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Abstract: The accurate reconstruction of vehicle paths is essential for effective highway
toll management. To address the challenge of multiple possible paths due to missing
trajectory data, this study proposes a novel two-stage model for vehicle path reconstruction.
In the first stage, a Gaussian Mixture Model (GMM) is integrated into a path choice
model to estimate the mean and standard deviation of travel times for each road segment,
utilizing an improved Expectation Maximization (EM) algorithm. In the second stage,
based on the estimated time parameters, path choice prior probabilities and observed
data are combined using maximum likelihood estimation to infer the most probable paths
among candidate routes. The results indicate that the improved EM algorithm achieved
convergence in 17 iterations compared to 41 iterations for the traditional EM algorithm. The
two-stage model outperforms the Shortest Path and Bidirectional Long Short-Term Memory
models in path reconstruction, particularly with a high number of missing trajectory
points. Additionally, when the number of candidate paths K = 4, the path reconstruction
performance is optimal. These results demonstrate the effectiveness of the proposed method
in handling sparse and incomplete trajectory data, offering robust and accurate vehicle
path estimations that enhance traffic management and toll calculation precision.

Keywords: vehicle path reconstruction; Gaussian mixture models; path choice model;
expectation maximization algorithm

MSC: 90B20

1. Introduction
The accurate acquisition of vehicle trajectory information is essential for effective toll

management on highways. Currently, the following two primary types of devices are
employed to collect vehicle-related data: high-definition (HD) cameras and Electronic Toll
Collection (ETC) systems combined with Compound Pass Card (CPC) sensors. HD cameras
capture images of vehicle license plates and frontal views, while ETC systems and CPC
sensors detect the presence of ETC devices installed in vehicles and the CPC cards issued
at toll stations. These devices are typically mounted on gantries along highways, and by
integrating location data from these gantries, vehicle trajectories can be obtained. However,
the existing tolling framework often relies on the Shortest Path (SP) algorithm to estimate
vehicle travel paths between adjacent gantries, introducing several limitations. Under
high-traffic conditions, camera images may capture multiple vehicles in close proximity,
leading to the partial or complete loss of license plate information or difficulties in obtaining
clear frontal images. Traditional license plate recognition (LPR) systems are also susceptible
to errors, particularly with counterfeit or unregistered plates. Furthermore, ETC and
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CPC sensors can experience detection failures, resulting in unregistered vehicles passing
through certain gantries. Consequently, these challenges contribute to incomplete or
inaccurate trajectory data, especially when significant gaps exist between consecutive
trajectory points. In such cases, the SP assumption may fail to accurately reflect the
vehicle’s actual travel route, thereby compromising toll calculation precision. The accurate
reconstruction of vehicle travel paths remains a critical challenge in transportation research.
Existing methods typically rely on Automatic Vehicle Identification (AVI) data, such as LPR
and gantry sensing data obtained from tolling systems [1,2]. For simpler road networks,
the SP algorithm [3,4] has been widely adopted due to its computational efficiency and
ease of implementation. However, its performance degrades significantly in complex road
networks with incomplete trajectory data, as real-world driving behavior often deviates
from the shortest path assumption [5]. Factors such as driver preferences, real-time traffic
conditions, and external constraints are not accounted for in SP-based models, limiting
their applicability.

To address these shortcomings, researchers have developed methods that incorporate
path choice behavior [6,7]. These approaches optimize path selection based on the spatial
topology of road networks, offering enhanced flexibility over static assumptions. Neverthe-
less, they often neglect subjective factors like individual driver preferences and dynamic
traffic conditions, which constrains their effectiveness in large-scale and real-world ap-
plications. Probabilistic methods have been introduced to overcome these challenges by
considering both micro-level and macro-level factors in path reconstruction [8]. Micro-level
approaches model individual vehicle trajectories, while macro-level models estimate path
flow distributions through equilibrium-based frameworks. These methods are effective at
handling uncertainty but are computationally intensive, particularly in high-dimensional
state spaces or real-time scenarios. Additionally, data-driven approaches that combine
AVI data with origin–destination (OD) estimates [9] have shown potential for accurate
path reconstruction. However, their reliance on high-quality data often undermines their
robustness in practical settings where data may be incomplete or noisy.

The rapid advancements in artificial intelligence and the availability of large-scale
data have facilitated the application of deep learning to path reconstruction. Deep learning
frameworks leverage neural networks to capture complex patterns in trajectory data [10,11],
offering improved performance in complex road networks. Sequence-based models [12]
have been employed to learn temporal dependencies in vehicle paths, addressing the
limitations of traditional methods. However, some models still fail to account for spatial
correlations between road segments, reducing their accuracy in highly interconnected
networks. Recent approaches have integrated bidirectional sequence learning [13] to simul-
taneously capture spatial and temporal dependencies in vehicle trajectories. These models
are fully data-driven and adaptive, eliminating the reliance on static path selection assump-
tions. Despite their advantages, challenges remain in scaling these methods to large road
networks and maintaining accuracy in the presence of incomplete or noisy data. Emerging
techniques, such as graph-based neural networks and attention mechanisms [14,15], show
promise for addressing these limitations and improving both scalability and precision.

Despite significant advancements in vehicle path reconstruction, existing methodolo-
gies exhibit notable limitations in addressing the complexity and variability of real-world
traffic scenarios. Factors such as driver preferences, dynamic traffic conditions, and in-
herent uncertainties in vehicle trajectories are often not simultaneously considered, and
computational efficiency tends to be low in large-scale road networks. Additionally, many
data-driven approaches heavily rely on high-quality data, which undermines their ro-
bustness in practical applications. To overcome these challenges, a novel two-stage path
reconstruction model based on Gaussian Mixture Models (GMM) is proposed in this study.
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The GMM [16] assumes that data originate from a weighted combination of multiple
Gaussian distributions, each referred to as a component. The linear combination of these
components represents the overall distribution of the dataset. The objective of GMM is
to determine the model parameters—namely, the mean, covariance, and weight of each
component—in order to maximize the likelihood function of the entire dataset. Due to the
additive property of Gaussian distributions, the sum of two or more independent Gaussian
random variables is also a Gaussian random variable. Consequently, the probability density
function of GMM is a weighted sum of individual Gaussian distributions. The widespread
adoption of GMM stems from the Expectation Maximization (EM) algorithm proposed
in [17], a parameter learning method based on maximum likelihood estimation. The EM
algorithm iteratively estimates missing data or latent variables in probabilistic models
by alternating between the E-step (Expectation) and M-step (Maximization). It is widely
employed for parameter estimation in models such as GMMs and those dealing with incom-
plete or censored data [18]. Due to its ability to handle incomplete or noisy data, the EM
algorithm has been widely applied in various domains, including image segmentation [19],
dynamic traffic prediction [20], and network traffic identification [21]. The advantage of
GMM in handling complex data distributions has led to its extensive application in the
transportation sector. It has demonstrated excellent performance in various areas, including
traffic flow prediction [22], traffic accident analysis [23], vehicle tracking [24], and traffic
flow anomaly detection [25]. Unlike traditional GMMs, the GMM proposed in this paper
accounts for the different paths corresponding to various OD pairs when estimating the
mean and standard deviation of road vehicle travel times. Traditional GMMs typically
assume that data are generated from a weighted combination of several Gaussian distribu-
tions, with the weights of each Gaussian component determined independently through
maximum likelihood estimation or the EM algorithm, without incorporating specific path
selection behaviors. In contrast, our approach determines the weights of the GMM based
on a path selection model, meaning that the weight of each Gaussian component reflects
the probability of the corresponding path being chosen. This mechanism enables the model
to more accurately represent the path selection preferences of different OD pairs, enhancing
its adaptability and interpretability in complex traffic networks with diverse paths.

The main contributions of this paper are as follows:

1. A novel two-stage model is introduced for reconstructing vehicle travel paths from
sparse trajectory data. In the first stage, a GMM is constructed to estimate the mean
and standard deviation of vehicle travel times on each road segment. This estima-
tion accounts for the probabilistic distribution of travel times, thereby capturing the
inherent uncertainties and variations in vehicle behavior. In the second stage, the esti-
mated time parameters are combined with path choice probabilities using maximum
likelihood estimation to infer the most probable vehicle trajectories. This approach
enhances the accuracy and flexibility of path reconstruction by integrating both spatial
and temporal factors.

2. An initial value selection algorithm is designed to optimize the EM algorithm, and the
Limited-memory Broyden–Fletcher–Goldfarb–Shanno with Bound (L-BFGS-B) opti-
mization method is incorporated into the M-step to solve the Q-function’s extremum,
significantly enhancing the convergence speed of the EM algorithm.

3. Vehicle re-identification technology is integrated into traditional license plate recogni-
tion methods to construct a reliable vehicle travel trajectory dataset. This integration
effectively addresses issues such as unregistered or counterfeit license plates, thereby
further improving the accuracy of the detection data.

The structure of this paper is as follows. Section 2 outlines the proposed two-stage
model for vehicle path reconstruction and the optimized EM algorithm. Section 3 presents
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the experimental results and evaluates the performance of the model. Section 4 discusses
the advantages of the proposed method relative to existing approaches. Section 5 provides
a summary of the entire work.

2. Methods
2.1. Assumptions

To reduce the complexity of the model, the following assumptions are made:

Assumption 1. Within short time intervals, the travel times of vehicles on each road segment
approximately follow a normal distribution. Although the travel times for individual vehicles may
not strictly follow a normal distribution, according to the Central Limit Theorem, the distribution
of average travel times over a short period is more likely to resemble a normal distribution. One
advantage of using a normal distribution is its additivity, which can significantly reduce the
model’s complexity.

Assumption 2. The travel times of different road segments are statistically independent of each
other. This assumption simplifies the construction of the GMM, enabling the travel time of each
road segment to be modeled independently.

Assumption 3. Traffic conditions, including factors such as traffic flow and road status, remain
relatively stable within a short time interval without significant fluctuations. This ensures the
consistency of the model parameters throughout the time period.

2.2. Model Construction

A two-stage path reconstruction model is proposed to accurately infer vehicle paths
from sparse and incomplete trajectory data. In the first stage, GMM is employed to estimate
the mean and standard deviation of travel times for each road segment. Subsequently,
these estimated parameters are combined with path choice probabilities to infer the most
probable vehicle paths through maximum likelihood estimation in the second stage.

2.2.1. GMM-Based Segment Travel Times Estimation

Based on Assumption 1, let yt
i denote the travel times observed for the i-th data point

in time period t. This data corresponds to multiple paths for the same OD pair. The
selection probability for path k is modeled using a neural network-enhanced approach and
is incorporated as weights into the GMM. The probability of observing yt

i , given path k and
the parameters −→µt and −→σt , is defined as follows:

P(yt
i | k,−→µt ,−→σt ) = N

(
yt

i | gi
k(
−→µt ), hi

k(
−→σt )
)

(1)

where −→µt represents the vector of average travel times for all road segments in time period
t. −→σt represents the vector of the standard deviations of travel times for all road segments in
time period t. gi

k(
−→µt ) = ∑l∈k µl

t is the expected travel time for path k, and µl
t is the expected

travel time for segment l contained in path k. hi
k(
−→σt ) = ∑l∈k(σ

l
t )

2 is the variance of travel
time for path k, and σl

t represents the standard deviation of the travel time for segment l
contained in path k. N (y | µ, σ2) denotes the Gaussian distribution with the mean µ and
variance σ2.

In large road networks, a single trip may involve multiple path choices. The objective
of this stage is to estimate the travel time characteristics of each road segment, utilizing the
prior probability of path choices λ as weights in the estimation process.

Path choice models should incorporate various factors that influence travelers’ deci-
sions, including path length, travel times, congestion levels, and vehicle type [26–29]. By
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integrating these factors, the models can accurately estimate path selection probabilities,
which are subsequently utilized as weights within the GMM. This comprehensive consider-
ation of influencing variables ensures that the GMM effectively captures the underlying
variability and dependencies in travel behavior, thereby enhancing the accuracy of travel
time estimations.

The utility of path choice Ui
k is defined as follows:

Ui
k = fNN(xi,att

k ; Θ) (2)

where fNN represents a feedforward neural network (FNN) [30], which is utilized to model
complex nonlinear relationships within the data. Θ denotes the parameters (weights and
biases) of the neural network. xi,att

k = ∑H
m=1 αi,m

k · vi,m
k is the multi-head attention-weighted

feature vector of path k for observation i. H is the number of attention heads in the self-
attention mechanism. αi,m

k is the attention weight vector for path k in attention head m,
computed as follows:

αi,m
k = softmax

(
qi,m

k · ki,m
k√

dk

)
(3)

where qi,m
k = Wm

q xi
k is the query vector for attention head m, Wm

q ∈ Rdk×dk is a learnable

weight matrix, and R denotes the set of real numbers. ki,m
k = Wm

k xi
k is the key vector for

attention head m, Wm
k ∈ Rdk×dk is a learnable weight matrix. vi,m

k = Wm
v xi

k is the value
vector for attention head m, Wm

v ∈ Rdk×dk is a learnable weight matrix. xi
k is the feature

vector for path k in observation i. This vector includes various attributes such as path
length, travel times, congestion level, vehicle type, and the straight-line distance between
the origin and destination. dk is the dimensionality of the feature vector xi

k. softmax(·) is a
normalization function typically used in multi-class classification tasks. It converts raw
scores (logits) into probabilities that sum to 1, making it suitable for scenarios where each
input should be assigned a probability distribution over multiple classes or options.

The path choice prior probability λi
k is modeled as followed:

λi
k =

exp(Ui
k)

∑s∈Ri
exp(Ui

s)
(4)

where Ri is the set of possible paths for observation i. It encompasses all possible paths
that a vehicle could take between the origin and destination for a given observation.

The neural network model is trained by minimizing the cross-entropy loss as follows:

L = − 1
N

N

∑
i=1

∑
k∈Ri

zi
k · log(λi

k) (5)

where zi
k is the observed path choice label (a binary indicator for whether path k was chosen

in observation i). N represents the number of observed data points.
Under the objective parameters, the probability of observing the travel time for the

i-th data point in time period t is modeled as the expectation of the travel time across
multiple paths for the corresponding OD pair, leading to the GMM formulation expressed
as follows:

P(yt
i |

−→µt ,−→σt ) = ∑
k∈Ri

λi
kP(yt

i | k,−→µt ,−→σt ) (6)

2.2.2. Bayesian-Based Path Reconstruction

Given an observed travel time yt
i , the posterior probability for each path k ∈ Ri is

computed using Bayes’ theorem. The posterior probability is expressed as follows:
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P(k | yt
i) ∝ P(yt

i | k)P(k) (7)

where P(yt
i | k) is the likelihood of observing yt

i given path k. Assuming that the travel
time for path k follows a normal distribution, this likelihood is defined as follows:

P(yt
i | k) =

1√
2πσk

t

exp

(
−
(yt

i − µk
t )

2

2(σk
t )

2

)
(8)

P(k) is the prior probability of path k, representing the preference for selecting path k. In
our model, P(k) is equivalent to λi

k, which is derived from the self-attention-enhanced
neural network path choice model.

Thus, the posterior probability of path k is given by the following:

P(k | yt
i) ∝

1√
2πσk

i

exp

(
−
(yt

i − µk
i )

2

2(σk
i )

2

)
λi

k (9)

To identify the most likely path, the posterior probability for each path k ∈ Ri is
computed, and the path kg with the maximum posterior probability is selected as follows:

kg = arg max
k∈Ri

P(k | yt
i) = arg max

k∈Ri

[
P(yt

i | k)λi
k

]
(10)

2.3. Algorithm Design

To enhance the convergence speed and stability of the EM algorithm used in the GMM-
based travel time estimation, an initial value selection algorithm with multiple strategies
and the L-BFGS-B optimization method are proposed.

2.3.1. Multi-Strategy Initial Value Selection Algorithm

In the EM algorithm, the choice of initial values is crucial. Poor initial values may
cause the algorithm to converge to local optima or require more iterations to reach the
global optimum. To address this, a multi-strategy initial value selection algorithm based on
the Mahalanobis distance is developed to increase the diversity and robustness of the initial
values. This ensures that the initial parameters comprehensively cover the distribution
characteristics of the data, thereby improving the stability and convergence efficiency of
the EM algorithm.

The algorithm for initial value selection is described as follows:
Step 1: Calculate the theoretical time range.
For each segment l, the theoretical minimum travel time τmin

l and maximum travel
time τmax

l are calculated by τmin
l = ls

vmax
and τmax

l = ls
vmin

, where ls is the length of segment
l, vmin is the minimum speed limit for the segment (taken as 20 km/h in this study), and
vmax is the maximum speed limit for the segment (taken as 135 km/h in this study). The
initial mean range is set as µl ∈ [τmin

l , τmax
l ] and the initial standard deviation range is set

as σmax =
τmax

l −τmin
l

3 .
Step 2: Generate candidate parameters based on multiple strategies.
Strategy 1: Equidistant sampling rule-based candidate parameter generation.
Within the specified mean range [τmin

l , τmax
l ], W equidistant values are uniformly

sampled to estimate the mean using the following:

µrules
l =

{
τmin

l +
a

W − 1
· (τmax

l − τmin
l ), a = 0, 1, . . . , W − 1

}
(11)
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Within the standard deviation range [0, σmax], W equidistant values are uniformly
sampled to estimate the standard deviation using the following:

σrules
l =

{
0 +

a
W − 1

· σmax, a = 0, 1, . . . , W − 1
}

(12)

The candidate parameter set Srules is generated by combining the means and standard
deviations as follows:

Srules =
{
(µ, σ) | µ ∈ µrules

l , σ ∈ σrules
l

}
(13)

Strategy 2: Random candidate parameter generation.
The Υ values for the mean are sampled randomly within the range [τmin

l , τmax
l ] and the

Υ values for the standard deviation are sampled randomly within the range [0, σmax].
The candidate parameter set Srandom is generated by combining the means and stan-
dard deviations as follows:

Srandom = {(µ, σ) | µ randomly generated, σ randomly generated} (14)

Step 3: Filter candidate parameters using the Mahalanobis distance.
For each candidate parameter (µ, σ), the Mahalanobis distance Ml is computed as follows:

Ml =

√√√√ (µ − µglobal)2

σ2
global

(15)

where the theoretical mean center is µglobal =
τmin

l +τmax
l

2 , and the theoretical maximum
standard deviation is σglobal = σmax.

The candidate parameters are then sorted in descending order of the Mahalanobis
distance, and the top three candidates are selected as follows:

Sselected = Top-3(Srules ∪ Srandom, Ml) (16)

Step 4: Compute the final initial parameters.
For each selected candidate parameter (µi, σi) in Sselected, the weight ϕi is computed

as follows:
ϕi =

Mi

∑j∈Sselected
Mj

(17)

The initial mean µ(0) is computed as follows:

µ(0) = ∑
i∈Sselected

ϕi · µi (18)

and the initial standard deviation σ(0) is computed as follows:

σ(0) =

√
∑

i∈Sselected

ϕi · σ2
i (19)

2.3.2. EM Algorithm with L-BFGS-B Optimization

To further enhance the convergence speed and stability of the EM algorithm, the
L-BFGS-B optimization method is integrated into the Maximization (M)-step. The overall
algorithm flow is described as follows:

Step 1: Initial value selection.
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The multi-strategy initial value selection algorithm is employed to determine the
initial values −→µ (0) and −→σ (0).

Step 2: E-step—posterior probability calculation.
For a given observed trip with travel time yt

i , origin–destination, and vehicle type
information, the prior probability of path k is λi

k. The likelihood of the observed travel time
yt

i , given path k, is P(yt
i |k,−→µt ,−→σt ). Therefore, the posterior probability γi

k of path k being
selected is computed as follows:

γi
k =

λi
kP(yt

i |k,−→µt ,−→σt )

∑s∈Ri
λi

sP(yt
i |s,−→µt ,−→σt )

(20)

The initial value of this parameter can be computed directly from the initialized −→µ (0)

and −→σ (0).
Step 3: M-step—maximizing the Q-function.
The expected log-likelihood function Q(−→µt ,−→σt ) is the conditional expectation of the

model parameters based on the posterior probabilities calculated in the E-step. Specifically,
Q(−→µt ,−→σt ) is given by the following:

Q(−→µt ,−→σt ) =
1
N

N

∑
i=1

∑
k∈Ri

γi
k

[
ln λi

k + ln P(yt
i |k,−→µt ,−→σt )

]
(21)

The task in this step is to maximize the function Q. Due to travel speed limits, the
range of the travel time is constrained. The maximum speed corresponds to the minimum
travel time τmin

l , and the minimum speed corresponds to the maximum travel time τmax
l .

The standard deviation −→σt is a non-negative value. Therefore, the optimization problem
can be expressed as follows:

max Q(−→µ t,
−→σ t)

s.t.

{
τmin

l ≤ µt
l ≤ τmax

l
σt

l ≥ 0
(22)

Step 4: Optimization using L-BFGS-B.
The L-BFGS-B algorithm is employed to solve the constrained optimization problem

defined in Step 3. The algorithm proceeds as follows:
Step 4.1: Initialization.
Let f (x) = Q(−→µ t,

−→σ t), initialize the starting point x0 = (−→µ (0),−→σ (0)), set the tolerance
ε > 0, store the number of recent iterations as u = 6, set the current iteration number j = 0,
and define the maximum iteration number jmax. The Hessian matrix is initialized as the
identity matrix H0 = I, and the initial gradient change is set as r = ∇ f (x0).

Step 4.2: Convergence check.
If the condition ∥∇ f (xj+1)∥ ≤ ε is satisfied, the algorithm terminates and returns the

optimal solution xj+1. Otherwise, proceed to Step 4.3.
Step 4.3: Compute search direction.
Calculate the feasible direction for this iteration as pj = −rj, and perform a one-

dimensional line search to find the step size ρj > 0 that minimizes the function f (xj + ρj pj)

as follows:
ρj = arg min

ρ≥0
f (xj + ρpj) (23)

Step 4.4: Update the parameters.
Update the parameter values using xj+1 = xj + ρj pj.
Step 4.5: Maintain limited memory.
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When j > u, retain only the most recent u vector pairs and discard the information
related to (zj−u, cj−u).

Step 4.6: Update the Hessian approximation.
Compute the difference zj = xj+1 − xj and the gradient difference cj = ∇ f (xj+1)−

∇ f (xj). These are used to approximate the inverse of the Hessian matrix, and the updated
gradient is calculated as rj = Hj∇ f (xj).

Step 4.7: Increment iteration number.
Increment the iteration number j = j + 1. If j > jmax, terminate the algorithm.

Otherwise, return to Step 4.2.
Step 5: Parameter update and convergence.
Update the values of−→µt and−→σt , and repeat Steps 2 through 4 until the Q function converges.

3. Results
The computational experiments in this study are performed on a high-performance

workstation featuring 64 GB of RAM and an NVIDIA A6000 graphics card. The software
environment is configured with Python 3.8, CUDA 11.8, and PyTorch 2.5 to ensure the
compatibility and optimal performance of the neural network models. Firstly, a vehicle
trajectory dataset is constructed. Secondly, a vehicle path choice model is trained using
complete trajectories. Thirdly, the parameters of a GMM are estimated based on the data
with missing trajectories and validated using complete trajectory data. Finally, the effective-
ness of the proposed path reconstruction method is demonstrated through comparisons
with other approaches.

3.1. Dataset
3.1.1. Vehicle Trajectory Dataset

Five highways in China—G4011, G4221, S19, G15, and S28—are included in this study,
as shown in Figure 1. The study area includes 244 bidirectional road segments with a
total length of approximately 2000 km. The road segments are represented by blue lines,
with each segment demarcated by gantries located at its origin. These gantries mark the
endpoints of each road segment, thus defining a complete segment of the highway between
two consecutive gantries.

Figure 1. Spatial scope of the case study.

Data collected from HD cameras and ETC/CPC sensors were integrated to enhance
the density and accuracy of the vehicle trajectory data. The specific algorithmic process for
data fusion is outlined as follows.

Vehicle identity determination: The vehicle’s identity is established by combining
LPR and Vehicle Re-Identification (Re-ID) [31]. Initially, license plates are detected and
recognized using LPR, and all associated vehicle records corresponding to the identified
plate number are retrieved from the database. Simultaneously, the visual features of the
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vehicle, such as color, shape, and texture, are extracted through Re-ID, and matching
records are obtained based on similarity measures. Furthermore, the resultant data are
organized into a structured table comprising the following five fields: vehicle_id, timestamp,
gantry_id, gantry_longitude, and gantry_latitude.

ETC/CPC data organization: Data obtained from ETC/CPC sensors are organized
into records of the same form.

Chronological sorting: All records from the Vehicle Identity Determination and
ETC/CPC Data Organization for each vehicle are sorted by timestamp in ascending order.
This chronological ordering prepares the data for the subsequent merging processes.

Record merging: For each vehicle, adjacent records with the same gantry_id are
merged, and the timestamp is updated by averaging the timestamps of the merged records.

Vehicle type classification: Vehicle type features are extracted from vehicle image
data using a lightweight Convolutional Neural Network (CNN) method [32]. Vehicles are
categorized into the following four classes:

• Light-Duty Passenger Vehicles (LPV)
• Coaches or Large Buses (LB)
• Light-Duty Trucks (LT)
• Heavy-Duty Trucks (HT)

Through the processing of the above steps, the resulting Vehicle Trajectory Dataset
(VTD) is constructed. The dataset comprises the following six fields: vehicle_id, timestamp,
gantry_id, gantry_longitude, gantry_latitude, and vehicle_type. A comprehensive dataset
comprising approximately 150,000 vehicle trajectories is collected for this study over a
three-day period from 1 February to 3 February 2024. Data acquisition occurred daily
between 07:00 and 17:00 h within the spatial boundaries previously delineated. A total of
44,702 trajectories are complete and the distribution of the number of trajectory points n
is shown in Figure 2. The largest proportion of trajectories (46.73%) contains exactly two
trajectory points, as indicated by the segment labeled n = 2. The second-largest group
(30.87%) includes vehicles with between two and six trajectory points, followed by vehicles
with between five and nine trajectory points (14.1%). Smaller proportions of complete tra-
jectories fall into the other categories, including those with between 8 and 12 points (5.28%)
and those with more than 14 points (0.9%). This dataset provides a robust foundation for
analyzing traffic patterns and validating the proposed path reconstruction model.

For the remaining vehicles, trajectory point pairs are extracted sequentially. Specifi-
cally, if a vehicle has m observed trajectory points, m− 1 trajectory point pairs are generated.
Based on the shortest path principle, the number of missing trajectory points between each
pair n_lack is determined, with the results presented in Figure 3. Most of the vehicles
(57.28%) have between zero and four missing trajectory points. The second-largest propor-
tion (31.12%) has between three and seven missing points. Smaller percentages of vehicles
have more than 7 missing points, with 9.32% falling within the 6 to 10 missing point range
and 1.74% falling within the 9 to 13 missing point range. Only a small fraction (0.54%) have
more than 12 missing trajectory points.

Figure 2. Distribution of the number of complete trajectories.
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Figure 3. Distribution of missing trajectory points between trajectory point pairs.

3.1.2. Candidate Path Dataset

For each observed trip record, a candidate path set Ri is constructed through a system-
atic process comprising historical path selection, the application of the K-Shortest Paths
(KSP) algorithm [33], and path set construction.

Historical path selection: Multiple distinct paths between the origin and destination
points are identified from historically observed data, specifically derived from the complete
trajectories mentioned above. The number of these historical paths is denoted as nk, and
they are ordered by increasing path length.

KSP algorithm: The KSP algorithm is applied to the road network data to obtain the
shortest K paths between the OD pairs, ensuring that K ≥ nk.

Path set construction: The nk observed historical paths are retained. The remain-
ing K − nk paths, which are not present in the observed set, are selected from the KSP-
derived shortest paths and incorporated into the candidate path set in order of increasing
path length.

Consequently, the final candidate path set Ri comprises K paths, combining both the
observed historical paths and the additional paths obtained through the KSP algorithm.
Except for the sensitivity analysis conducted on K, a value of K = 4 was employed
throughout this study.

3.1.3. Dataset for the Path Choice Model

Complete vehicle trajectories were utilized to train the path choice model. The path
choice model outputs path encodings from the set of candidate paths using one-hot en-
coding. The input features include the length of the path, travel time, level of congestion,
vehicle type, and the straight-line distance between the origin and destination. Travel
time and vehicle type can be obtained from the complete vehicle trajectories directly. The
straight-line distance between the origin and destination can be computed using the Haver-
sine formula [34] with the unit in kilometers (km). The length of the path can be calculated
as the sum of segment lengths between adjacent trajectory points. For a complete road
network, Dijkstra’s algorithm can be directly used for the computation.

To calculate the level of congestion, road operation speed data from Amap are intro-
duced. These data, based on floating vehicles, provide information on the average vehicle
speed for each road segment during each time period in the road network.

The level of congestion is quantified using a congestion index. For a given road
segment, the congestion index during a specific time period is defined as the ratio of 85% of
the segment’s speed limit to the average traffic speed during that time period. Specifically,
the congestion index Cl for segment l is expressed as follows:

Cl =
0.85 · Vmax,l

Vavg,l
(24)

where Vmax,l represents the speed limit of segment l, and Vavg,l denotes the average traffic
speed on segment l during the given time period.
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To evaluate the overall congestion level of a path, the weighted sum of the congestion
indices of all segments along the path is calculated. The weights are proportional to the
lengths of segments relative to the total path length. The congestion level Ck for a path k is
thus defined as follows:

Ck =
∑l∈k Cl · Ll

Lk
(25)

where Ll is the length of segment l, and Lk = ∑l∈k Ll is the total length of path k.

3.2. Evaluation Indicators

This study defines three metrics to assess the performance of the two-stage model.
In stage one, a weighted 95% confidence interval coverage ratio ratio95 is employed to
evaluate the estimated vehicle travel time parameters for each road segment. This ratio
quantifies the proportion of observed travel time that falls within the 95% confidence
interval of the Gaussian distribution. A coverage ratio exceeding 95% indicates that the
travel time parameters estimated by the GMM are accurate.

ratio95 is defined as follows:

ratio95 =

∑
l∈L

ratiol
95 × nl

∑
l∈L

nl
(26)

where L is the set of all road segments in the road network, nl is the number of vehicles

passing through road segment l, ratiol
95 =

nl
95

nl
, nl

95 is the number of vehicles passing
through road segment l whose travel time fall within the 95% range.

In stage two, two metrics are utilized to evaluate the reconstructed paths. The Mean
Absolute Percentage Error (MAPE) was introduced to evaluate the deviation between the
sum of the segment travel time along the most probable path, calculated based on the OD
pair and the observed values. The calculation formula was as follows:

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣ gi
k(
−→µ t)− yt

i
yt

i

∣∣∣∣∣× 100% (27)

The MAPE value approaching 0 signifies that the travel time of the reconstructed
path is nearly identical to that of the observed path, thereby indicating superior reconstruc-
tion performance.

The spatial similarity between the reconstructed path and the original path was
quantified using the Weighted Overlap Length Ratio (WOLR). The calculation formula
was as follows:

WOLR =

N
∑

i=1

Lcommon(ki ,kj)si
Lcommon(ki ,kj)+Ldi f f erent(ki ,kj)

N
∑

i=1
si

(28)

where si is the total length of path ki, path k j is the reconstructed path, Lcommon is the
total length of road segments that are shared between path ki and k j, and Ldi f f erent is the
total length of road segments that are unique to either path ki or path k j. The WOLR is
bounded between 0 and 1. A WOLR value of 1 denotes that the two paths are identical in
their spatial trajectories, whereas a WOLR value of 0 indicates that the two paths have no
overlapping segments.
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3.3. Parameter Estimation Performance for Road Segment Travel Time

Complete vehicle trajectories are utilized to train the path choice model, comprising
a training set of 35,762 paths and a testing set of 8940 paths. The model architecture is
configured with eight attention heads H = 8, a feature vector dimensionality dk = 5,
three FNN layers, and 128 neurons per hidden layer. The Rectified Linear Unit (ReLU)
is employed as the activation function. Training is conducted over 500 epochs using the
Adam optimizer with a learning rate of 0.005 and a batch size of 32. This configured path
choice model is denoted as M and serves as a foundational component supporting the
GMM for accurate path reconstruction.

Since the proposed method targets relatively short time intervals, such as 30 min,
vehicle trajectories on the road network during the half-hour period from 7:30 to 8:00 a.m.
on 2 February 2024 are selected as an example for analysis. During this time period, the
road network comprises 2790 vehicles with complete trajectories and 7659 vehicles with
incomplete trajectories. For the 7659 vehicles with incomplete trajectory data, features such
as OD, travel time, vehicle type, and the congestion index were extracted. By integrating
these features into a set of candidate paths, the prior probabilities λk for the selection of
each path are determined. These prior probabilities are incorporated into the GMM, and
the EM algorithm is applied to estimate the travel time parameters for each road segment.
The dataset containing 2790 vehicles with complete trajectories is utilized for validation.

To demonstrate the superiority of the proposed EM algorithm with multi-strategy
initial value selection and L-BFGS-B, a comparison is conducted with the traditional EM
algorithm [35,36] which randomly selected initial values and does not utilize the L-BFGS-
B algorithm for optimizing the Q function. The results are presented in Figure 4. The
traditional EM algorithm (represented by the blue curve) shows a relatively smooth decline
in the early iterations, but the rate of decrease slows down in the later stages, requiring a
total of 41 iterations to reach stability. In contrast, the improved EM algorithm (represented
by the orange curve) demonstrates a rapid decline in the early iterations and converges
within 17 iterations, indicating a significant acceleration in convergence. The quick descent
and early stability of the improved algorithm highlight its superiority, while the slow
convergence of the traditional algorithm underscores its limitations.

Figure 4. Comparison of EM algorithm performance.

The mean and standard deviation of the travel time for each road segment estimated by
the GMM are validated using the dataset comprising 2790 complete vehicle trajectories. The
result shows that ratio95 = 0.965, surpassing the 95% confidence threshold. This indicates
that the mean and standard deviation of travel time for each road segment estimated by
the GMM align well with the actual conditions.
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3.4. Performance of Path Reconstruction

Intermediate trajectory points in the complete path data are excluded, retaining only
the origin and destination points along with the travel duration. Using the path reconstruc-
tion model, each record’s path is restored.

When the range of missing trajectory points is between [1, 3], all 1000 samples are
accurately reconstructed. When the range of missing trajectory points is between [4, 6],
all 1000 samples are also accurately reconstructed. For the range of missing trajectory
points between [7, 9], 488 out of 500 samples are accurately reconstructed. When the range
of missing trajectory points is between [10, 12], 192 out of 200 samples are accurately
reconstructed. For cases where the range of missing trajectory points exceeds 12, 73
out of 90 samples are accurately reconstructed. Overall, the path reconstruction shows
satisfactory performance.

The average travel time of the road segments along the reconstructed path are then
summed to calculate the path’s average travel time. This estimated travel time is compared
to the observed value, and the MAPE is subsequently calculated. The results are illustrated
in Figure 5.

Figure 5. Path travel time deviation characteristics under different numbers of missing trajec-
tory points.

When the number of missing trajectory points ranged from one to three, a sample
size of 1000 yields a MAPE of 9.22%. For missing point counts between four and six, the
sample size remains at 1000, resulting in a MAPE of 8.73%. When the number of missing
points increased to a range from seven to nine, the sample size decreased to 500, with a
corresponding MAPE of 5.64%. In cases where missing points ranged from 10 to 12, the
sample size was 200, and the MAPE was 4.98%. Lastly, for missing point counts of 13 or
more, the sample size was 90, and the MAPE was 5.47%.

The MAPE analysis revealed that as the number of missing trajectory points increases,
the overall MAPE initially decreases. However, when the number of missing points
exceeds 12, a significant rise in MAPE becomes evident. In cases with a small number
of missing points, both the travel path length and the average travel time are relatively
short. Consequently, minor fluctuations in the observed data under these conditions can
lead to higher MAPE values. Conversely, when the number of missing points is large (e.g.,
exceeding 12), the uncertainty in path selection becomes substantial, potentially resulting in
reconstructed paths that do not accurately reflect the actual routes taken. This discrepancy
leads to a considerable deviation between the travel time calculated based on average
segment durations and the observed travel time, thereby increasing the MAPE.

3.5. Comparison of Methods

To demonstrate the superiority of the GMM, two comparison methods are selected
as follows: Shortest Path (SP) and Bidirectional Long Short-Term Memory (Bi-LSTM) [13].
The SP is a method currently employed in highway toll management. It involves directly
obtaining the shortest spatial distance between the start and end points in the road network
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and identifying the path that corresponds to this shortest distance. Bi-LSTM adds a
bidirectional mechanism to the LSTM model. It inherits LSTM’s ability to learn sequential
data while enhancing its capacity to integrate bidirectional information from the sequence.
The forward layer learns from front to back, and the backward layer learns from back to
front. The information learned by both layers is then combined into a single output. In
this problem, Bi-LSTM not only learns the node sequence but also incorporates the spatial
geographic coordinates of each node to improve prediction performance.

We use ARPM/ERPM as abbreviations for the number of paths accurately/erroneously
reconstructed using the method proposed in this paper. We use ARBL/ERBL as abbrevia-
tions for the number of paths accurately/erroneously reconstructed using the Bi-LSTM. To
provide a detailed evaluation of each method’s effectiveness in reconstructing actual paths,
Tables 1–5 present the number of correctly reconstructed paths achieved by three different
methods under varying numbers of missing trajectory points.

Since all observed paths in the dataset are the shortest paths where the number of
missing trajectory points does not exceed three, the accuracy rate of using the shortest path
reconstruction method is 100%. The accuracy rate of reconstruction using the proposed
method is 100%. The reconstruction accuracy based on Bi-LSTM is 97.8%, with 22 paths
inaccurately reconstructed.

When the number of missing points is in the range [4, 6], there are 993 shortest paths
in the observed dataset. The proposed method accurately reconstructs 1000 of these paths,
resulting in an accuracy rate of 100%. The performance of the Bi-LSTM method is 89.1%
and the SP method’s accuracy is 99.3%.

For missing point counts in the range [7, 9], the observed dataset includes 475 shortest
paths. The proposed method accurately reconstructs 464 of these paths, yielding an accuracy
rate of 97.7%. Among the 25 observed non-shortest paths, 24 are accurately reconstructed,
resulting in an accuracy rate of 96%. The overall reconstruction accuracy for this range is
97.6%. The Bi-LSTM method’s accuracy rate is 82% and the SP reconstruction accuracy
is 95%.

When the number of missing points is in the range [10, 12], the observed dataset com-
prises 176 shortest paths. The proposed method accurately reconstructs 172 of these paths,
achieving an accuracy rate of 97.7%. Among the 24 observed non-shortest paths, 20 are
accurately reconstructed, resulting in an accuracy rate of 83.3%. The overall reconstruction
accuracy for this range is 96.0%. The Bi-LSTM method’s accuracy rate is 82.5% and the SP
reconstruction accuracy is 88%.

For missing point counts of 13 or more, the observed dataset includes 71 shortest
paths. The proposed method accurately reconstructs 59 of these paths, yielding an accuracy
rate of 83.1%. Among the 19 observed non-shortest paths, 14 are accurately reconstructed,
resulting in an accuracy rate of 73.7%. The overall reconstruction accuracy for this range is
81.1%. The SP reconstruction accuracy is 78.9% and the Bi-LSTM method’s accuracy rate
is 71.1%.

Table 1. Path reconstruction performance for missing trajectory points in the range [1, 3].

Observed Shortest Paths Counts Observed Non Shortest Paths Counts Total

ARPM 1000 0 1000
ERPM 0 0 0
ARBL 978 0 978
ERBL 0 22 22
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Table 2. Path reconstruction performance for missing trajectory points in the range [4, 6].

Observed Shortest Paths Counts Observed Non Shortest Paths Counts Total

ARPM 993 7 1000
ERPM 0 0 0
ARBL 888 3 891
ERBL 105 4 109

Table 3. Path reconstruction performance for missing trajectory points in the range [7, 9].

Observed Shortest Paths Counts Observed Non Shortest Paths Counts Total

ARPM 464 24 488
ERPM 11 1 12
ARBL 397 13 410
ERBL 78 12 90

Table 4. Path reconstruction performance for missing trajectory points in the range [10, 12].

Observed Shortest Paths Counts Observed Non Shortest Paths Counts Total

ARPM 172 20 192
ERPM 4 4 8
ARBL 157 8 165
ERBL 19 16 35

Table 5. Path reconstruction performance for missing trajectory points exceeding 12.

Observed Shortest Paths Counts Observed Non Shortest Paths Counts Total

ARPM 59 14 73
ERPM 12 5 17
ARBL 55 9 64
ERBL 16 10 26

The WOLR of three methods under different numbers of missing trajectory points are
shown in Figure 6. For missing trajectory counts between one and three, both the proposed
method and SP achieved a perfect WOLR of 1.0, while Bi-LSTM attained a WOLR of 0.991.
In the range from four to six missing points, the proposed method maintained WOLR = 1.0,
SP achieved 0.994, and Bi-LSTM’s WOLR was 0.966. As the number of missing points
increased to 7–9, the proposed method’s WOLR slightly decreased to 0.992, compared to
SP’s 0.966 and Bi-LSTM’s 0.923. For missing points ranging from 10 to 12, the proposed
method achieved 0.985, SP reached 0.925, and Bi-LSTM recorded 0.881. Finally, in cases
with more than 12 missing points, the proposed method maintained a high WOLR of 0.923,
outperforming SP at 0.844 and Bi-LSTM at 0.828.

Figure 6. Comparison of WOLR.
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3.6. Sensitivity Analysis

To further investigate the impact of the number of candidate paths on reconstruction
accuracy, the number of candidate paths was varied from three to ten, in increments of
one. A sensitivity analysis was conducted for our proposed method, specifically when
the number of missing points surpassed thirteen. The results are presented in Figure 7. It
illustrates that WOLR peaks at K = 4 with 0.923 and gradually decreases as K increases,
reaching 0.778 at K = 10. This trend suggests that an optimal number of candidate paths
exists for maximizing reconstruction accuracy, beyond which the accuracy decreases.

Figure 7. WOLR varies with K.

4. Discussion
The results of this study demonstrate the effectiveness of the proposed method in

accurately estimating road segment travel times and reconstructing vehicle paths, especially
in scenarios with a significant number of missing trajectory points.

In terms of path reconstruction accuracy, the proposed method consistently outper-
forms both the SP and Bi-LSTM methods. When the number of missing trajectory points
is three or fewer, both the SP method and the proposed method achieve perfect path
reconstruction accuracy (100%). However, when the number of missing points exceeds
three, the proposed method outperformed both the SP and Bi-LSTM methods in terms of
path reconstruction accuracy. As the number of missing points increased, the accuracy
of path restoration decreased for all methods. Nonetheless, the decrease in accuracy is
more pronounced for the SP and Bi-LSTM methods compared to the proposed method.
On the one hand, when the number of missing trajectory points is minimal, the dispar-
ities in path lengths among candidate routes are significant, thereby conferring a clear
advantage to the SP method. Conversely, as the number of missing points increases, the
distinctions between candidate paths diminish, and the lengths of multiple routes become
comparable. In such cases, factors like path congestion exert a substantial influence on
path selection, resulting in decreased accuracy for the SP method. Although the Bi-LSTM
model is adept at capturing temporal dependencies and contextual information within
paths, it does not fully leverage the structural information of the road network graph. This
limitation leads to reduced efficiency and accuracy in path reconstruction tasks compared
to graph-based algorithms.

The trend of the WOLR metric aligns with the proportion of accurately reconstructed
paths, and its values do not fall below the proportion of accurate reconstructions (Figure 7).
This indicates that, although the paths are not entirely reconstructed accurately, certain
segments within the paths are successfully reconstructed. When the number of missing
trajectory points exceeds twelve, the WOLR of path reconstruction significantly decreases.
This decline is primarily attributed to the increased number of potential actual paths as the
travel distance extends, which affects the reconstruction accuracy of all methods to varying
degrees.The sensitivity analysis indicated that the optimal number of candidate paths K for
maximizing path reconstruction accuracy is four (Figure 7). Increasing K beyond four led
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to a decrease in WOLR, likely due to the inclusion of non-viable paths that introduce noise
and complicate the reconstruction process. This reduction is primarily due to the inclusion
of an excessive number of non-viable paths, which causes the observed travel time to more
closely resemble those of incorrect routes. Consequently, the presence of these interference
paths complicates the reconstruction process, diminishing the overall effectiveness of the
model. This highlights the necessity of selecting an appropriate number of candidate paths
to balance model complexity and accuracy.

The study results indicate that although the proposed algorithm performs well in most
scenarios, its accuracy decreases as the number of missing intermediate points increases.
On the one hand, the precision of path reconstruction can be enhanced by deploying
additional detection facilities on highways to obtain more comprehensive data and by
employing segmented fitting methods. On the other hand, in cases with a significant
number of missing trajectory points, integrating supplementary data sources, such as
vehicle navigation data from map providers, can further improve the accuracy of vehicle
path reconstruction.

5. Conclusions
This study presents a novel two-stage path reconstruction model that integrates GMM

into a self-attention-enhanced neural network to accurately infer vehicle trajectories from
sparse and incomplete data. In the first stage, the model estimates the mean and standard
deviation of travel time for each road segment using an EM algorithm, effectively capturing
the inherent uncertainties in vehicle behavior. In the second stage, these time estimates
are combined with path choice probabilities through maximum likelihood estimation to
reconstruct the most probable vehicle paths. Comprehensive experiments conducted on
a large-scale vehicle trajectory dataset validate the robustness and effectiveness of the
proposed model in handling missing trajectory data.

The contributions of this research are threefold. First, the proposed two-stage model
enhances path reconstruction accuracy by integrating spatial and temporal factors, improv-
ing flexibility in handling incomplete trajectory data. Second, an optimized EM algorithm
incorporating a novel initial value selection method and the L-BFGS-B optimization algo-
rithm accelerates convergence, enhancing computational efficiency. Third, the integration
of vehicle re-identification technology with traditional license plate recognition methods
contributes to constructing a reliable vehicle trajectory dataset, mitigating issues such as
unregistered or counterfeit license plates.

These advancements not only facilitate more precise vehicle path reconstructions
but also hold implications for enhancing traffic management, urban planning, and smart
transportation systems.
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