Double Security Level Protection Based on Chaotic Maps and SVD for Medical Images
<p>The proposed security scheme.</p> "> Figure 2
<p>The proposed JEW scheme.</p> "> Figure 3
<p>Encryption results: (<b>a</b>) original images, (<b>b</b>) encrypted images, (<b>c</b>) decrypted and watermarked images, (<b>d</b>) original histograms, (<b>e</b>) encrypted histograms.</p> "> Figure 4
<p>Discussion of the selective encryption: (<b>a</b>) original medical images, (<b>b</b>) permutation in the LL subband, (<b>c</b>) diffusion with SVD operation, (<b>d</b>) diffusion with bitxor operation, (<b>e</b>) decrypted images.</p> ">
Abstract
:1. Introduction
- (1)
- The JEW scheme offers a technology of two-layer security for medical images. The watermark can be embedded/extracted in the encrypted domain to ensure privacy and security.
- (2)
- The JEW scheme can provide fast requirements for content secure sharing in smart healthcare systems.
- (3)
- A controllable security level based on selective encryption can be designed for smart healthcare systems.
2. Basic Theory of the Proposed Scheme
2.1. The DWT
2.2. Singular-Value Decomposition
2.3. Secure Hash Algorithm (SHA-3)
2.4. Chaotic System
2.5. Combination of Encryption and Watermarking Technology
3. The Proposed Scheme
Algorithm 1: The JEW algorithm |
Input: original medical image, I Output: encrypted and watermarked medical image,
|
3.1. Keystream Generation
3.2. Coefficient Permutation and Watermarking
3.3. Coefficient Diffusion
Algorithm 2: The decryption algorithm |
Input: Encrypted medical image, Output: Watermarked medical image,
|
Algorithm 3: The watermark extraction algorithm |
Input: Encrypted medical image, Output: Watermark,
|
4. Experiment Results and Discussion
4.1. Perceptual Effect
4.2. Ability to Resist Exhaustive Attack
4.3. Histogram Analysis
4.4. Information Entropy Analysis
4.5. Differential Attack Analysis
4.6. PSNR
NPCR | UACI | |||||
---|---|---|---|---|---|---|
b | c | d | b | c | d | |
1 | 0.9955 | 0.9948 | 0.9936 | 0.3305 | 0.3315 | 0.3328 |
2 | 0.9947 | 0.9938 | 0.9949 | 0.3296 | 0.3321 | 0.3362 |
3 | 0.9939 | 0.9942 | 0.9936 | 0.3287 | 0.3314 | 0.3326 |
4 | 0.9958 | 0.9943 | 0.9939 | 0.3385 | 0.3397 | 0.3315 |
5 | 0.9947 | 0.9951 | 0.9942 | 0.3325 | 0.3308 | 0.3311 |
4.7. Encryption Process Discussion
4.8. Encryption and Watermarking Efficiency
4.9. Encryption Comparison Analysis
4.10. Secret Key Space Comparison
4.11. Watermarking Comparison Analysis
4.12. Image Security Scheme Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IoMT | Internet of Medical Things |
SVD | Singular-Value Decomposition |
DWT | Discrete Wavelet Transform |
IDWT | Inverse DWT |
JEW | Joint Encryption and Watermarking |
SHA | Secure Hash Algorithm |
2D-HSM | 2D Hénon–Sine map |
HNN | Hopfield Neural Network |
NPCR | Number of Pixel Change Rate |
UACI | Uniform Average Change Intensity |
PSNR | Peak Signal-to-Noise Ratio |
DNA | Deoxyribonucleic Acid) |
NC | Correlation Coefficient |
2D-CHSLM | 2D Cross-Hyperchaotic Sine-Modulation-Logistic Map |
FOMHS | Fractional-Order Memristive Hyperchaotic System |
References
- Almas, A.; Iqbal, W.; Altaf, A.; Saleem, K.; Mussiraliyeva, S.; Iqbal, M.W. Context-Based Adaptive Fog Computing Trust Solution for Time-Critical Smart Healthcare Systems. IEEE Internet Things J. 2023, 10, 10575–10586. [Google Scholar] [CrossRef]
- Sarosh, P.; Parah, S.A.; Malik, B.A.; Hijji, M.; Muhammad, K. Real-Time Medical Data Security Solution for Smart Healthcare. IEEE Trans. Ind. Inform. 2023, 19, 8137–8147. [Google Scholar] [CrossRef]
- Qu, Z.; Meng, Y.; Liu, B.; Muhammad, G.; Tiwari, P. QB-IMD: A Secure Medical Data Processing System With Privacy Protection Based on Quantum Blockchain for IoMT. IEEE Internet Things J. 2024, 11, 40–49. [Google Scholar] [CrossRef]
- Anand, A.; Singh, A.K. Dual Watermarking for Security of COVID-19 Patient Record. IEEE Trans. Dependable Secur. Comput. 2023, 20, 859–866. [Google Scholar] [CrossRef]
- Huang, J.; Cui, Q.; Zhou, Z.; Yu, K.; Yang, C.N.; Choo, K.K.R. Encrypted Domain Secret Medical-Image Sharing With Secure Outsourcing Computation in IoT Environment. IEEE Internet Things J. 2024, 11, 2382–2393. [Google Scholar] [CrossRef]
- Anand, A.; Singh, A.K. Hybrid Nature-Inspired Optimization and Encryption-Based Watermarking for E-Healthcare. IEEE Trans. Comput. Soc. Syst. 2023, 10, 2033–2040. [Google Scholar] [CrossRef]
- Ping, P.; Wei, P.; Fu, D.; Guo, B.; Bloh, O.T.; Xu, F. IMIH: Imperceptible Medical Image Hiding for Secure Healthcare. IEEE Trans. Dependable Secur. Comput. 2024, 21, 4652–4667. [Google Scholar] [CrossRef]
- Meng, B.; Yuan, X.; Zhang, Q.; Lam, C.T.; Huang, G. Encryption-then-embedding-based hybrid data hiding scheme for medical images. J. King Saud Univ.-Comput. Inf. Sci. 2024, 36, 101932. [Google Scholar] [CrossRef]
- Chai, X.; Tang, Z.; Gan, Z.; Lu, Y.; Wang, B.; Zhang, Y. SE-NDEND: A novel symmetric watermarking framework with neural network-based chaotic encryption for Internet of Medical Things. Biomed. Signal Process. Control 2024, 90, 105877. [Google Scholar] [CrossRef]
- Nawaz, S.A.; Li, J.; Bhatti, U.A.; Shoukat, M.U.; Li, D.; Raza, M.A. Hybrid watermarking algorithm for medical images based on digital transformation and MobileNetV2. Inf. Sci. 2024, 653, 119810. [Google Scholar] [CrossRef]
- Mao, J.; Tang, H.; Lyu, S.; Zhou, Z.; Cao, X. Content-Aware Quantization Index Modulation: Leveraging Data Statistics for Enhanced Image Watermarking. IEEE Trans. Inf. Forensics Secur. 2024, 19, 1935–1947. [Google Scholar] [CrossRef]
- Wang, M.; Teng, L.; Zhou, W.; Yan, X.; Xia, Z.; Zhou, S. A new 2D cross hyperchaotic Sine-modulation-Logistic map and its application in bit-level image encryption. Expert Syst. Appl. 2025, 261, 125328. [Google Scholar] [CrossRef]
- Kocak, O.; Erkan, U.; Toktas, A.; Gao, S. PSO-based image encryption scheme using modular integrated logistic exponential map. Expert Syst. Appl. 2024, 237, 121452. [Google Scholar] [CrossRef]
- Toktas, F.; Erkan, U.; Yetgin, Z. Cross-channel color image encryption through 2D hyperchaotic hybrid map of optimization test functions. Expert Syst. Appl. 2024, 249, 123583. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, Y.; Zhou, N.; Xu, X.; Mou, J. Novel discrete initial-boosted Tabu learning neuron: Dynamical analysis, DSP implementation, and batch medical image encryption. Appl. Intell. 2025, 55, 61. [Google Scholar] [CrossRef]
- Feng, W.; Wang, Q.; Liu, H.; Ren, Y.; Zhang, J.; Zhang, S.; Qian, K.; Wen, H. Exploiting Newly Designed Fractional-Order 3D Lorenz Chaotic System and 2D Discrete Polynomial Hyper-Chaotic Map for High-Performance Multi-Image Encryption. Fractal Fract. 2023, 7, 887. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, J.; Chen, Y.; Qin, Z.; Zhang, Y.; Ahmad, M.; Wozniakd, M. Exploiting robust quadratic polynomial hyperchaotic map and pixel fusion strategy for efficient image encryption. Expert Syst. Appl. 2024, 246, 123190. [Google Scholar] [CrossRef]
- Feng, W.; Yang, J.; Zhao, X.; Qin, Z.; Zhang, J.; Zhu, Z.; Wen, H.; Qian, K. A Novel Multi-Channel Image Encryption Algorithm Leveraging Pixel Reorganization and Hyperchaotic Maps. Mathematics 2024, 12, 3917. [Google Scholar] [CrossRef]
- Wang, S.; Pan, J.; Cui, Y.; Chen, Z.; Zhan, W. Fast Color Image Encryption Algorithm Based on DNA Coding and Multi-Chaotic Systems. Mathematics 2024, 12, 3297. [Google Scholar] [CrossRef]
- Teng, L.; Du, L.; Leng, Z.; Wang, X. Chaotic image encryption based on partial face recognition and DNA diffusion. Appl. Intell. 2024, 54, 10360–10373. [Google Scholar] [CrossRef]
- Yan, X.; Hu, Q.; Teng, L.; Su, Y. Unmanned ship image encryption method based on a new four-wing three-dimensional chaotic system and compressed sensing. Chaos Solitons Fractals 2024, 185, 115146. [Google Scholar] [CrossRef]
- Wen, H.; Lin, Y. Cryptanalysis of an image encryption algorithm using quantum chaotic map and DNA coding. Expert Syst. Appl. 2024, 237, 121514. [Google Scholar] [CrossRef]
- Wen, H.; Lin, Y. Cryptanalyzing an image cipher using multiple chaos and DNA operations. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 101612. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, J. Cryptanalzing a Novel Hyper-Chaotic Image Encryption Scheme Based on Pixel-Level Filtering and DNA-Level Diffusion. IEEE Access 2020, 8, 209471–209482. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, C.; Sun, Y.; Deng, Z.; Yang, G. Memristive Tabu Learning Neuron Generated Multi-Wing Attractor With FPGA Implementation and Application in Encryption. IEEE Trans. Circuits Syst. I Regul. Pap. 2024, 1–12. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.; Deng, Q. Symmetric multi-double-scroll attractors in Hopfield neural network under pulse controlled memristor. Nonlinear Dyn. 2024, 112, 14463–14477. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, J. Constructing new high-order polynomial chaotic maps and application in pseudorandom number generator. Phys. Scr. 2024, 99, 035238. [Google Scholar] [CrossRef]
- Mou, J.; Han, Z.; Cao, Y.; Banerjee, S. Discrete Second-Order Memristor and Its Application to Chaotic Map. IEEE Trans. Circuits Syst.-Express Briefs 2024, 71, 2824–2828. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Bao, H.; Lan, R.; Hua, Z. nD-CS: A circularly shifting chaotic map generation method. Chaos Solitons Fractals 2024, 181, 114650. [Google Scholar] [CrossRef]
- He, S.; Hu, K.; Wang, M.; Wang, H.; Wu, X. Design and dynamics of discrete dual-memristor chaotic maps and its application in speech encryption. Chaos Solitons Fractals 2024, 188, 115517. [Google Scholar] [CrossRef]
- Hua, Z.; Yao, J.; Zhang, Y.; Bao, H.; Yi, S. Two-Dimensional Coupled Complex Chaotic Map. IEEE Trans. Ind. Inform. 2024. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Yu, W.; Moroz, I.; Volos, C. Constructing conditional symmetry in a chaotic map. Nonlinear Dyn. 2025, 113, 3857–3868. [Google Scholar] [CrossRef]
- Zeng, Y.; Hu, H.; Shuai, Y. A general method for constructing high-dimensional chaotic maps with topological mixing on the global phase space. Chaos Solitons Fractals 2024, 182, 114818. [Google Scholar] [CrossRef]
- Bao, H.; Xi, M.; Wang, N.; Xu, Q.; Bao, B. Designing multi-cavity chaotic maps via multistage step state extension. Nonlinear Dyn. 2024, 112, 12521–12535. [Google Scholar] [CrossRef]
- Wang, M.m.; Song, X.g.; Liu, S.h.; Zhao, X.q.; Zhou, N.r. A novel 2D Log-Logistic-Sine chaotic map for image encryption. Nonlinear Dyn. 2025, 113, 2867–2896. [Google Scholar] [CrossRef]
- Liu, X.; Mou, J.; Zhang, Y.; Cao, Y. A New Hyperchaotic Map Based on Discrete Memristor and Meminductor: Dynamics Analysis, Encryption Application, and DSP Implementation. IEEE Trans. Ind. Electron. 2024, 71, 5094–5104. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, W.; Xiao, X.; Yao, W.; Cai, S.; Zhang, J.; Wang, C.; Li, Y. Dynamic Analysis and Field-Programmable Gate Array Implementation of a 5D Fractional-Order Memristive Hyperchaotic System with Multiple Coexisting Attractors. Fractal Fract. 2024, 8, 271. [Google Scholar] [CrossRef]
- Yu, F.; Xu, S.; Lin, Y.; He, T.; Wu, C.; Lin, H. Design and Analysis of a Novel Fractional-Order System with Hidden Dynamics, Hyperchaotic Behavior and Multi-Scroll Attractors. Mathematics 2024, 12, 2227. [Google Scholar] [CrossRef]
- Lai, Q.; Yang, L.; Hu, G.; Guan, Z.H.; Iu, H.H.C. Constructing Multiscroll Memristive Neural Network With Local Activity Memristor and Application in Image Encryption. IEEE Trans. Cybern. 2024, 54, 4039–4048. [Google Scholar] [CrossRef]
- Wang, C.; Luo, D.; Deng, Q.; Yang, G. Dynamics analysis and FPGA implementation of discrete memristive cellular neural network with heterogeneous activation functions. Chaos Solitons Fractals 2024, 187, 115471. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Z.; Wang, C. An Image Encryption Algorithm Based on Tabu Search and Hyperchaos. Int. J. Bifurc. Chaos 2024, 34, 2450170. [Google Scholar] [CrossRef]
- Yu, F.; Lin, Y.; Yao, W.; Cai, S.; Lin, H.; Li, Y. Multiscroll hopfield neural network with extreme multistability and its application in video encryption for IIoT. Neural Netw. 2025, 182, 106904. [Google Scholar] [CrossRef] [PubMed]
- Thanki, R.; Kothari, A. Multi-level security of medical images based on encryption and watermarking for telemedicine applications. Multimed. Tools Appl. 2021, 80, 4307–4325. [Google Scholar] [CrossRef]
- Liu, R.; Tan, T. An SVD-based watermarking scheme for protecting rightful ownership. IEEE Trans. Multimed. 2002, 4, 121–128. [Google Scholar] [CrossRef]
- Anand, A.; Singh, A.K. Health Record Security Through Multiple Watermarking on Fused Medical Images. IEEE Trans. Comput. Soc. Syst. 2022, 9, 1594–1603. [Google Scholar] [CrossRef]
- Jungk, B.; Stoettinger, M. Serialized lightweight SHA-3 FPGA implementations. Micorprocessors Microsyst. 2019, 71, 102857. [Google Scholar] [CrossRef]
- Vaidyanathan, S.; Sambas, A.; Tlelo-Cuautle, E.; El-Latif, A.A.A.; Abd-El-Atty, B.; Guill n Fern ndez, O.; Benkouider, K.; Mohamed, M.A.; Mamat, M.; Ibrahim, M.A.H. A New 4-D Multi-Stable Hyperchaotic System With No Balance Point: Bifurcation Analysis, Circuit Simulation, FPGA Realization and Image Cryptosystem. IEEE Access 2021, 9, 144555–144573. [Google Scholar] [CrossRef]
- Wu, J.; Liao, X.; Yang, B. Image encryption using 2D Hénon-Sine map and DNA approach. Signal Process. 2018, 153, 11–23. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef]
- Rostami, M.J.; Shahba, A.; Saryazdi, S.; Nezamabadi-pour, H. A novel parallel image encryption with chaotic windows based on logistic map. Comput. Electr. Eng. 2017, 62, 384–400. [Google Scholar] [CrossRef]
- Diaconu, A.V. Circular inter-intra pixels bit-level permutation and chaos-based image encryption. Inf. Sci. 2016, 355, 314–327. [Google Scholar] [CrossRef]
- Ye, C.; Chen, C. Secure medical image sharing for smart healthcare system based on cellular neural network. Complex Intell. Syst. 2023, 9, 1653–1670. [Google Scholar] [CrossRef]
- Al-Haj, A.; Abdel-Nabi, H. An efficient watermarking algorithm for medical images. Multimed. Tools Appl. 2021, 80, 26021–26047. [Google Scholar] [CrossRef]
- Bouslimi, D.; Coatrieux, G.; Cozic, M.; Roux, C. A Joint Encryption/Watermarking System for Verifying the Reliability of Medical Images. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 891–899. [Google Scholar] [CrossRef]
- Meng, F.Q.; Wu, G. A color image encryption and decryption scheme based on extended DNA coding and fractional-order 5D hyper-chaotic system. Expert Syst. Appl. 2024, 254, 124413. [Google Scholar] [CrossRef]
- Anand, A.; Singh, A.K. An improved DWT-SVD domain watermarking for medical information security. Comput. Commun. 2020, 152, 72–80. [Google Scholar] [CrossRef]
- Thakur, S.; Singh, A.K.; Ghrera, S.P.; Elhoseny, M. Multi-layer security of medical data through watermarking and chaotic encryption for tele-health applications. Multimed. Tools Appl. 2019, 78, 3457–3470. [Google Scholar] [CrossRef]
Statistical Item | p-Value | Result | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Frequency Test (Monobit) | 0.3821 | 0.3790 | 0.1280 | 0.2914 | 0.9278 | 0.4830 | 0.1540 | 0.3085 | 0.6146 | Pass |
Frequency Test within a Block | 0.8319 | 0.6995 | 0.7365 | 0.1566 | 0.1736 | 0.0328 | 0.2912 | 0.8646 | 0.4244 | Pass |
Run Test | 0.3765 | 0.5742 | 0.2197 | 0.7695 | 0.9954 | 0.2815 | 0.0506 | 0.7418 | 0.9478 | Pass |
Longest Run of Ones in a Block | 0.7951 | 0.1923 | 0.7277 | 0.3258 | 0.6092 | 0.9231 | 0.1472 | 0.8116 | 0.3181 | Pass |
Binary Matrix Rank Test | 0.1625 | 0.7279 | 0.1899 | 0.3522 | 0.5681 | 0.4456 | 0.1793 | 0.2066 | 0.2477 | Pass |
Discrete Fourier Transform (Spectral) Test | 0.0733 | 0.2176 | 0.4594 | 0.9276 | 0.9482 | 0.5505 | 0.3303 | 0.2588 | 0.4753 | Pass |
Nonoverlapping Template Matching Test | 0.7645 | 0.9071 | 0.9412 | 0.5703 | 0.9664 | 0.7229 | 0.1479 | 0.8534 | 0.0353 | Pass |
Overlapping Template Matching Test | 0.4890 | 0.2783 | 0.8506 | 0.6160 | 0.1324 | 0.2412 | 0.1266 | 0.1675 | 0.5191 | Pass |
Maurer’s Universal Statistical Test | 0.8240 | 0.5062 | 0.3768 | 0.6408 | 0.4063 | 0.3342 | 0.8834 | 0.2349 | 0.2201 | Pass |
Linear Complexity Test | 0.4544 | 0.5478 | 0.6383 | 0.8841 | 0.6421 | 0.9823 | 0.0435 | 0.4829 | 0.5291 | Pass |
Serial Test 1 | 0.4004 | 0.9097 | 0.3678 | 0.3846 | 0.0948 | 0.1023 | 0.4922 | 0.8292 | 0.3232 | Pass |
Serial Test 2 | 0.6459 | 0.9579 | 0.3531 | 0.1577 | 0.0809 | 0.0423 | 0.4317 | 0.9838 | 0.0544 | Pass |
Approximate Entropy Test | 0.2644 | 0.8334 | 0.3689 | 0.5422 | 0.2658 | 0.7581 | 0.1156 | 0.5744 | 0.9836 | Pass |
Cumulative Sums (Forward) Test | 0.6936 | 0.3463 | 0.1078 | 0.2811 | 0.8811 | 0.3490 | 0.2982 | 0.1604 | 0.9788 | Pass |
Cummulative Sums (Reverse) Test | 0.4293 | 0.6619 | 0.2484 | 0.2244 | 0.9427 | 0.5550 | 0.2582 | 0.5673 | 0.7255 | Pass |
Random Excursions Test () | 0.3502 | 0.3503 | 0.1766 | 0.9909 | 0.8520 | 0.6111 | 0.3880 | 0.2565 | 0.0510 | Pass |
Random Excursions Test () | 0.7567 | 0.1183 | 0.7083 | 0.6772 | 0.9389 | 0.8434 | 0.3755 | 0.6420 | 0.5518 | Pass |
Random Excursions Variant Test () | 0.5074 | 0.4670 | 0.8161 | 0.9594 | 0.3271 | 0.8186 | 0.4095 | 0.7835 | 0.3819 | Pass |
Random Excursions Variant Test () | 0.4105 | 0.4132 | 1.0000 | 0.3338 | 0.3400 | 0.7964 | 0.5258 | 0.6802 | 0.4662 | Pass |
Image No. | (a) | (b) | (c) | (d) | (e) |
---|---|---|---|---|---|
1 | 5.7615 | 7.3832 | 7.4264 | 7.9056 | 5.7615 |
2 | 5.7336 | 7.4245 | 7.3967 | 7.6865 | 5.7336 |
3 | 6.7269 | 7.2968 | 7.2965 | 7.8589 | 6.7269 |
4 | 6.3829 | 7.4510 | 7.2910 | 7.6912 | 6.3829 |
5 | 5.8691 | 7.6023 | 7.3703 | 7.8359 | 5.8619 |
Image | (b) | (c) | (d) | (e) |
---|---|---|---|---|
1 | 25.5329 | 25.5225 | 25.3674 | 78.3625 |
2 | 25.3658 | 25.3247 | 25.3241 | 76.2513 |
3 | 26.2891 | 25.1873 | 24.6872 | 76.3524 |
4 | 26.1502 | 25.2013 | 23.6855 | 73.2819 |
5 | 25.6987 | 24.4289 | 23.2864 | 75.9127 |
Image | JEW | Decryption | Total |
---|---|---|---|
1 | 1.1200 | 0.547 | 1.6675 |
2 | 1.1598 | 0.586 | 1.7458 |
3 | 1.1945 | 0.595 | 1.7895 |
4 | 1.1986 | 0.592 | 1.7906 |
5 | 1.2035 | 0.579 | 1.7825 |
Image | Proposed | [50] | [51] | [52] | ||||
---|---|---|---|---|---|---|---|---|
Entropy | Time(s) | Entropy | Time(s) | Entropy | Time(s) | Entropy | Time(s) | |
1 | 7.9056 | 0.6324 | 7.9997 | 48.3652 | 7.9997 | 182.693 | 4.8610 | 0.8223 |
2 | 7.6865 | 0.6189 | 7.9997 | 51.2581 | 7.9997 | 192.3542 | 4.6363 | 0.8256 |
3 | 7.8589 | 0.6253 | 7.9997 | 55.9128 | 7.9997 | 169.3257 | 4.6704 | 0.8239 |
4 | 7.6912 | 0.6171 | 7.9997 | 53.2187 | 7.9997 | 170.2561 | 4.8778 | 0.8268 |
5 | 7.8359 | 0.6128 | 7.9997 | 53.2187 | 7.9997 | 170.2561 | 4.4484 | 0.8247 |
Average Value | Ours | [53] | [54] | [4] | [52] |
---|---|---|---|---|---|
Entropy | 7.6988 | 7.9872 | 7.9921 | 7.9439 | 4.7583 |
PSNR | 76.2543 | 56.3915 | 59.4128 | 49.2721 | 87.3521 |
NPCR | 0.9947 | 0.9936 | 0.9987 | 0.9973 | 0.9621 |
UACI | 0.3329 | 0.2725 | 0.2698 | 0.2691 | 0.2937 |
Attack | Image No. 1 | Image No. 3 | Image No. 5 | |||
---|---|---|---|---|---|---|
Proposed | [56] | Proposed | [56] | Proposed | [56] | |
No attack | 0.9981 | 0.9935 | 0.9926 | 0.9581 | 0.9734 | 0.9629 |
Upper left corner cropping (1/16) | 0.8524 | 0.6281 | 0.7925 | 0.3928 | 0.7659 | 0.4218 |
Center cropping (1/16) | 0.6821 | 0.4519 | 0.7829 | 0.3128 | 0.7539 | −0.0091 |
Around cropping (1 /8) | 0.6825 | −0.0358 | 0.7598 | 0.2305 | 0.8935 | −0.3016 |
Salt & pepper (0.005) | 0.8014 | 0.7567 | 0.8324 | 0.7158 | 0.8924 | 0.7928 |
Salt & pepper (0.01) | 0.7632 | 0.6925 | 0.7519 | 0.6524 | 0.7521 | 0.6758 |
Salt & pepper (0.02) | 0.6521 | 0.4320 | 0.7541 | 0.3698 | 0.7749 | 0.3575 |
Gaussian noise (0.001) | 0.7532 | 0.7391 | 0.7921 | 0.7259 | 0.7531 | 0.7324 |
Gaussian noise (0.005) | 0.6821 | 0.6369 | 0.6829 | 0.6755 | 0.6958 | 0.6595 |
Gaussian noise (0.01) | 0.5369 | 0.4678 | 0.5726 | 0.4628 | 0.5960 | 0.5146 |
Ours | [54] | [53] | [57] | |
---|---|---|---|---|
Watermarking | Yes | Yes | Yes | Yes |
Selective encryption | Yes | No | No | No |
Tracing | Yes | Yes | No | Yes |
Scalability | Yes | No | No | No |
Encryption domain | DWT | Spatial | Spatial | Spatial |
Encryption scheme | Chaos | RC4 | RC4 | Chaos |
Watermark domain | DWT | Spatial | Spatial | DWT/DCT |
Watermark detection | Encrypted | Plaintext | Plaintext | Plaintext |
Controllable security level | Yes | No | No | No |
Total overhead (S) | 1.7552 | 108.4726 | 162.3524 | 29.6545 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, C.; Tan, S.; Wang, J.; Shi, L.; Zuo, Q.; Xiong, B. Double Security Level Protection Based on Chaotic Maps and SVD for Medical Images. Mathematics 2025, 13, 182. https://doi.org/10.3390/math13020182
Ye C, Tan S, Wang J, Shi L, Zuo Q, Xiong B. Double Security Level Protection Based on Chaotic Maps and SVD for Medical Images. Mathematics. 2025; 13(2):182. https://doi.org/10.3390/math13020182
Chicago/Turabian StyleYe, Conghuan, Shenglong Tan, Jun Wang, Li Shi, Qiankun Zuo, and Bing Xiong. 2025. "Double Security Level Protection Based on Chaotic Maps and SVD for Medical Images" Mathematics 13, no. 2: 182. https://doi.org/10.3390/math13020182
APA StyleYe, C., Tan, S., Wang, J., Shi, L., Zuo, Q., & Xiong, B. (2025). Double Security Level Protection Based on Chaotic Maps and SVD for Medical Images. Mathematics, 13(2), 182. https://doi.org/10.3390/math13020182