
Academic Editor: Luigi Fortuna

Received: 17 January 2025

Revised: 5 February 2025

Accepted: 14 February 2025

Published: 16 February 2025

Citation: Liu, J.; Lin, X.; Huang, C.;

Cai, Z.; Liu, Z.; Chen, M.; Li, Z. A

Study on Path Planning for Curved

Surface UV Printing Robots Based on

Reinforcement Learning. Mathematics

2025, 13, 648. https://doi.org/

10.3390/math13040648

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Study on Path Planning for Curved Surface UV Printing
Robots Based on Reinforcement Learning
Jie Liu *, Xianxin Lin, Chengqiang Huang, Zelong Cai, Zhenyong Liu, Minsheng Chen and Zhicong Li

Guangdong Provincial Key Laboratory of Industrial Intelligent Inspection Technology, School of Mechatronic
Engineering and Automation, Foshan University, Foshan 528225, China; 2112202086@stu.fosu.edu.cn (X.L.)
* Correspondence: jie.liu.jdxy@fosu.edu.cn

Abstract: In robotic surface UV printing, the irregular shape of the workpiece and fre-
quent curvature changes require the printing robot to maintain the nozzle’s perpendicular
orientation to the surface during path planning, which imposes high demands on tra-
jectory accuracy and path smoothness. To address this challenge, this paper proposes a
reinforcement-learning-based path planning method. First, an ideal main path is defined
based on the nozzle characteristics, and then a robot motion accuracy model is established
and transformed into a Markov Decision Process (MDP) to improve path accuracy and
smoothness. Next, a framework combining Generative Adversarial Imitation Learning
(GAIL) and Soft Actor–Critic (SAC) methods is proposed to solve the MDP problem and
accelerate the convergence of SAC training. Experimental results show that the proposed
method outperforms traditional path planning methods, as well as Genetic Algorithm (GA)
and Particle Swarm Optimization (PSO). Specifically, the maximum Cartesian space error
in path accuracy is reduced from 1.89 mm with PSO and 2.29 mm with GA to 0.63 mm. In
terms of joint space smoothness, the reinforcement learning method achieves the smallest
standard deviation, especially with a standard deviation of 0.00795 for joint 2, significantly
lower than 0.58 with PSO and 0.729 with GA. Moreover, the proposed method also demon-
strates superior training speed compared to the baseline SAC algorithm. The experimental
results validate the application potential of this method in intelligent manufacturing, par-
ticularly in industries such as automotive manufacturing, aerospace, and medical devices,
with significant practical value.

Keywords: UV printing; complex surface; path planning; reinforcement learning; SAC; robot

MSC: 68T40; 93C85; 70B15

1. Introduction
Ultraviolet (UV) printing technology, due to its high forming speed and superior

printing quality, has gradually replaced traditional screen printing techniques in modern
industrial production. It is widely applied in product packaging, trademarks, production
date marking, pharmaceutical traceability, and artistic coloring. With the advancement
of intelligent manufacturing, UV printing has also been extensively used in customized
production, intelligent assembly lines, and flexible manufacturing systems, making it par-
ticularly suitable for manufacturing processes with complex shapes and customization
requirements. For instance, UV printing has been widely employed in the intelligent
manufacturing of automotive exteriors, aerospace components, and consumer electron-
ics, as well as on medical device surfaces with special geometric structures. However,
traditional UV printing equipment, due to its limited degrees of freedom, is typically

Mathematics 2025, 13, 648 https://doi.org/10.3390/math13040648

https://doi.org/10.3390/math13040648
https://doi.org/10.3390/math13040648
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math13040648
https://www.mdpi.com/article/10.3390/math13040648?type=check_update&version=2

Mathematics 2025, 13, 648 2 of 31

restricted to planar printing and struggles to meet the demands of multi-degree-of-freedom
curved surface printing. Specifically, for curved, inclined, cylindrical, or complex irreg-
ular surfaces, traditional equipment faces challenges in achieving efficient and precise
printing. The emergence of industrial robots compensates for these limitations. With their
multi-degree-of-freedom and high-precision dynamic motion control capabilities, indus-
trial robots enable full-surface printing on irregular workpieces, overcoming the spatial
constraints of conventional equipment. By integrating UV printing systems, robots can
dynamically adjust nozzle angles and printing distances, precisely adapting to complex
surface structures. This provides an efficient and flexible solution for curved surface UV
printing, meeting the high-precision and high-flexibility demands of intelligent manufac-
turing, especially in large-scale customization, irregular surface processing, and complex
design scenarios.

In UV printing robot path planning, both trajectory accuracy and smoothness are
crucial factors affecting printing quality. Most existing research primarily focuses on
curved surface path generation and path optimization. However, current methods still face
the following challenges:

• Path generation methods based on CAD/point cloud data mainly focus on geometric
modeling [1] but lack optimization for trajectory smoothness and precision. Current
research predominantly addresses spray gun modeling and coating thickness opti-
mization, with relatively little focus on path accuracy and smoothness optimization.
This may lead to suboptimal performance in high-speed, high-precision processing,
negatively impacting printing quality.

• Traditional optimization algorithms, such as Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO), have been applied in path optimization. However,
these methods [2] tend to fall into local optima in high-dimensional optimization
problems, exhibit slow convergence rates, and have limited capability in trajectory
smoothness optimization.

• Reinforcement learning (RL), known for its adaptive optimization capabilities, has
been applied to path optimization problems [3]. However, existing RL methods suffer
from challenges such as convergence difficulties, low training efficiency, and inade-
quate trajectory smoothness optimization.

To address these issues, this paper proposes a reinforcement learning framework
based on Generative Adversarial Imitation Learning and Soft Actor–Critic (GAIL-SAC).
This method aims to plan a smooth trajectory in joint space while ensuring smoothness
and precision in Cartesian space, thereby enhancing the stability and reliability of the
printing trajectory.

The main contributions of this paper are as follows:

• A curved surface trajectory generation method based on CNC path transformation is
proposed, which integrates CAD models and point cloud data. A conversion strategy
from CNC machining paths to robot trajectories is designed to ensure path accuracy
and operational feasibility.

• A robot motion accuracy model is established and formulated as an MDP problem,
where the SAC reinforcement learning algorithm is used to optimize it. The rein-
forcement learning algorithm is applied in joint space trajectory planning, ensur-
ing trajectory smoothness not only in joint space but also in Cartesian space with
high accuracy.

• A GAIL-SAC reinforcement learning framework is proposed, leveraging imitation
learning to improve training efficiency and reinforcement learning to optimize trajec-
tory precision, thereby enhancing the algorithm’s convergence speed and stability.

Mathematics 2025, 13, 648 3 of 31

• Experimental validation demonstrates that the proposed method outperforms existing
methods in terms of trajectory smoothness and accuracy while significantly reducing
training time and improving the robustness of trajectory optimization.

2. Related Work
This section reviews relevant research on curved surface path planning for UV print-

ing robots, providing a detailed discussion on path generation methods, optimization
approaches, and the application of reinforcement learning in path planning. Furthermore,
it identifies the existing research gaps and challenges in this field.

2.1. Curved Surface Path Generation Method

Currently, many researchers have focused on surface path generation, with most meth-
ods based on Computer-Aided Design (CAD) models and point cloud data. In the research
based on CAD models, Nieto Bastida and others from National Taiwan University [4]
proposed a method that uses 3D point clouds of the printing workpiece as a geometric
representation, which allows for the visualization of point cloud models and the generation
of printing trajectories. Weber et al. [5] further refined this approach by modeling Bezier
triangular surfaces to determine the optimal initial trajectory for spraying the workpiece.
Typically, the initial steps of path planning involve using CAD models as input [6], followed
by data classification, and then applying existing algorithms to generate the optimal path.
Building on this, D. Gleeson et al. [7] used the CAD model as part of the initial trajectory
and minimized the deviation between coating thickness and the target thickness to obtain
the path of the applicator. Additionally, for obtaining point cloud data of actual objects,
researchers [8] have often used depth cameras to capture the point cloud data of real objects
for automatic path planning. Y. Meng et al. [9] used a 3D scanner to obtain point cloud data
of a steel helmet and generated surface paths by processing the point cloud and applying
B-spline curves. Similarly, Shah [10] used depth cameras to extract detailed point cloud
data from the workpiece surface to determine the precise angle and depth the robot’s
end-effector must maintain to ensure it remains perpendicular to the workpiece surface.
This method is particularly useful for processing complex surfaces, as it generates normal
trajectories to ensure the tool remains perpendicular to the workpiece surface.

Similarly, point-cloud-based methods are often used for surface Computer Numerical
Control (CNC) path generation. Although multi-axis CNC machining shares similarities
with the robotic printing process, current research has not deeply explored how to convert
CNC paths into robotic paths, and this conversion process still lacks detailed discussion.
For example, one study [11] proposed a method based on arc-length parameterization and
Cartesian trajectory conversion, which improves the accuracy and smoothness of paths in
free-form surface machining. Another study [12] combined CAD models to generate CNC
machining data and optimized it through on-site point cloud measurements to improve
the smoothness, stability, and machining precision of free-form surfaces. Although these
methods effectively generate surface paths, they lack proper modeling of robotic kine-
matic characteristics, and the optimization of path smoothness and accuracy still receives
insufficient attention.

2.2. Traditional Optimization Algorithms (GA and PSO) and Their Limitations

In the path optimization of printing robots, most research has focused on the opti-
mization of spray models and coating thickness. For example, Zeng [13] developed a static
variable posture spray gun model and a dynamic variable posture spray gun model along
an arc path, proposing a spray gun optimization method based on variable spray angles to
solve problems such as low spraying efficiency and excessive paint waste. Subsequently,

Mathematics 2025, 13, 648 4 of 31

Zhang Y [14] proposed a spraying path planning method based on patch boundary curves,
which significantly reduced paint waste during the spraying process by optimizing the
distance between the spraying path and the patch boundary. These studies demonstrate
that coating thickness models play an active role in improving spraying quality. However,
these methods often overlook the impact of trajectory smoothness and accuracy during
the robot’s motion on printing quality. Smoothness is a key indicator in robotic process-
ing, as even small cornering in a trajectory can lead to tangential discontinuities, causing
vibration and impact during motion, which severely affects the robot’s performance in
high-speed, high-precision operations. Currently, for robot motion smoothness, research
often adopts fifth-order polynomials for trajectory planning. Lu et al. [15] established kine-
matic inverse equations, mapping data points and control points to joint space, and used
fifth-order B-spline curves for secondary trajectory planning, achieving smooth motion.
However, for multi-objective optimization problems, it is often necessary to combine other
intelligent algorithms to obtain a more comprehensive solution.

Commonly used methods are metaheuristic algorithms, which are employed to en-
hance path accuracy and smoothness. Zhu and Pan [16] proposed an improved Genetic
Algorithm (IGA), which solves the problems of slow convergence and unsmooth trajectories
by introducing techniques such as direction-guided population initialization, noncommon
point crossover, and range mutation. However, the GA algorithm still tends to fall into
local optima during path planning. The Learning and Median-Based Spider-Wasp Opti-
mizer (LMBSWO) [17] is an improved metaheuristic algorithm that combines the mecha-
nisms of the Spider-Wasp Optimization algorithm with learning strategies, enhancing both
global search and local optimization capabilities. It generates shorter and smoother paths,
demonstrating superior accuracy and smoothness. PSO [18] performs well in trajectory
optimization, but in high-dimensional optimization problems, the particle update strategy
can lead to path discontinuities, affecting trajectory smoothness.

2.3. Reinforcement Learning Path Optimization Method

Compared to traditional metaheuristic algorithms, such as Genetic Algorithm (GA)
and Particle Swarm Optimization (PSO), reinforcement learning (RL) algorithms have
been widely applied to path planning and trajectory optimization problems due to their
independence from pre-established models and their ability to adaptively handle complex
and dynamic environments. Unlike GA and PSO, which tend to fall into local optima and
exhibit slow convergence, RL algorithms possess global optimization capabilities, enabling
them to find better solutions in high-dimensional spaces and under complex constraints.
Therefore, applying reinforcement learning to surface printing path planning can better
address the optimization challenges of complex curved paths and provide more efficient
and precise solutions than traditional algorithms.

Several researchers have analyzed reinforcement-learning-based path planning.
Prianto proposed a path planning method based on the SAC algorithm [19], which im-
proves path smoothness by optimizing the Q-value function through maximum entropy
reinforcement learning, enhancing both path stability and efficiency. The authors in Ref. [20]
introduced an improved Soft Actor–Critic (SAC) algorithm, which optimizes the explo-
ration capability of path planning by incorporating a maximum entropy framework. This
significantly improves the convergence speed and learning efficiency of robot path planning
and effectively generates the optimal path.

However, in practical applications, reinforcement learning algorithms often face the
challenge of convergence difficulties during the training process. The main reasons for
this include sparse rewards, high data dimensionality, and the uncertainty of dynamic
environments. To address these issues, some studies [21] have designed multi-objective

Mathematics 2025, 13, 648 5 of 31

reward functions that include path length penalties, dynamic obstacle avoidance, and goal-
reaching rewards. Additionally, trajectory initialization strategies and hybrid training
mechanisms have been introduced to accelerate policy convergence. Furthermore, tar-
geted improvements [22] have been made to the deep reinforcement learning algorithm
by incorporating methods such as hybrid action space design, the introduction of LSTM,
and dynamic reward function optimization, which enhance data collection efficiency and
accelerate training convergence. The authors in Ref. [23] proposed a reinforcement learning
algorithm based on Double Deep Q-Networks (DDQN) and optimized the reward structure
with an intrinsic reward mechanism. By incorporating time-series feature extraction net-
works (such as TimesNet) and a dual reward mechanism, the policy efficiency is improved,
and overestimation bias is reduced.

Although there has been some progress in surface path generation and path opti-
mization for UV printing, an effective solution that simultaneously ensures both path
accuracy and smoothness is still lacking. In path optimization, traditional optimization
algorithms, such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), often
fall into local optima and have weak iteration capabilities, which limits their application
in complex path planning tasks. While Reinforcement Learning (RL) algorithms possess
global optimality and robustness in complex environments, they often face convergence
difficulties during training. Therefore, there is a lack of an optimization framework that
can guarantee both surface path accuracy and smoothness, while also accelerating the
convergence of RL training. To address this, this paper proposes a surface path generation
method based on CNC path transformation and introduces the Generative Adversarial
Imitation Learning—Soft Actor–Critic (GAIL-SAC) framework. This method enhances the
training efficiency of reinforcement learning while optimizing the smoothness and accuracy
of robot surface UV printing paths, providing a more optimal solution for UV printing
robot surface path planning.

3. Surface Path Planning Method for Spray Printing
3.1. Generate Main Path

In current research, the primary path generation methods mostly use point cloud data
slicing based on CAD models [24]. However, this approach is computationally complex
and time-consuming. To generate the primary spray printing path more efficiently, this
paper adopts a CNC-based path generation method. The principle of this method leverages
the similarity between the five-axis CNC fine machining process and the six-axis robotic
spray printing process [25]. Using five-axis CNC machining software, such as Siemens
NX 1899(UG), a precise machining tool path is first designed. This tool path is then
exported as CNC data and subsequently converted into a surface spray printing path for
the six-axis robot.

As shown in Figure 1, the five-axis CNC fine machining process establishes a work-
piece coordinate system {WCS}, where the origin is located at the center of the bottom of the
workpiece. Using the right-hand rule, a local tool coordinate system {LCS} is established
based on three key directions: feed direction I, surface normal direction N, and cross-
product direction J = I × N [26]. In the local coordinate system {LCS} of the five-axis
machine tool, the tool direction Tw(B, C) is determined by the rotational axes B and C of
the five-axis machine. The tool trajectory Lc consists of a sequence of tool positions and
orientations at each point. Therefore, Lc is defined by Equation (1):

Lc = {PT1
1 , PT2

2 , . . . , PTk−1
k−1 , PTk

k } (1)

Mathematics 2025, 13, 648 6 of 31

where PTk
k represents the k-th point of the tool axis path LC and Tk represents the tool matrix

at the k-th point.

N

J

I
 𝑷𝒊

𝑻𝒊 = (𝐱𝒊, 𝐲𝒊, 𝐳𝒊,𝐁𝒊,𝐂𝒊)

Tool direction
Tool path points

{LCS}

{WCS} X

Y

Z

Figure 1. Five-axis machining process.

To describe the tool path as the robotic spray head path, the i-th point of the tool path
LC, denoted as PTi

i , is described by Equation (2):

PTi
i = (xi, yi, zi, Bi, Ci) (2)

where xi, yi, and zi represent the coordinates of the x-axis, y-axis, and z-axis, respectively,
in the {WCS} coordinate system and Bi and Ci denote the rotation angles of the B and C
axes in the tool coordinate system, respectively [27]. According to the principles of rigid
body rotation in space, the B axis corresponds to the rotational mode of the variable rotation
angle in robotic kinematics, whereas the C axis corresponds to the rotational mode of the
fixed rotation angle in robotic kinematics [28]. Therefore, the conversion from the five-axis
tool path to the six-axis robotic path can be achieved. This paper provides the following
conversion method:

Ttool,i =

1 0 0 xi

0 1 0 yi

0 0 1 zi

0 0 0 1

 (3)

TBC,i = Rz(Ci) · Ttool,i · Ry(Bi) (4)

TC′ ,i = TBC,i · Ry(π) (5)

where the matrix Ttool,i represents the position of the current tool axis, which includes
only the Cartesian coordinates xi, yi, zi and does not contain the tool axis orientation,
TBC,i represents the 4 × 4 matrix after applying rotations by angles Ci and Bi, Ry(π) is
a rotation matrix, and TC′ ,i represents the matrix obtained by rotating TBC,i around the
Y-axis of the {LCS} coordinate system by an angle of π. After the transformations from
Equations (3)–(5), the working coordinate system {LCS} can be considered as representing
the robot’s end-effector {TCP} coordinate system.

The five-axis CNC machine tool has five degrees of freedom, namely xi,yi,zi directions
and Bi,Ci axes, whereas the six-axis robot has six degrees of freedom: xi,yi,zi,φi, βi and Φi.
The main difference between them lies in the sixth degree of freedom. Assuming that the
Cartesian coordinate sequence of the spray printing path is Lc = {CT1

1 , CT2
2 , . . . , CTk−1

k−1 , CTk
k },

where the i-th point is represented as PTi
i = (xi, yi, zi, Bi, Ci), the spray head is required

to maintain a stable posture during the printing process to ensure that the {TCP} remains
perpendicular to the printed component at all times [29]. The Z-axis direction of the {TCP}

Mathematics 2025, 13, 648 7 of 31

is defined to be opposite to the surface normal vector direction, as shown in Figure 2.
The description of the spray head {TCP} can be expressed as:

TTCP,i =

xi−→

Ii
−→
Ji
−→
Ni yi

zi

0 0 0 1

 (6)

where i = 1, 2, 3, . . . , n. xi,yi,zi represent the x, y, and z coordinates of the i-th trajectory
point Pi in the tool path Lc, the vector

−→
Ni = (nxi , nyi , nzi)

T indicates the rotation information
of the Z-axis of the {TCP}, with its values derived from the corresponding entries in the TC′ ,i

matrix, and the vector
−→
Ii represents the rotation information of the TCP’s X-axis and can be

defined as the forward direction of the tool path. This direction can be calculated using the
difference between the subsequent point

−→
Ii+1−

−→
Ii = (xi+1− xi, yi+1− yi, zi+1− zi)

T . Since
the Z-axis and X-axis information of the {TCP} coordinate system are already determined,
the positive direction of the Y-axis can be established through the ZX plane formed by
the Z-axis and X-axis, yielding

−→
J i = (oxi, oyi, ozi)

T , where i = 1, 2, . . . , n. Thus, the matrix
TTCP,i can represent the Cartesian space coordinate information of the i-th point along the
current tool path L.

{TCP}

Z

Y
X

Robot UV

printing path

UV nozzle

Figure 2. TCP diagram of a UV printing robot.

3.2. Establishment of Robot Motion Accuracy Model

In current research, the Denavit–Hartenberg (DH) parameters are commonly used
to describe robotic models [30]. The transformation matrix between two links can be
expressed as:

i−1
i T =

cos θi − sin θicosαi sin θisinαi aicosθi

sin θi cos θicosαi − cos θisinαi aisinθi

0 sin αi cos αi di

0 0 0 1

 (7)

where i−1
i T represents the transformation matrix from the i− 1-th coordinate system to

the i-th coordinate system, θi denotes the rotation angle of joint i, αi represents the torsion
angle of joint i, indicating the rotation from the zi−1-axis to the zi-axis, ai is the link length
of joint i, representing the displacement along the xi-axis, and di denotes the displacement

Mathematics 2025, 13, 648 8 of 31

of joint i, representing the displacement along the zi-axis. The relationship between the
robot end-effector and the robot base can then be defined as:

0
6T = 0

1T · 12T · 23T · 34T · 45T · 56T =

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

. (8)

where [nx, ny, nz]T represents the rotational components in the x-axis direction of the robot
end-effector coordinate system, [ox, oy, oz]T represents the rotational components in the
y-axis direction of the robot end-effector coordinate system, [ax, ay, az]T represents the rota-
tional components in the z-axis direction of the robot end-effector coordinate system, and
[px, py, pz]T represents the displacement vector of the robot end-effector coordinate system.

In joint space, let the robot move by ∆θ at a certain moment; at this time, the position
of the i-th joint of the robot can be expressed as:

θi = θi
t−1 + ∆θi

t (9)

In Cartesian space, the end-effector posture of the robot after movement can be
obtained using Equations (8) and (9).

In current research, path optimization for surface spray printing robots mainly focuses
on selecting spray guns and spray heads, as well as optimizing spraying uniformity [31].
However, there is limited research on path accuracy, particularly for high-precision specific
spray heads, such as UV spray printing heads, which have stricter requirements for path
accuracy and smoothness. This subsection primarily explores the methods for establishing
a robotic motion accuracy model and how to ensure smoothness in the robot’s movement.

First, by introducing the path accuracy AC, the motion trajectory accuracy of the
robot during the spray printing process is evaluated. AC can be modeled as shown in
Equation (10):

AC = EP + Ee + C (10)

where Ep represents the positional error between the robot end-effector and the standard
path at time t. It can be expressed by Equation (11):

EP =
∥∥(Pp,t, Pnear,t

)∥∥ (11)

where || · || represents the Euclidean distance, Pp,t = (x, y, z) denotes the Cartesian position
coordinates of the robot’s end-effector {TCP}, and Pnear = (xnear, ynear, znear) represents a
point in the robot’s work coordinate system that is located near the standard path of the
robot’s end-effector.

In Cartesian space [32], a six-degree-of-freedom robot is typically represented using
Euler angles φ, θ and ϕ. In this study, their respective errors are defined as φerror, θerror, and
ϕerror, representing the deviation between the actual and desired angle values. Ee denotes
the orientation error of the robot end-effector relative to the corresponding point on the
standard path at time t, and can be described by Equation (12):

Ee =

√
ϕ2

error + θ2
error + ψ2

error
3

(12)

C represents the completion level of the spray printing task, which can be expressed
by Equation (13):

C =
len(Lt)

len(Lm)
(13)

Mathematics 2025, 13, 648 9 of 31

where len(Lt) represents the path length traversed by the spray head of the robot end-
effector at the current time t and len(Lm) represents the total length of the reference path.
These are calculated by Equations (14) and (15), respectively:

len(Lt) = Σ||(Pp,1, Pp,2, . . . , Pp,k)|| (14)

len(Lm) = Σ||(Pm,1, Pm,2, . . . , Pm,n)|| (15)

where Pp,k represents the position of the robot end-effector spray head at time step k
and Pm,n represents the position of the n-th point on the reference primary path.

In summary, the path accuracy of the m-th path of L at time t is formulated by
Equation (16):

ACt =
∥∥(Pp,t, Pnear,t)

∥∥+√
ϕ2

error + θ2
error + ψ2

error
3

+
len(Lt)

len(Lm)
(16)

3.3. Markov Decision Process (MDP)

The Markov Decision Process (MDP) is a core concept in reinforcement learning,
providing a mathematical model for solving decision-making problems that involve ran-
domness and temporal dependencies. In an MDP, the agent learns through interactions
with the environment, which consist of states, actions, and rewards. The goal is to select
the appropriate policy to maximize long-term rewards. An MDP is typically represented as
a five-tuple: M = {S, A, P, R, γ}, where:

• S (State set): Represents all possible states the agent can be in. For instance, in path
planning, the state could include the robot’s position, orientation, and other rele-
vant information at a given time. Each state encapsulates the full information about
the environment.

• A (Action set): Represents the set of actions the agent can take in each state. The action
set can be discrete (e.g., move up, move down, move left, move right) or contin-
uous (e.g., adjusting the robot’s speed or direction). Each action corresponds to a
specific behavior.

• P(s’ | s, a) (State transition function): Describes the probability of transitioning from
state s to state s′ after performing action a. It reflects the dynamic characteristics of the
environment. For example, in path planning, the robot may fail to reach the desired
position due to external disturbances.

• R(s, a) (Reward function): Represents the immediate reward received after taking
action a in state s. The reward is a scalar value used to measure the quality of the
outcome of an action. In path planning problems, rewards can be related to factors
such as path length, smoothness, and obstacle avoidance, with the goal of maximizing
the cumulative reward.

• γ (Discount factor): Used to balance the trade-off between current rewards and future
rewards, with values typically in the range [0, 1]. When γ is close to 1, the agent
focuses more on long-term returns; when γ is smaller (closer to 0), the agent focuses
more on short-term rewards.

In an MDP, the agent’s goal is to choose a policy π that maximizes its long-term
cumulative reward. The policy π is a mapping from states to actions, defining which action
should be taken in each given state.

One important objective in MDPs is to find an optimal policy π∗, such that starting
from any state, the agent maximizes its cumulative reward. The cumulative reward is
typically represented as an expected value, defined as:

Mathematics 2025, 13, 648 10 of 31

Vπ(s) = E
[

∞

∑
t=0

γtR(st, at) | s0 = s

]
where Vπ(s) represents the expected return starting from state s under policy π and γt is
the discount factor for future rewards.

For the state–action value function Qπ(s, a), it represents the expected return obtained
by taking action a in state s, and following policy π thereafter:

Qπ(s, a) = E
[

∞

∑
t=0

γtR(st, at) | s0 = s, a0 = a

]
To obtain the optimal policy, the agent iteratively updates V(s) and Q(s, a), using the

Bellman equation for dynamic programming. The optimal state-value function and the
optimal action-value function satisfy the following Bellman equations:

V∗(s) = max
a

Q∗(s, a)

Q∗(s, a) = R(s, a) + γ ∑
s′

P(s′ | s, a)max
a′

Q∗(s′, a′)

The agent can find the optimal policy π∗(s) = arg maxa Q∗(s, a) that maximizes the
return by solving these equations.

3.4. Reinforcement Learning SAC Algorithm

Soft Actor–Critic (SAC) [33] is an off-policy reinforcement learning algorithm based on
maximum entropy, aimed at optimizing the agent’s policy to maximize long-term returns
while ensuring sufficient exploration by increasing the entropy of the policy, thereby avoid-
ing premature convergence to local optima. SAC has shown excellent performance in many
reinforcement learning tasks, particularly those involving high-dimensional continuous
action spaces, such as robot control and path planning. The core idea of SAC is to introduce
a maximum entropy objective, which optimizes not only the reward function but also the
entropy of the policy, encouraging the agent to maintain adequate exploration. The Markov
Decision Process (MDP) provides a structured framework for reinforcement learning, de-
scribing how an agent can affect the state by selecting actions in the environment and
receive rewards. MDP is composed of the following five elements: MDP = {S, A, P, R, γ}.

In SAC, the Q-value network is used to estimate the long-term return for a given
state–action pair. SAC utilizes the state transition function and reward function from the
MDP framework, combined with the idea of maximum entropy, to optimize the agent’s
behavior policy, maximizing the return while increasing exploration.

The network structure of the SAC algorithm mainly consists of two Q-value networks
(Critic), a policy network (Actor), and a target Q-value network (Target Q-network) [34].
Each network in SAC plays the following role:

• Q-Network(Critic): Used to evaluate the return of each state–action pair. SAC uses a
dual Q-network (Q1 and Q2), where the two Q-value networks independently estimate
the return for the same state–action pair. By using dual Q-networks, SAC reduces the
problem of overestimation of Q-values, enhancing the stability of the learning process.
The Q-value network update formula is given by Equation (17):

LQ(θi) = E(s,a,r,s′)∼D

[(
Qθi (s, a)−

(
r + γ ·minQθj(s

′, a′)− αlogπϕ(a′|s′)
)))

(17)

Mathematics 2025, 13, 648 11 of 31

where Qθi (s, a) represents the return estimate for taking action a in state s, γ is the
discount factor, which determines the importance given to future rewards, α is the
temperature parameter, which controls the balance between the reward r and the
entropy of the policy, πθ(a′|s′) is the action selection probability output by the policy
network for action a′ in state s′, and D represents the replay buffer, which stores
the experience sequences (s, a, r, s′) obtained by the actor during its interaction with
the environment.

• Target Q-Network: To stabilize the training of the Q-network, SAC introduces a target
Q-network. The target Q-network is used to compute the target Qθ̄i ,i=1,2, preventing
overestimation of the Q-values. The target Q-value network is updated through soft
updates, as follows:

θ̄ = τθ + (1− τ)θ̄ (18)

where τ is the soft update ratio, which controls the update rate of the target Q-value
network, typically set to a small value (e.g., 0.005).

• Policy Network (Actor): The purpose of the policy network is to generate the prob-
ability distribution of actions given a state. In SAC, the policy is represented by a
Gaussian distribution, which outputs the mean and standard deviation of the actions.
The goal of the policy network is to maximize the return while maintaining exploration.
The update objective of the policy network is as follows:

LSAC = Jπ(ϕ) = Est∼D
[
Qθ(st, at)− αlogπϕ(at|st)

]
(19)

where Qθ(st, at) represents the return estimate from the Q-network and log πϕ(at|st)

represents the entropy term of the policy, indicating the randomness in choosing action
at in state st.

• Temperature Parameter (α): The temperature parameter controls the balance between
the entropy of the policy and the return. A higher temperature encourages more
exploration, while a lower temperature strengthens the maximization of the return.
The update formula for the temperature parameter is as follows:

α =
1
N

N

∑
t=0

[log πθ(at|st)− H] (20)

where H is the target entropy and N is the number of samples. The dynamic ad-
justment of the temperature helps SAC achieve a balance between exploration and
exploitation.

3.5. Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning (GAIL) combines Generative Adversarial
Networks (GAN) with Inverse Reinforcement Learning (IRL) in an imitation learning frame-
work, extending IRL within the structural framework of GANs. This approach improves
upon the limitations of IRL in terms of poor representation ability and low computational
efficiency. Goodfellow et al. [35] proposed a new framework for evaluating generative
models through an adversarial process: GAN. GAN simultaneously trains two models: a
generator G, which captures the data distribution, and a discriminator D, which estimates
whether a sample comes from the expert data or from the generator [36]. The expert data are
represented as DE = {τ1, τ2, . . . , τn}, which denotes the expert demonstration trajectories
used for training the generative adversarial model. To enable the generator to capture the
distribution Pdata of data x, the generator constructs a mapping function G(z; θ) internally,
which maps a noise distribution Pz(z) to the data space. Here, θ represents the parameters
of the generator. The discriminator D(x; $) is used to determine the probability that x comes

Mathematics 2025, 13, 648 12 of 31

from expert data rather than from the generator Pdata, where ϖ represents the parameters
of the discriminator. GAN simultaneously trains the generator and discriminator, adjusting
the parameters of the generator to minimize log(Dϖ(x)). The training objective function is
given by:

min max V(D, G) = Ex∼Pdata

[
log

(
Dϖ(x)

)]
+ Ez∼Pz(z)

[
log

(
1− Dϖ(Gθ)

)]
(21)

where x represents real data and z represents the noise variable.
The loss function of the discriminator D can be defined as:

LD = −Ex∼Pdata [log (Dϖ(x))]−Ez∼Pz(z)[log (1− Dϖ(Gθ(z)))] (22)

The GAIL algorithm applies the concept of GAN to imitation learning [37]. The model
primarily consists of two components: the generator G and the discriminator D. The gen-
erator is responsible for generating a random policy, while the discriminator is used to
determine whether the input trajectory sequence comes from expert demonstrations or
the generator [38]. The core idea of GAIL is to learn an optimal policy by minimizing
the distance between the occupancy measure ρπ of the stochastic policy and the occu-
pancy measure ρπ∗ of the expert policy. The generator produces a trajectory sequence τi

to accomplish the task based on the current state, which is then fed into the discriminator
along with an expert trajectory τ∗ sampled from expert demonstrations. The discriminator
computes the distance between the state–action pairs (s, a) from the generated trajectory
and the state–action pairs (s∗, a∗) from the expert trajectory, and then feeds back the result
to the generator, encouraging it to generate better policies. This process is specifically
implemented through the adversarial process described by Equation (23):

LGAIL = min max Eπθ
[log Dϖ(s, a)] + Eπ∗ [log(1− Dϖ(s, a))] (23)

where π∗ represents the expert policy, πθ represents a stochastic policy, θ is the parameter
of the generator, and ϖ is the parameter of the discriminator. Based on the results from the
discriminator, θ is continuously updated, optimizing the stochastic policy πθ .

4. Framework for Path Planning of Complex Surface Spray Printing
This section proposes a GAIL-SAC-based framework for complex surface path plan-

ning, as shown in Figure 3.
Figure 3 illustrates how GAIL-SAC addresses the MDP problem. This process consists

of three stages:

• Stage 1: The primary path is generated, which is designed using multi-axis CNC
machining software such as UG. The data are exported as CNC data, and a conversion
algorithm is developed to transform the CNC tool path data into a Cartesian path for
the robot.

• Stage 2: In this stage, robot motion planning is performed based on the primary path
generated in the first stage. The robot moves with different joint angles at different
positions to complete the path planning. This process is treated as an MDP problem,
which is solved using SAC.

• Stage 3: This stage utilizes the GAIL-SAC framework to improve the convergence
speed and trajectory accuracy of reinforcement learning training, and its algorithmic
process is shown in Table 1.

Mathematics 2025, 13, 648 13 of 31

Path

generation
Training task on SAC GAIL

Environment

(st,at,rt,st+1)

Actor
Policy Network

𝛉𝟏 𝛉𝟐

𝜽 𝟏

Q-networks
Critic

Expert

Data
Replay

Buffer

𝝅𝝓 𝒂𝒕 𝒔𝒕

Discriminatorω

Expert

 Data

Generate

Data

Distinguish

𝐋𝑺𝑨𝑪

𝐋𝑮𝑨𝑰𝑳

rt st+1

Multi axis knife path

Robot Path 𝜽 𝟐
Eq(6)

Main Path
Eq(25)

S=(s1,s2, ,s256)

A=(a1,a2, ,a256)

S=(s1,s2, ,s256)

 𝒔𝟎,𝒂𝟎, 𝒔𝟏,𝒂𝟏,… , 𝒔𝟐𝟓𝟔,𝒂𝟐𝟓𝟔 𝒔𝟎
𝑬,𝒂𝟎

𝑬, 𝒔𝟏
𝑬,𝒂𝟏

𝑬,… , 𝒔𝟐𝟓𝟔
𝑬 ,𝒂𝟐𝟓𝟔

𝑬

𝑸𝜽 𝟏
 𝒔𝒕+𝟏,𝒂𝒕+𝟏

Soft Update

Target Q-networks

𝑸𝜽 𝟐
 𝒔𝒕+𝟏,𝒂𝒕+𝟏

Eq(23)

Eq(19)

Eq(26)

Eq(18)

Figure 3. A Complex surface path planning framework based on GAIL-SAC.

Table 1. The GAIL-SAC algorithm process proposed in this article.

GAIL-SAC Algorithm Steps

1: Input:θ1, θ2, ϕ Initialize neural network parameters
2: θ̄1 ← θ1, θ̄2 ← θ2 Initialize target Q-network parameters
3: D ← ∅ Initialize reply buffer D
4: DE = {τ1, τ2, . . . , τn} Initialize Expert buffer DE

5: for each iteration do
6: for each environment do

7: at ∼ πϕ(at | st)
The action selected through strategy πϕ(at | st)
based on the current state

8: st+1 ∼ p(st+1, st, at)
The robot reaches the next state st+1
to receive an immediate reward r

9: D ← D ∪ {(st, at, rt, st+1)} Store (st, at, rt, st+1) in replay buffer D
10: end for
11: for each gradient step do
12: θi ← θi − λQ∇̂θi JQ(θi) f or i ∈ {1, 2} Update Q-network parameter θi
13: ϖ ← ϖ− η∇ϖ LD Update discriminator D-network parameters ϖ

14: Equation (26) Determine the update formula for
the Actor- network

15: if T > NGAIL
16: ϕ← ϕ + η

(
(1−ω)∇ϕLSAC + ω∇ϖ LGAIL

)
Update Actor-network parameters ϕ

17: else
18: ϕ← ϕ− λπ∇̂ϕ Jπ(ϕ) Update Actor-network parameters ϕ

19: α← α− λ∇̂α J(α) Update temperature parameter α
20: θ̄i = τθi + (1− τ)θ̄i f or i ∈ {1, 2} Update target Q-network parameterθ̄i
21: end for
22: end for

4.1. Spray Printing Trajectory Generation Scheme

In this stage, according to the requirements of spray printing, a multi-axis fine machin-
ing tool path trajectory Lc = {PT1

1 , PT2
2 , . . . , PTk−1

k−1 , PTk
k } is designed using CNC machining

software. The path trajectory is then converted into the ideal primary spray printing path
L for the robot using Equation (6) from Section 3.1. The robot takes different actions at
different positions, which results in different motion paths, each with varying accuracy.
This can be treated as an MDP problem, which will be modeled in the next subsection.

Mathematics 2025, 13, 648 14 of 31

4.2. Spray Printing Trajectory Planning Scheme

In the second phase, based on the robot path generated in the first phase, a smooth
trajectory is planned in the robot’s joint space using a deep reinforcement learning algo-
rithm. Simultaneously, the established robot motion accuracy model is applied to constrain
the trajectory, ensuring both path accuracy and smoothness in the Cartesian space. To ac-
complish this task, the path planning problem of the printing robot is formulated as a
Markov Decision Process (MDP), which involves the components (S, A, P, R). Given the
MDP characteristics, this section introduces the Soft Actor–Critic (SAC) reinforcement
learning algorithm to specifically address the problem.

Training Environment: In Section 3.2, Equation (8) is used to perform DH modeling of
the robot, establishing the robot motion accuracy model. The robot is defined as the agent,
and Equation (16) is used to help the agent learn the optimal policy for the MDP.

MDP Formulation: When the robot takes n actions ∆θ1,2,...,6 in joint space, a series of
trajectory points L = (P1, P2, P3, P4, . . . Pn) is generated. This process is described as an
MDP problem, which is defined as follows:

State Space: st represents the state of the agent at time t, and therefore, it
needs to include the position and orientation information of the robot end-effector
spray head. That is, st = (Pt, Dt, AHt), where Pt represents the pose and orienta-
tion of the robot end-effector spray head at time t, which can be expressed as Pt =

(xt, yt, zt, φt, βt, Φt). Dt represents the point on the ideal primary path closest to the
robot end-effector at time t, and is defined as Dt =

(
xD

t, yD
t, zD

t, φD
t, βD

t, ΦD
t

)
. Fi-

nally, AHt =
(

xAH
t, yAH

t, zAH
t, φAH

t, βAH
t, ΦAH

t

)
represents the point reached by the

robot after motion.
Action Space: at = (∆θ1, ∆θ2, ∆θ3, . . . , ∆θn) represents the action of the robot at time

t, where ∆θi denotes the angular increment of the i-th joint of the spray printing robot.
The actions are continuous and bounded. The reward function reflects the expected reward
for performing action at in state st, and can be expressed as:

R(st, at) = Eπ [Rt+1|st = s, at = a] (24)

Reward Function: Due to the large state space of the system, it is extremely challenging
to set rewards for all states, which leads to the problem of sparse rewards. This can result in
a slow learning process or even make it impossible to learn effectively. To enable the robotic
arm to quickly learn the optimal task path, a specially designed reward function allows
the robotic arm to mimic the reference path, thereby enhancing the learning speed of path
planning and increasing the success rate of task execution. Based on the task requirements,
rewards and penalties can be categorized into two scenarios:

(a) The robotic arm receives a reward when its end effector moves in the direction
of the reference path; conversely, a negative reward is applied when it moves in the
opposite direction.

(b) The closer the end effector is to the reference path, the greater the reward received;
if the distance is too great, a penalty is incurred, with the penalty increasing as the distance
increases. Additionally, the accuracy and smoothness of the planned path must also be
considered. Therefore, the reward after executing action at is designed as follows:

r(st, at) = − log((∂EPt + εEet + ηCt) + 1) (25)

The design of the logarithmic function compresses the reward data into a certain
range, preventing excessively large reward differences caused by variations in actions.
In reinforcement learning, this reward mechanism can guide the robotic arm to quickly

Mathematics 2025, 13, 648 15 of 31

approach the main printing path, facilitating faster policy convergence and improving
learning efficiency.

SAC Algorithm: SAC is a model-free reinforcement learning framework based on
the Actor–Critic architecture, which incorporates the principle of maximum entropy. This
allows it to achieve high returns while maintaining strong exploratory capabilities and
high robustness. By combining the reward algorithm with the SAC reinforcement learning
method, the reward function guides the agent in learning how to select optimal actions,
while SAC trains the agent to choose suitable actions based on the defined reward function
and state. In summary, SAC addresses the MDP by maximizing the expected reward and
entropy within the Actor–Critic framework.

4.3. Reinforcement Learning GAIL-SAC

In recent years, Deep Reinforcement Learning (DRL) has made significant progress
in solving complex problems. However, in high-dimensional environments, DRL often
faces challenges such as large state spaces, sparse rewards, and high data dimensionality,
leading to difficulties in convergence and stability. To address these issues, researchers
have explored reward function design to provide finer-grained guidance, and experience-
based methods like Hindsight Experience Replay (HER) and Prioritized Experience Replay
(PER) to enhance training efficiency. While effective in low-dimensional settings, these
approaches often underperform in high-dimensional environments.

Imitation Learning (IL) offers a promising solution by guiding reinforcement learning
with expert trajectories or efficient data to provide prior knowledge. Combining IL with
DRL can reduce exploration difficulty, accelerate convergence, and improve performance
in high-dimensional environments. This hybrid approach represents a viable direction for
enhancing the efficiency and stability of reinforcement learning algorithms.

The GAIL algorithm is inspired by maximum entropy IRL and generative adversarial
networks (GANs). The objective of the GAIL algorithm can be understood as matching
the current policy distribution with that of an expert policy, such that the discriminator
cannot distinguish between the current and expert policies. However, since the GAIL
algorithm relies on expert data to generate policies, if the strategies within this dataset are
suboptimal or unable to achieve the goals, the performance of the generated policies cannot
be guaranteed. Therefore, this paper proposes the GAIL-SAC algorithm, which combines
the exploratory advantages of reinforcement learning with the strategy constraints inherent
in imitation learning.

The framework of the GAIL-SAC algorithm is illustrated in Figure 4. As shown in
Figure 4, the model consists of a value network, a policy network, and a discriminator
network, with only the policy network retained during deployment. The experience pool
comprises an expert experience pool and a trajectory experience pool, with trajectory data
in the expert pool represented as (sE

0 , aE
0 , . . . , sE

t , aE
t ,). The trajectory experience pool stores

path data generated through the interaction of the current policy with the environment,
represented as (st, at, st+1, rt). The training loss function L(θ) for the policy network is
composed of two components: LSAC(θ) and LGAIL(θ). Therefore, the focus of the GAIL-
SAC algorithm is on how to adjust the weight parameter ω during agent training to
modulate the influences of LSAC(θ) and LGAIL(θ) on the policy network, thereby stabilizing
the training of the optimal spraying strategy. The weight parameter ω follows a nonlinear
decay strategy, transitioning from imitation learning dominance in the early training phases
to reinforcement learning dominance in the later phases, which can be described as follows:

L(θ) =

{
(1−ω)LSAC(θ) + ωLGAIL(θ) , T ≤ NGAIL

LSAC(θ) , T > NGAIL
(26)

Mathematics 2025, 13, 648 16 of 31

ω =
1

1 + exp(0.05(i− NGAIL/2))
(27)

where T represents the current training episode and NGAIL denotes the number of episodes
participating in the training of the loss function LGAIL(θ) constructed based on imita-
tion learning.

𝜽 𝟏 𝜽 𝟐

Critic

Q-networks

𝑸𝜽 𝟏
 𝒔𝒕+𝟏,𝒂𝒕+𝟏 𝑸𝜽 𝟐

 𝒔𝒕+𝟏,𝒂𝒕+𝟏

Soft Update

Target Q-networks
Policy

 Evaluation

Input Hidden Output

Layer Layer Layer

Actor
Policy Network 𝝅𝜙 𝒂𝒕 𝒔𝒕

Agent Environment
r

MDPs

𝒔𝒕 ∈ 𝑺

𝒂𝒕 ∈ 𝑨

Expert Data

Generate Data

𝑫𝑮 → 𝒔,𝒂

𝑫𝑬 → 𝒔,𝒂
 𝒔𝟎

𝑬,𝒂𝟎
𝑬, 𝒔𝟏

𝑬,𝒂𝟏
𝑬,… , 𝒔𝒕

𝑬

𝑫 𝒔,𝒂

Discriminator
Discriminator Network

Store Transition
 𝒔𝒕,𝒂𝒕, 𝒓𝒕, 𝒔𝒕+𝟏

Mini-batch

ω

𝐋 𝜽

𝐋𝑺𝑨𝑪 𝐋𝑮𝑨𝑰𝑳

Policy

 Improvement

SAC Internal Network Structure

Network Internal

Update Direction

Neural Network

Date Flow

GAIL Network Structure

𝛉𝟏 𝛉𝟐

Input Hidden Output

Layer Layer Layer

Input Hidden Output

Layer Layer Layer

Input Hidden Output

Layer Layer Layer

Input Hidden Output

Layer Layer Layer

Input Hidden Output

Layer Layer Layer

Replay buffer

Figure 4. GAIL-SAC network algorithm framework.

5. Simulation and Experiments
5.1. Experimental Environment Configuration

All experiments in this study were conducted on a CPU environment running Win-
dows 11, with PyTorch version 1.3.1 and an 8-core CPU. The models in this chapter used the
Adam optimizer to update the network parameters with an initial learning rate of 0.0004.
In the experiments, the size of the experience replay buffer was set to 256, and the learning
rates for both the Actor and Critic networks in the GAIL-SAC algorithm were 0.0004. This
section validates the proposed method’s effectiveness in surface printing path planning
through simulation experiments. The robot used in the experiments is the KUKA KR210,
with a payload capacity of 20 kg and a maximum working radius of 2100 mm.

The UV nozzle used in this study is the Toshiba F3, manufactured by Toshiba Corpo-
ration in Tokyo, Japan. It is a piezoelectric on-demand printing head with a print width
of 53.95 mm and a physical resolution of 600 dpi. The simulation environment used is
the PyBullet robot simulator. In Section 5.2, the convergence of the GAIL-SAC framework
is verified by designing a reacher experiment in a simple reacher environment, and the
reward curves of the SAC algorithm and other mainstream improvement methods are
compared. In Section 5.3, a simulation experiment of the printing robot trajectory planning
is designed to verify the effectiveness of the GAIL-SAC reinforcement learning framework,
comparing the performance of the proposed algorithm with traditional algorithms in terms
of convergence speed, trajectory accuracy, and trajectory smoothness.

5.2. Main Path Generation Experiment

To validate the effectiveness of the main path generation method proposed in
Section 3.1, this subsection presents experimental verification. Initially, the main path

Mathematics 2025, 13, 648 17 of 31

was designed and generated using the Computer-Aided Manufacturing (CAM) module in
UG software (Siemens NX 1899), with the main parameters summarized in Table 2. This
process simulates the operation of a UV nozzle, and the generated CNC data are illustrated
in Figure 5a. After applying the transformation outlined in this study, the results are shown
in Figure 5b. It is evident that the trajectory data of the robot align with the CNC machining
path, meeting the experimental expectations where the path points correspond with the
intended design.

Table 2. CNC machining parameter settings.

Parameters Setting Method

Processing method Variable profile milling
tool Spherical milling cutter
Knife axis vector Vertical to the processed component
guide Boundary curve
Path direction one-way
Machine tool type Five axis machine tool (BC axis)

(a) (b)

Figure 5. Main printing path data generation diagram. (a) The generated CNC data. (b) The robot
data obtained after conversion.

5.3. Convergence of GAIL-SAC

To validate the convergence of the proposed GAIL-SAC framework, this section
designs and sets up a simulation experiment for the Reacher task using PyBullet. PyBullet
is a widely used robotics simulator that facilitates the simulation of robotic arm motion
and collision detection. In the simulation, we employ the KUKA KR210 robotic arm with
initial joint angles set to [0,−90, 90,−90, 90, 0], enabling the arm to move from its initial
position to the target point. The goal of the simulation experiment is to move the robot’s
end-effector within a radius of 0.05 units from the target point and maintain this position
for a certain duration, which is considered a success.The detailed experimental procedure is
shown in Figure 6. The experiment compares the convergence of the GAIL-SAC algorithm
with that of the baseline SAC algorithm, as well as Behavioral Cloning (BC) and Hindsight
Experience Replay (HER). The algorithm is trained for 600 episodes, with each episode
consisting of 50 steps.

The rewards from the experiments are shown in Figure 7. The reward curve indicates
that the baseline SAC algorithm struggled in the reacher environment due to excessively
sparse rewards, resulting in insufficient trainable data and even convergence failures.
In contrast, the HER (Hindsight Experience Replay) algorithm performed well by effec-
tively addressing the issue of sparse rewards in the reacher environment. This study
employed the future strategy of HER, which involves randomly selecting st from the col-
lected episode sequences as the target and assigning a reward of 1. The good convergence
of the HER-SAC algorithm highlights the importance of dense rewards for algorithm con-
vergence. Additionally, the BC-SAC algorithm showed inferior performance. Notably,
during the experimental process, the BC-SAC reward curve initially did not converge; it

Mathematics 2025, 13, 648 18 of 31

only achieved the results shown in Figure 7 after data processing through the HER algo-
rithm. In comparison, the proposed GAIL-SAC algorithm exhibited greater stability and
improved convergence, demonstrating that our enhanced approach significantly enhances
the agent’s ability to converge in sparse reward environments.

START

Initialize the PyBullet

simulation environment.

Initialize the robot's

posture.

Set the target point, with

step initialized to 0.

The Actor network drives

the robot's movement and

updates the network

parameters, incrementing

the step by 1.

The policy network

evaluates the action and

updates accordingly.

Has the robot's end-effector reached

within a target range of 0.05?

Reward=1
YES

NO

Reward=0

Step=50

END

NO

YES

Figure 6. Reacher experiment flowchart.

0 2 0 0 4 0 0 6 0 0

� � �

� � �

0

rew
ard

e p i s o d e

 G A I L - S A C
 S A C - B C
 S A C - H E R
 S A C

Figure 7. Reward curve in the reacher environment.

5.4. Printing Path Planning Experiment

This section focuses on validating the effectiveness of the proposed GAIL-SAC frame-
work in three key aspects: convergence, trajectory accuracy, and trajectory smoothness
within the printing environment simulation.

Mathematics 2025, 13, 648 19 of 31

The experimental process of this study is shown in Figure 8. The experiment primarily
focuses on planning a trajectory in joint space that ensures both smoothness in joint space

and accuracy in Cartesian space. The main path Lc = {P(T1)
1 , P(T2)

2 , . . . , P(Tk−1)
k−1 , P(Tk)

k }
designed in Section 2.1 is used as the reference path. Then, the Actor network outputs
different joint angle values based on the robot’s state, driving the robot’s motion. Next,
the reward function, defined in Equation (25) of Section 3.2, assigns a reward to the action.
The Critic and D networks evaluate the Actor network based on the reward value and
update the networks, guiding the Actor network to learn the optimal policy and plan the
optimal path. After training, the output path is compared with the reference standard
path, and the evaluation is conducted based on the Cartesian coordinates (xyz) and the
corresponding Euler angle information of each point.

START

Generate CNC data for the

main surface printing path

based on the CAD model.

Convert the CNC data into

robot paths as described in

Equation (6).

Initialize the simulation

environment.

Initialize the robot, with

step set to 0

The Actor network

outputs the joint angles

to drive the robot's

movement, incrementing

the step by 1.

The Critic network

evaluates the action.

Reward

function

Equation (25)

The D network

evaluates the action.

Dynamically adjust the

learning direction of

reinforcement learning as

described in Equation (26).

Update the Actor

network Equation (26).

Update the Critic network

 Equation (17).

Update the D

network

Equation (21).

Step=100

END

YES

NO

 Equation (19).

 Equation (23).

Figure 8. Spray printing experiment flowchart.

After training, the output path is compared with the reference standard path. The eval-
uation is conducted based on the Cartesian coordinates (xyz) and the corresponding Euler
angles of the points, ensuring a comprehensive assessment of the trajectory’s accuracy
and smoothness.

From the perspective of convergence, this simulation compared three different meth-
ods. The experimental results, shown in Figure 9, indicate that the previous SAC-HER
method struggled to converge under the mid to high-dimensional data of this experiment,
remaining ineffective even after 1000 training iterations. In contrast, the SAC algorithm,
which employed the designed reward function, achieved dense rewards and demonstrated
convergence. The BC algorithm, utilizing a fifth-degree polynomial as expert instances,
exhibited an upward trend after 1000 training iterations.

When comparing these algorithms, the proposed GAIL-SAC algorithm performed
optimally in high-dimensional data settings. Notably, while all the aforementioned al-
gorithms showed a steady increase in reward trends, indicating a convergence tendency,
experimental validation revealed that trajectory accuracy was poor when the reward was
less than −10. Only when the reward exceeded −10 did the trajectory accuracy begin to
improve. Table 3 presents the final converged reward of GAIL-SAC, confirming that it also
achieved the best trajectory accuracy in this experiment.

Mathematics 2025, 13, 648 20 of 31

Table 3. The final convergence reward value of the algorithm.

Algorithm Comparison Training Epochs Reward

SAC 3000 −10.12
BC 3000 −15.23
GAIL-SAC 3000 −6.72

� ��� ��� ��� ��� ����
�����

����

����

����

����

�
rew

ard

e p i s o d e

 S A C
 B C
 G A I L - S A C

Figure 9. Comparison of algorithm rewards for the printing environment.

To validate the superiority of the proposed algorithm in terms of trajectory accuracy
and smoothness, a comparative analysis was conducted between the proposed algorithm
and metaheuristic algorithms, such as Particle Swarm Optimization (PSO) [39] and Genetic
Algorithm (GA) [40]. In the design of the metaheuristic algorithms, the primary path
was first generated by solving the inverse kinematics based on the established robot DH
parameter model, resulting in a series of joint data. The path was then optimized in
the joint space using the metaheuristic algorithms, while constraints were applied in the
Cartesian space to ensure both the smoothness and accuracy of the robot’s path in Cartesian
space. Experimental results show that the comprehensive fitness functions of PSO and GA
effectively balance the path smoothness and accuracy. The fitness function is defined as the
weighted sum of the target deviations, as shown in the following form:

f (x) = w1Ecartesian + w2Ejoint-smooth + w3Ecartesian-smooth (28)

where Ecartesian represents the Cartesian space error, which is used to measure the deviation
of the optimized path from the reference path, including both positional and orientation
errors. It is defined as:

Ecartesian =
N

∑
i=1

(
∥ pi − pre f

i ∥2 +λ ∥ log
(

RT
i Rref

i

)
∥2

F

)
(29)

where pi and pref
i represent the actual position and reference position of the i-th path

point, respectively, RT
i and Rref

i denote the actual and reference rotation matrices of the i-th
path point, respectively, and λ is the weight factor between the positional error and the
orientation error.

Mathematics 2025, 13, 648 21 of 31

Ejoint-smooth represents the joint smoothness error, which is used to limit the rapid
changes in joint angles and ensure the smoothness of the robotic arm’s motion. It is
defined as:

Ejoint-smooth =
N−1

∑
i=2

n

∑
j=1

(
qi+1,j − 2qi,j + qi−1,j

)2 (30)

where q(i,j) represents the j-th joint angle of the i-th path point.
w1, w2, and w3 are the weight coefficients for Cartesian error, joint smoothness error,

and Cartesian smoothness error, respectively, and are used to adjust the influence of
each component.

Figure 10 shows the path performance in Cartesian space of different path planning
algorithms. By comparing the trajectory projections on the X-Z, X-Y, and Y-Z planes,
the differences in path accuracy between the GAIL-SAC algorithm (RL) and traditional
algorithms (MOVE), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) are
highlighted. From the trajectory comparisons in the figure, it can be seen that the path
generated by the MOVE algorithm exhibits noticeable jitter, particularly in the Y-Z plane
(Figure 10c), where the path deviates significantly from the ideal path (STAND, red). This
indicates that the MOVE algorithm has a lower path accuracy. This is primarily due to the
fact that the MOVE algorithm directly computes the path inverse kinematics in Cartesian
space, which may lead to singularities or no solutions when approaching the workspace
boundaries, resulting in unstable robot paths. In contrast, the PSO and GA algorithms
optimize the path accuracy to some extent and reduce jitter, but certain trajectory deviations
are still observable in the Y-Z plane (Figure 10c), exhibiting some instability. The RL (GAIL-
SAC) algorithm, by performing trajectory planning in joint space, generates a smoother
path that closely follows the ideal path (STAND), especially in the Y-Z plane, where the
RL algorithm’s path almost coincides with the ideal path, demonstrating its superiority in
complex environments and path accuracy.

� � � � � � � � � � � � 0 . 0 0 . 10 . 0 8

0 . 1 0

0 . 1 2

0 . 1 4

0 . 1 6

0 . 1 8

0 . 2 0

Z

X

 P S O
 M O V E
 G A
 S T A N D
 R L

(a) (b) (c)

	 � � � 	 � � � 0 . 0 0 . 1	 � � � �

	 � � � �

	 � � � �

	 � � � �

	 � � � �

Y

X

 P S O
 M O V E
 G A
 S T A N D
 R L

	 � � � � 	 � � � � 	 � � � � 	 � � � � 	 � � � �

0 . 1 3 0

0 . 1 5 6

0 . 1 8 2

0 . 2 0 8

0 . 2 3 4

Z

Y

 P S O
 M O V E
 G A
 S T A N D
 R L

Figure 10. Cartesian space path comparison diagram. (a) Comparison of algorithm path in the X-Z
plane. (b) Comparison of algorithm path in the X-Y plane. (c) Comparison of algorithm path in the
Y-Z plane.

Table 4 and Figure 11 further quantify the differences in path accuracy among the
algorithms. Table 4 shows the Mean Squared Error (MSE) of different algorithms in the X-Z,
X-Y, and Y-Z planes. It can be seen that the MOVE algorithm has the largest error, with an
MSE of 1231.13 mm2 in the X-Z plane, 1672.26 mm2 in the X-Y plane, and 1560.59 mm2 in the
Y-Z plane, all of which are significantly higher than those of other algorithms. In contrast,
the MSE of the PSO and GA algorithms is noticeably lower than MOVE, particularly in the
Y-Z plane, where the errors are 2.29 mm2 and 1.89 mm2, respectively. However, they still
do not compare to the MSE of the RL algorithm. The RL (GAIL-SAC) algorithm has the

Mathematics 2025, 13, 648 22 of 31

smallest MSE, with 40.02 mm2 in the X-Z plane, 4.88 mm2 in the X-Y plane, and 4.77 mm2

in the Y-Z plane. These values are significantly lower than those of other algorithms,
indicating that the RL algorithm provides the most accurate path-following capability in
all planes.

PSO MOVE RL (GAIL-SAC) GA
Algorithm

0

2

4

6

8
M

ax
 E

rro
r (

m
m

)

2.29

8.88

1.29

2.01
2.29

8.63

1.29

2.02

1.17

9.01

0.63

1.89

X-Z Plane
X-Y Plane
Y-Z Plane

Figure 11. Comparison of algorithm rewards for the printing environment.

Table 4. Comparison of MSEs at different plane positions.

Algorithm X-Z Plane MSE (mm2) X-Y Plane MSE (mm2) Y-Z Plane MSE (mm2)

PSO 55.436 7.987 3.138
MOVE 1231.129 1672.257 1560.586
RL 40.025 4.877 4.771
GA 51.443 5.533 8.249

Additionally, Figure 11 presents the maximum Cartesian space error for each algorithm
in different planes, further quantifying the differences in path accuracy. From the figure, it
can be seen that the maximum error of the MOVE algorithm reaches 9.01 mm in both the
X-Z and Y-Z planes, indicating significant path deviations in critical areas. The maximum
errors for the PSO and GA algorithms are 2.29 mm and 1.89 mm, respectively, which are
improvements over the MOVE algorithm but still higher than the RL algorithm. In contrast,
the RL (GAIL-SAC) algorithm has a maximum error of only 0.63 mm, the lowest among
all algorithms. Especially in the Y-Z plane, the maximum error of the RL algorithm is
almost zero, demonstrating the smallest trajectory deviation and proving its superiority in
path planning.

In summary, compared to other algorithms, the RL algorithm significantly reduces
trajectory errors, especially in complex tasks and boundary environments, maintain-
ing higher robustness and accuracy. Therefore, the proposed GAIL-SAC algorithm
in this study demonstrates stronger path planning capabilities and higher accuracy in
practical applications.

Figure 12 illustrates the velocity variations in joint space for different algorithms,
assessing their performance in improving the smoothness of robotic motion. Figure 12a–d
depict the velocity fluctuations of the conventional path planning algorithm, Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), and the proposed reinforcement-
learning-based GAIL-SAC algorithm. By analyzing these figures, it is evident that different

Mathematics 2025, 13, 648 23 of 31

algorithms exhibit distinct velocity fluctuations in joint space. Figure 12e–j further provide
a comparative analysis of velocity variations across joints 0 to 5. The results indicate
that the conventional path planning algorithm exhibits poor smoothness in joint space,
characterized by significant velocity fluctuations. In contrast, the GA and PSO algorithms
demonstrate improved smoothness in joint space, significantly outperforming traditional
algorithms. Compared to these approaches, the proposed GAIL-SAC algorithm achieves
the best smoothness in joint space during robotic motion, with almost no noticeable abrupt
velocity fluctuations, highlighting its superior smooth performance.

0 1 2 3� � � �

0 . 0

0 . 5 j o i n t 0
 j o i n t 1
 j o i n t 2
 j o i n t 3
 j o i n t 4
 j o n i t 5

t i m e
(a)

(d) (e) (f)

(g) (h) (i)

0 1 2 3� � � �

0 . 0

0 . 5 G A _ 0
 G A _ 1
 G A _ 2
 G A _ 3
 G A _ 4
 G A _ 5

t i m e
(b) (c)

0 1 2 3� � � �

0 . 0

0 . 5 P S O _ 0
 P S O _ 1
 P S O _ 2
 P S O _ 3
 P S O _ 4
 P S O _ 5

t i m e

0 1 2 3� � � �

0 . 0

0 . 5

t i m e

 R L _ 0
 R L _ 1
 R L _ 2
 R L _ 3
 R L _ 4
 R L _ 5

0 1 2 3

0 . 0

0 . 5 j o i n t
 P S O
 G A
 R Ljoi

nt0

t i m e
0 1 2 3� � � �

0 . 0

0 . 5

joi
nt1

t i m e

 j o i n t
 P S O
 G A
 R L

0 1 2 3� � � �

0 . 0

0 . 5

joi
nt2

t i m e

 j o i n t
 P S O
 G A
 R L

0 1 2 3� � � �

0 . 0

0 . 5

joi
nt3

t i m e

 j o i n t
 P S O
 G A
 R L

0 1 2 3� � � �

0 . 0

0 . 5
joi

nt4

t i m e

 j o i n t
 G A
 P S O
 R L

0 1 2 3� � � �

0 . 0

0 . 5

jon
it5

t i m e

 j o i n t
 G A
 P S O
 R L

(j)

Figure 12. Comparison chart of joint space smoothness. (a)Velocity fluctuations in joint space for
the conventional path planning algorithm. (b) Velocity fluctuations in joint space for the Genetic
Algorithm (GA). (c) Velocity fluctuations in joint space for the Particle Swarm Optimization (PSO)
algorithm. (d) Velocity fluctuations in joint space for the GAIL-SAC algorithm. (e) Comparative
analysis of velocity fluctuations in joint 0 across algorithms. (f) Comparative analysis of velocity
fluctuations in joint 1 across algorithms. (g) Comparative analysis of velocity fluctuations in joint
2 across algorithms. (h) Comparative analysis of velocity fluctuations in joint 3 across algorithms.
(i) Comparative analysis of velocity fluctuations in joint 4 across algorithms. (j) Comparative analysis
of velocity fluctuations in joint 5 across algorithms.

To further quantify the velocity variations and analyze the smoothness of different al-
gorithms in detail, Figure 13 presents the standard deviation of velocity fluctuations in joint
space. The velocity variation standard deviation serves as a quantitative measure of motion
smoothness, where lower values indicate a smoother trajectory. In Figure 13, the GAIL-SAC
algorithm exhibits a significantly lower velocity variation standard deviation compared
to other algorithms, particularly at joint 2, where its standard deviation is only 0.00795,

Mathematics 2025, 13, 648 24 of 31

far lower than that of the GA algorithm (0.729) and the PSO algorithm (0.58). Similar
trends are observed across other joints. Therefore, combining the visual comparison in
Figure 12 and the quantitative analysis in Figure 13, the GAIL-SAC algorithm demonstrates
a distinct advantage in joint space smoothness, achieving the lowest velocity variation
standard deviation across all joints, thus exhibiting the optimal motion smoothness. The
experimental results confirm that the GAIL-SAC algorithm outperforms the conventional
path planning algorithm, GA, and PSO in improving the smoothness of robotic motion.

Joint 0 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5
Joint Index

0.0

0.5

1.0

1.5

2.0

Sp
ee

d
Ch

an
ge

 S
ta

nd
ar

d
De

vi
at

io
n

0.00663 0.00674 0.00795 0.00727 0.00544 0.00841

0.52389

0.33188

0.72919

2.14817

0.24083

0.39620

0.49946

0.04860

0.58071

0.14062 0.13420 0.10679

0.49436

0.03495

0.12140

0.96750

0.13588 0.14499

RL
MOVE
GA
PSO

Figure 13. Comparison chart of joint space smoothness.

6. Case Analysis
To validate the practical effectiveness of the proposed algorithm, we conducted print-

ing experiments. This section applies the planned path data directly to a real robot. The case
study utilized a KUKA robot equipped with a mainstream UV print head from Seer. The ex-
perimental subject was a motorcycle windshield, characterized by its complex curvature.
To minimize waste and facilitate repeatability, we placed A4 paper on the surface of the
windshield, allowing us to demonstrate the experimental results without affecting the final
printed outcome.

Before the experiments commenced, we established a simulated environment that
closely resembled the actual printing process to ensure safety and protect the UV print
head. During the simulation, the robot’s movement trajectories were validated to prevent
any collisions or unexpected incidents during operation. The printing robot used in this
experiment was the KUKA KR210 model, with its simulated environment illustrated in
Figure 14a and the corresponding actual experimental setup shown in Figure 14b.

As shown in Figure 15, Figure 15a–e illustrate the robot’s movement positions at
various stages of the printing process. Throughout this process, it is crucial for the TCP
of the print head to remain perpendicular to the surface of the printed workpiece to
meet the requirements of UV printing. The actual results align well with the simula-
tion outcomes. Figure 15f–j correspond to the printing results at each movement stage.
The printed results demonstrate that the proposed algorithm effectively meets the demands
of practical processing.

Mathematics 2025, 13, 648 25 of 31

(a) (b)

Figure 14. Comparison between simulated robots and real robots. (a) Simulation environment.
(b) Real environment.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 15. Spray printing process and spray printing effect diagram. (a) Robot’s movement position 1
during the printing process. (b) Robot’s movement position 2 during the printing process. (c) Robot’s
movement position 3 during the printing process. (d) Robot’s movement position 4 during the
printing process. (e) Robot’s movement position 5 during the printing process. (f) Printing result
at position 1. (g) Printing result at position 2. (h) Printing result at position 3. (i) Printing result at
position 4. (j) Printing result at position 5.

In the UV printing process, the smoothness of the robot’s end-effector motion in
Cartesian space significantly affects the printing quality. The intensity of velocity fluc-
tuations directly determines the uniformity and consistency of the ink ejected from the
nozzle. Therefore, this paper compares the velocity variations in the X, Y, and Z directions
across different path planning algorithms, with the experimental results shown in Figure 16.
From the velocity variation curves, it is evident that the traditional path planning algorithm
(MOVE) exhibits the most significant trajectory jitter and velocity fluctuations, particularly
in the Y direction, where substantial jumps are observed, indicating unstable motion that
fails to meet the precise printing requirements. In contrast, the GA and PSO algorithms
demonstrate improvements in velocity smoothness, with their velocity curves being more
stable than that of MOVE. Specifically, PSO has smaller fluctuations in the Z direction,
while GA performs relatively better in the X direction. The RL (GAIL-SAC) algorithm
shows the least velocity variation and the smoothest trajectory, with the velocity variation
in the X, Y, and Z directions significantly reduced, indicating the best trajectory smoothness
during actual robot operation.

To further quantify the smoothness of the different algorithms, this paper calculates
the standard deviation of the velocity variation rate in the X, Y, and Z directions. The ex-
perimental results are shown in Figure 17. The analysis reveals that the MOVE algorithm
has the highest velocity variation rate standard deviation, with values of 1474.8, 1919.1,
and 1326.8 in the X, Y, and Z directions, respectively, indicating large trajectory fluctua-
tions and poor motion smoothness. Both GA and PSO algorithms show improvements

Mathematics 2025, 13, 648 26 of 31

in smoothness in all directions, with a significant reduction in velocity fluctuations com-
pared to the MOVE algorithm. Specifically, PSO reduces the standard deviation in the Z
direction to 602.6, while GA reduces the standard deviation in the Y direction to 950.3,
reflecting the distinct optimization advantages of both algorithms in different directions.
However, the RL (GAIL-SAC) algorithm achieves the lowest velocity variation rate stan-
dard deviation, with values of 4.18, 4.67, and 4.32 in the X, Y, and Z directions, respectively.
This indicates that the RL algorithm provides the smoothest trajectory in all directions,
effectively reducing velocity fluctuations and enhancing motion stability. Overall, while
GA and PSO improve the trajectory smoothness in Cartesian space to some extent, the RL
(GAIL-SAC) algorithm performs best, effectively suppressing velocity jumps and ensuring
the stability of the printing process, thereby further improving print quality.

0 1 2 3� � � �

0

1 0 0 v x _ m o v e
 v y _ m o v e
 v z _ m o v e

t i m e
(a)

0 1 2 3� � � �

0

1 0 0

t i m e

 P S O _ v x
 P S O _ v y
 P S O _ v z

(c)

0 1 2 3� � � �

0

1 0 0

t i m e

 G A _ v x
 G A _ v y
 G A _ v z

(b)

0 1 2 3� � �

0

1 0

t i m e

 R L _ v x
 R L _ v y
 R L _ v z

(d)

0 1 2 3� � �

0

1 5

t i m e

 M O V E
 G A
 P S O
 R L

(e)

(f)

(g)

0 1 2 3� � �

0

1 5

VY
 (m

m/
s)

t i m e

 M O V E
 G A
 P S O
 R L

VX
 (m

m/
s)

 m
m/

s

 m
m/

s
 m

m/
s

 m
m/

s

0 1 2 3� � �

0

1 5

VZ
 (m

m/
s)

t i m e

 M O V E
 G A
 P S O
 R L

Figure 16. Comparison chart of smoothness in Cartesian space. (a) Cartesian space velocity variation
plot of the conventional path planning algorithm. (b) Cartesian space velocity variation plot of
the GA algorithm. (c) Cartesian space velocity variation plot of the PSO algorithm. (d) Cartesian
space velocity variation plot of the GAIL-SAC algorithm. (e) Comparison of velocity variation
in the X-axis direction for different algorithms. (f) Comparison of velocity variation in the Y-axis
direction for different algorithms. (g) Comparison of velocity variation in the Z-axis direction for
different algorithms.

Mathematics 2025, 13, 648 27 of 31

VX VY VZ
Cartesian Axis

0

250

500

750

1000

1250

1500

1750

2000

 S
ta

nd
ar

d
De

vi
at

io
n

4.1828 4.6753 4.3237

1474.8176

1919.1181

1326.8710

1196.5806

950.3447

374.2460

686.7031

322.7474

602.6825

RL
MOVE
GA
PSO

Figure 17. Comparison chart of the standard deviation of velocity variation in Cartesian space.

7. Practical Implications Analysis
With the continuous development of intelligent manufacturing technologies, the appli-

cation of robotic technology in precision manufacturing has been increasingly widespread.
The Generative Adversarial Imitation Learning—Soft Actor–Critic (GAIL-SAC) framework
proposed in this paper, specifically designed for the robotic surface path planning of UV
printing, demonstrates broad application prospects. This method optimizes the robot’s
printing trajectory by combining reinforcement learning and imitation learning, enhancing
both the smoothness and accuracy of the trajectory, while also improving the robustness of
path planning in complex environments.

In the field of intelligent manufacturing, especially in high-precision printing and
printing applications, UV printing technology is gradually replacing traditional screen
printing. The research results in this paper can significantly improve the path planning
accuracy of printing robots, particularly in printing tasks involving complex surfaces and
irregular objects. By introducing the GAIL-SAC framework, the robot can achieve more
efficient and accurate printing on irregular surfaces, reduce printing errors, and improve
both production efficiency and product quality.

Specific application areas include the following:

• Automotive Industry: Automotive parts, such as bodies, hoods, doors, spoilers, and in-
terior components, often have complex surface shapes. Traditional spraying methods
fail to meet the high-precision spraying requirements. UV printing technology can
accurately print patterns, colors, or provide protective coatings on these irregular
surfaces, thereby enhancing the aesthetics of automotive exteriors and extending the
lifespan of parts.

• Aerospace: Aircraft components such as fuselages, wings, tail fins, engines, and tur-
bine blades require clear identification, including production numbers, model types,
airline logos, and safety marks. UV printing technology can accurately print these
marks on complex surfaces, ensuring compliance with aviation safety standards and
providing durability. Additionally, it offers uniform and high-quality coatings for
complex aerospace parts, thereby improving production efficiency.

• Medical Equipment: In medical device manufacturing, UV printing technology can
meet the personalized printing needs of devices with special geometric shapes, such
as custom prosthetics, orthotics, surgical instruments, and medical monitoring equip-

Mathematics 2025, 13, 648 28 of 31

ment, ensuring surface printing accuracy and enhancing both the functionality and
aesthetics of the devices.

• Food Packaging: UV printing technology can provide precise pattern printing solu-
tions for beverage bottles, cans, and other packaging, enhancing brand recognition
and increasing market competitiveness.

• Consumer Electronics: In consumer electronic products such as smartphones, tablets,
and other devices, UV printing technology can achieve high-quality coating printing,
providing protection against static electricity, fingerprints, and enhancing the product’s
lifespan and consumer experience.

These applications not only enhance production efficiency but also effectively reduce
costs, increase production flexibility, and improve product quality. Particularly in large-
scale customization and small-batch production, irregular surface printing technology
shows significant advantages. With the continuous development of this technology, it is
expected to bring more efficient, flexible, and personalized production modes to a variety
of industries.

8. Conclusions
This paper presents a novel theoretical framework for robotic surface UV printing

path planning, aiming to enhance the accuracy and smoothness of printing paths, with sig-
nificant application value in freeform surface printing. The main contributions of this paper
include the following: (1) based on the CAD model of the printing workpiece, a method to
convert CNC data into robot path data is proposed, which is used to design the primary
path suitable for robotic surface printing; (2) a motion accuracy model for the printing robot
is established, integrating both the positional accuracy of the path and the attitude accuracy
of the robot’s end-effector nozzle; and (3) the robot motion accuracy model is described
using the Markov Decision Process (MDP), and the GAIL-SAC algorithm is proposed by im-
proving the SAC algorithm, which combines the advantages of reinforcement learning with
traditional path planning methods to obtain the optimal surface printing path. Experimen-
tal validation shows the following: (1) the improved SAC algorithm demonstrates better
convergence performance in environments with sparse rewards and high-dimensional
data; (2) in the robotic surface printing simulation environment, the proposed algorithm
outperforms traditional GA and PSO algorithms in terms of trajectory accuracy, and ex-
hibits better joint-space trajectory smoothness, proving the effectiveness of the proposed
method in improving printing trajectory accuracy and smoothness; and (3) in real robot
experiments, the feasibility of the proposed algorithm in practical applications is verified,
and the experimental results show that in Cartesian space, the smoothness of the robot’s
end-effector TCP motion path is superior to that of traditional GA and PSO algorithms.

However, the limitations of this paper lie in considering only the accuracy and smooth-
ness of the printing path. Nozzle collision is a critical factor affecting printing accuracy
and stability, especially when the robot’s end-effector approaches complex surfaces or
irregular objects. To address this issue, future research will integrate obstacle avoidance
algorithms and introduce obstacle avoidance constraints in the path planning process,
incorporating them into the reinforcement learning reward function to ensure that the
robot nozzle maintains a safe distance from the workpiece surface, effectively prevent-
ing nozzle-workpiece collisions. Additionally, during the reinforcement learning training
process, the computation of large amounts of training data and high-dimensional state
space may lead to long training times and excessive computational resource consumption.
To improve the algorithm’s efficiency, future research will explore distributed computing
frameworks to parallel process multiple training environments, reducing training time and

Mathematics 2025, 13, 648 29 of 31

computational costs, or use transfer learning techniques to pre-train models in similar tasks
or environments, reducing training time and improving algorithm convergence speed.

In conclusion, the GAIL-SAC framework proposed in this study effectively enhances
the printing path’s accuracy and smoothness, demonstrating the great potential of reinforce-
ment learning in robotic surface UV printing path planning. With continuous technological
advancements, the method presented in this paper is expected to find widespread applica-
tion in intelligent manufacturing, automotive, aerospace, medical devices, and other fields,
driving the manufacturing industry toward a more intelligent and personalized direction.

Author Contributions: Conceptualization, J.L. and X.L.; methodology, J.L. and X.L.; software, J.L.
and X.L.; validation, X.L., C.H. and Z.C.; formal analysis, C.H. and Z.C.; investigation, J.L. and X.L.;
resources, J.L. and X.L.; data curation, Z.L. (Zhenyong Liu) and Z.L. (Zhicong Li); writing—original
draft preparation, J.L. and X.L.; writing—review and editing, J.L. and X.L.; visualization, J.L.; supervi-
sion, J.L.; project administration, J.L. and M.C.; funding acquisition, J.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Key Project of Natural Science Foundation of Guangdong
Province, China grant number 2022B1515120025 and partially funded by the Guangdong Province
University Student Science and Technology Innovation Training Special Fund (No. pdjh2023b0545)
and the Foshan University Student Academic Fund (No. xsjj202302kjb10).

Data Availability Statement: The data used in this study were obtained from a key research project
funded by the Guangdong Provincial Natural Science Foundation. Due to confidentiality agreements,
the data are classified and cannot be made publicly available.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

{WCS} Workpiece Coordinate System
{LCS} Local Tool Coordinate System
RL Reinforcement Learning
MDP Markov Decision Process
PSO Particle Swarm Optimization
GA Genetic Algorithm
SAC Soft Actor–Critic
GAIL Generative Adversarial Imitation Learning
GAIL-SAC Generative Adversarial Imitation Learning and Soft Actor–Critic
CAM Computer-Aided Manufacturing
BC Behavioral Cloning
HER Hindsight Experience Replay
TCP Tool Center Point
CNC Computer Numerical Control
CAD Computer-Aided Design

References
1. Verduyn, A.; De Schutter, J.; Decré, W.; Vochten, M. Shape-based path adaptation and simulation-based velocity optimization of

initial tool trajectories for robotic spray painting. In Proceedings of the 2023 IEEE 19th International Conference on Automation
Science and Engineering (CASE), Auckland, New Zealand, 26–30 August 2023; pp. 1–8.

2. Gao, R.; Zhou, Q.; Cao, S.; Jiang, Q. Apple-Picking Robot Picking Path Planning Algorithm Based on Improved PSO. Electronics
2023, 12, 1832. [CrossRef]

3. Huang, Z.; Chen, G.; Shen, Y.; Wang, R.; Liu, C.; Zhang, L. An Obstacle-Avoidance Motion Planning Method for Redundant
Space Robot via Reinforcement Learning. Actuators 2023, 12, 69. [CrossRef]

http://doi.org/10.3390/electronics12081832
http://dx.doi.org/10.3390/act12020069

Mathematics 2025, 13, 648 30 of 31

4. Nieto Bastida, S.; Lin, C.Y. Autonomous Trajectory Planning for Spray Painting on Complex Surfaces Based on a Point Cloud
Model. Sensors 2023, 23, 9634. [CrossRef] [PubMed]

5. Weber, A.M.; Gambao, E.; Brunete, A. A Survey on Autonomous Offline Path Generation for Robot-Assisted Spraying Applica-
tions. Actuators 2023, 12, 403. [CrossRef]

6. Bedaka, A.K.; Lin, C.Y. CAD-based robot path planning and simulation using OPEN CASCADE. Procedia Comput. Sci. 2018,
133, 779–785. [CrossRef]

7. Gleeson, D.; Jakobsson, S.; Salman, R.; Ekstedt, F.; Sandgren, N.; Edelvik, F.; Carlson, J.S.; Lennartson, B. Generating optimized
trajectories for robotic spray painting. IEEE Trans. Autom. Sci. Eng. 2022, 19, 1380–1391. [CrossRef]

8. Park, J.H.; Lim, Y.E.; Choi, J.H.; Hwang, M.J. Trajectory-based 3D point cloud ROI determination methods for autonomous
mobile robot. IEEE Access 2023, 11, 8504–8522. [CrossRef]

9. Meng, Y.; Jiang, Y.; Li, Y.; Pang, G.; Tong, Q. Research on point cloud processing and grinding trajectory planning of steel helmet
based on 3D scanner. IEEE Access 2023, 12, 3085–3097. [CrossRef]

10. Shah, S.H.; Khan, S.G.; Tran, C.C. Surface Normal Generation and Compliance Control for Robotic Based Machining Operations.
In Proceedings of the 2024 9th International Conference on Control and Robotics Engineering (ICCRE), Osaka, Japan, 10–12 May
2024; pp. 74–79.

11. Wu, L.; Zang, X.; Yin, W.; Zhang, X.; Li, C.; Zhu, Y.; Zhao, J. Pose and Path Planning for Industrial Robot Surface Machining
Based on Direction Fields. IEEE Robot. Autom. Lett. 2024, 9, 10455–10462. [CrossRef]

12. Wang, G.; Li, W.; Jiang, C.; Zhu, D.; Li, Z.; Xu, W.; Zhao, H.; Ding, H. Trajectory planning and optimization for robotic machining
based on measured point cloud. IEEE Trans. Robot. 2021, 38, 1621–1637. [CrossRef]

13. Zeng, Y.; Yu, Y.; Zhao, X.; Liu, Y.; Liu, J.; Liu, D. Trajectory planning of spray gun with variable posture for irregular plane based
on boundary constraint. IEEE Access 2021, 9, 52902–52912. [CrossRef]

14. Zhang, Y.; Xu, C.; Xiao, H.; Zhou, B.; Zeng, Y. Planning method of offset spray path for patch considering boundary factors. Math.
Probl. Eng. 2018, 2018, 6067391. [CrossRef]

15. Lu, S.; Ding, B.; Li, Y. Minimum-jerk trajectory planning pertaining to a translational 3-degree-of-freedom parallel manipulator
through piecewise quintic polynomials interpolation. Adv. Mech. Eng. 2020, 12, 1687814020913667. [CrossRef]

16. Zhu, J.; Pan, D. Improved Genetic Algorithm for Solving Robot Path Planning Based on Grid Maps. Mathematics 2024, 12, 4017.
[CrossRef]

17. Gao, Y.; Li, Z.; Wang, H.; Hu, Y.; Jiang, H.; Jiang, X.; Chen, D. An Improved Spider-Wasp Optimizer for Obstacle Avoidance Path
Planning in Mobile Robots. Mathematics 2024, 12, 2604. [CrossRef]

18. Hsieh, H.T.; Chu, C.H. Improving optimization of tool path planning in 5-axis flank milling using advanced PSO algorithms.
Robot. Comput.-Integr. Manuf. 2013, 29, 3–11. [CrossRef]

19. Prianto, E.; Park, J.H.; Bae, J.H.; Kim, J.S. Deep reinforcement learning-based path planning for multi-arm manipulators with
periodically moving obstacles. Appl. Sci. 2021, 11, 2587. [CrossRef]

20. Zhao, T.; Wang, M.; Zhao, Q.; Zheng, X.; Gao, H. A path-planning method based on improved soft actor-critic algorithm for
mobile robots. Biomimetics 2023, 8, 481. [CrossRef] [PubMed]

21. von Eschwege, D.; Engelbrecht, A. Soft Actor-Critic Approach to Self-Adaptive Particle Swarm Optimisation. Mathematics 2024,
12, 3481. [CrossRef]

22. He, Y.; Hu, R.; Liang, K.; Liu, Y.; Zhou, Z. Deep Reinforcement Learning Algorithm with Long Short-Term Memory Network for
Optimizing Unmanned Aerial Vehicle Information Transmission. Mathematics 2024, 13, 46. [CrossRef]

23. Huang, Y.; Zhou, C.; Zhang, L.; Lu, X. A Self-Rewarding Mechanism in Deep Reinforcement Learning for Trading Strategy
Optimization. Mathematics 2024, 12, 4020. [CrossRef]

24. Chen, W.; Li, X.; Ge, H.; Wang, L.; Zhang, Y. Trajectory planning for spray painting robot based on point cloud slicing technique.
Electronics 2020, 9, 908. [CrossRef]

25. He, S.; Hu, C.; Lin, S.; Zhu, Y. An online time-optimal trajectory planning method for constrained multi-axis trajectory with
guaranteed feasibility. IEEE Robot. Autom. Lett. 2022, 7, 7375–7382. [CrossRef]

26. He, S.; Hu, C.; Lin, S.; Zhu, Y.; Tomizuka, M. Real-time time-optimal continuous multi-axis trajectory planning using the trajectory
index coordination method. ISA Trans. 2022, 131, 639–649. [CrossRef] [PubMed]

27. Praniewicz, M.; Kurfess, T.R.; Saldana, C. Error qualification for multi-axis BC-type machine tools. J. Manuf. Syst. 2019,
52, 211–216. [CrossRef]

28. Xie, S.; Sun, L.; Chen, G.; Wang, Z.; Wang, Z. A novel solution to the inverse kinematics problem of general 7r robots. IEEE Access
2022, 10, 67451–67469. [CrossRef]

29. Chen, W.; Liu, J.; Tang, Y.; Huan, J.; Liu, H. Trajectory optimization of spray painting robot for complex curved surface based on
exponential mean Bézier method. Math. Probl. Eng. 2017, 2017, 4259869. [CrossRef]

30. Gao, G.; Sun, G.; Na, J.; Guo, Y.; Wu, X. Structural parameter identification for 6 DOF industrial robots. Mech. Syst. Signal Process.
2018, 113, 145–155. [CrossRef]

http://dx.doi.org/10.3390/s23249634
http://www.ncbi.nlm.nih.gov/pubmed/38139480
http://dx.doi.org/10.3390/act12110403
http://dx.doi.org/10.1016/j.procs.2018.07.119
http://dx.doi.org/10.1109/TASE.2022.3156803
http://dx.doi.org/10.1109/ACCESS.2023.3238824
http://dx.doi.org/10.1109/ACCESS.2023.3347629
http://dx.doi.org/10.1109/LRA.2024.3474521
http://dx.doi.org/10.1109/TRO.2021.3108506
http://dx.doi.org/10.1109/ACCESS.2021.3070566
http://dx.doi.org/10.1155/2018/6067391
http://dx.doi.org/10.1177/1687814020913667
http://dx.doi.org/10.3390/math12244017
http://dx.doi.org/10.3390/math12172604
http://dx.doi.org/10.1016/j.rcim.2012.04.007
http://dx.doi.org/10.3390/app11062587
http://dx.doi.org/10.3390/biomimetics8060481
http://www.ncbi.nlm.nih.gov/pubmed/37887612
http://dx.doi.org/10.3390/math12223481
http://dx.doi.org/10.3390/math13010046
http://dx.doi.org/10.3390/math12244020
http://dx.doi.org/10.3390/electronics9060908
http://dx.doi.org/10.1109/LRA.2022.3183536
http://dx.doi.org/10.1016/j.isatra.2022.05.016
http://www.ncbi.nlm.nih.gov/pubmed/35662517
http://dx.doi.org/10.1016/j.jmsy.2019.03.004
http://dx.doi.org/10.1109/ACCESS.2022.3184451
http://dx.doi.org/10.1155/2017/4259869
http://dx.doi.org/10.1016/j.ymssp.2017.08.011

Mathematics 2025, 13, 648 31 of 31

31. Ren, J.; Sun, Y.; Hui, J.; Ahmad, R.; Ma, Y. Coating thickness optimization for a robotized thermal spray system. Robot.
Comput.-Integr. Manuf. 2023, 83, 102569. [CrossRef]

32. Teng, Q.; Yi, J.; Zhu, X.; Zhang, Y. Extraction method of position and posture information of robot arm picking up target based on
RGB-D data. Therm. Sci. 2020, 24, 1481–1488. [CrossRef]

33. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018;
pp. 1861–1870.

34. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft actor-critic
algorithms and applications. arXiv 2018, arXiv:1812.05905.

35. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. In Proceedings of the Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, QC, Canada,
8–13 December 2014; Volume 27.

36. Zuo, G.; Zhao, Q.; Huang, S.; Li, J.; Gong, D. Adversarial imitation learning with mixed demonstrations from multiple
demonstrators. Neurocomputing 2021, 457, 365–376. [CrossRef]

37. Kidera, S.; Shintani, K.; Tsuneda, T.; Yamane, S. Combined Constraint on Behavior Cloning and Discriminator in Offline
Reinforcement Learning. IEEE Access 2024, 12, 19942–19951. [CrossRef]

38. Tsurumine, Y.; Matsubara, T. Goal-aware generative adversarial imitation learning from imperfect demonstration for robotic
cloth manipulation. Robot. Auton. Syst. 2022, 158, 104264. [CrossRef]

39. Xu, L.; Cao, M.; Song, B. A new approach to smooth path planning of mobile robot based on quartic Bezier transition curve and
improved PSO algorithm. Neurocomputing 2022, 473, 98–106. [CrossRef]

40. Wang, F.; Wu, Z.; Bao, T. Time-jerk optimal trajectory planning of industrial robots based on a hybrid WOA-GA algorithm.
Processes 2022, 10, 1014. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.rcim.2023.102569
http://dx.doi.org/10.2298/TSCI190625012T
http://dx.doi.org/10.1016/j.neucom.2021.06.053
http://dx.doi.org/10.1109/ACCESS.2024.3361030
http://dx.doi.org/10.1016/j.robot.2022.104264
http://dx.doi.org/10.1016/j.neucom.2021.12.016
http://dx.doi.org/10.3390/pr10051014

	Introduction
	Related Work
	Curved Surface Path Generation Method
	Traditional Optimization Algorithms (GA and PSO) and Their Limitations
	Reinforcement Learning Path Optimization Method

	Surface Path Planning Method for Spray Printing
	Generate Main Path
	Establishment of Robot Motion Accuracy Model
	Markov Decision Process (MDP)
	Reinforcement Learning SAC Algorithm
	Generative Adversarial Imitation Learning

	Framework for Path Planning of Complex Surface Spray Printing
	Spray Printing Trajectory Generation Scheme
	Spray Printing Trajectory Planning Scheme
	Reinforcement Learning GAIL-SAC

	Simulation and Experiments
	Experimental Environment Configuration
	Main Path Generation Experiment
	Convergence of GAIL-SAC
	Printing Path Planning Experiment

	Case Analysis
	Practical Implications Analysis
	Conclusions
	References

