSO-EBLS model significantly improves
fault diagnosis for safety-critical energy systems. Specifically, it achieves an average
accuracy of 98.26%, surpassing CNN and SVM by 5.57% and 13.73%, respectively. The
evaluation time of PSO-EBLS is 4.08 s—slightly longer than EBLS but much faster than
CNN—making it suitable for real-time fault diagnosis.
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The superior performance of PSO-EBLS can be attributed to several factors. First, the
PSO algorithm efficiently optimizes the EBLS hyperparameters, ensuring stable and accu-
rate predictions. Second, the ensemble strategy in EBLS improves the model robustness by
combining multiple random forest-based sub-models. As a result, PSO-EBLS strikes a bal-
ance between computational efficiency and diagnostic accuracy, even in high-dimensional,
small-sample scenarios.

In contrast, existing approaches such as CNN require extensive training data but suffer
from overfitting in small-sample scenarios, resulting in reduced performance. Traditional
SVM methods, although robust to small-sample data, have high computational costs and
limited scalability. PSO-EBLS, however, excels in handling high-dimensional, small-sample
datasets due to its efficient feature extraction and optimization strategies.

In conclusion, PSO-EBLS is the most comprehensive model, excelling in both accuracy
and evaluation time, making it the best choice for fault diagnosis in safety-critical energy
systems. While EBLS offers excellent accuracy, recall, precision, and evaluation time, it
lacks automatic hyperparameter optimization, requiring manual tuning, which reduces
efficiency and introduces the potential for suboptimal parameter selection. BLS is well
suited for rapid diagnostics with high accuracy but may face performance fluctuations due
to stability issues, particularly in high-dimensional, small-sample data. CNN performs
well with large datasets but underperforms in small-sample, high-dimensional scenarios.
SVM is suitable for small sample data, but its performance is poor in high-dimensional,
small-sample data diagnosis, primarily due to its sensitivity to high-dimensional features.

5. Conclusions
This study proposed a novel PSO-EBLS model for IFD in SCESs, particularly focusing

on addressing the challenges posed by high-dimensional, small-sample data. By integrat-
ing the PSO algorithm with the EBLS, the model achieved significant improvements in
accuracy, precision, recall, and computational efficiency compared to traditional methods
such as CNN, SVM, and BLS. These advancements demonstrate the potential of PSO-
EBLS to enhance fault diagnosis capabilities in SCESs, ensuring higher reliability and
operational safety.

The key contributions of this research are summarized as follows:
The study introduced an innovative PSO-EBLS framework that combines RF-based

feature selection and ensemble strategies within the BLS architecture, enabling effective
modeling for high-dimensional small samples.

By leveraging the PSO algorithm for hyperparameter tuning, the proposed model
achieved superior diagnostic accuracy and stability while maintaining computational efficiency.

The model was validated using simulated nuclear power plant (NPP) data, demon-
strating its applicability in diagnosing various operating conditions, including normal
operation and critical fault scenarios such as SBLOCA and LBLOCA.

However, this study also has certain limitations. Firstly, the experimental data used
were generated by a nuclear power plant simulator, and the model’s performance in real
industrial environments has not yet been verified. Secondly, the inherent data imbalance
in SCESs, where normal operating conditions dominate, poses challenges for model gen-
eralization. Lastly, while the model demonstrated high efficiency, further optimization is
required to ensure scalability for large-scale, high-dimensional datasets.

In the future, several promising directions can be explored:
(1) Developing data augmentation techniques or integrating generative adversarial

networks (GANs) to address data imbalance in SCES fault diagnosis.
(2) Exploring hybrid approaches that integrate deep learning-based feature extraction

with EBLS to improve performance in multi-modal data scenarios.
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In conclusion, the proposed PSO-EBLS model presents a significant step forward in the
field of intelligent fault diagnosis for SCESs, offering a robust, efficient, and accurate diag-
nostic framework. Future research addressing its limitations and expanding its scope will
further enhance its potential for practical deployment in diverse industrial environments.
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