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Abstract: Deep learning, a foundational technology in artificial intelligence, facilitates the identifica-
tion of complex associations between stock prices and various influential factors through comprehen-
sive data analysis. Stock price data exhibits unique time-series characteristics; models emphasizing
long-term data may miss short-term fluctuations, while those focusing solely on short-term data
may not capture cyclical trends. Existing models that integrate long short-term memory (LSTM)
and convolutional neural networks (CNNs) face limitations in capturing both long- and short-term
dependencies due to LSTM’s gated transmission mechanism and CNNs’ limited receptive field.
This study introduces an innovative deep learning model, CNN-CBAM-LSTM, which integrates the
convolutional block attention module (CBAM) to enhance the extraction of both long- and short-term
features. The model’s performance is assessed using the Australian Standard & Poor’s 200 Index
(AS51), showing improvement over traditional models across metrics such as RMSE, MAE, R2,
and RETURN. To further confirm its robustness and generalizability, Diebold–Mariano (DM) tests
and model confidence set experiments are conducted, with results indicating the consistently high
performance of the CNN-CBAM-LSTM model. Additional tests on six globally recognized stock
indices reinforce the model’s predictive strength and adaptability, establishing it as a reliable tool for
forecasting in the stock market.
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1. Introduction

In recent years, amid fluctuating financial markets and economic shifts, the gradual
decline in bank deposit interest rates has prompted a surge of investors into the stock
market [1]. As a result, accurately predicting stock prices has become a central focus of
investor discourse and a significant challenge in this field [2]. This study presents a new
algorithmic model for stock price forecasting at the theoretical level, aimed at enriching
and advancing the relevant theoretical framework. On a practical level, this research aims
to enhance investors’ decision-making efficiency and investment returns. By developing
reliable stock price forecasting models, investors can more precisely assess market risks
and opportunities, enabling them to formulate smarter investment strategies and achieve
improved returns on their investments.

The stock market operates within a dynamic and intricate economic system [3]. Stock
prices are influenced by a multitude of factors, including a company’s financial metrics,
industry outlook, management practices, governance, and broader macroeconomic climate.
Additionally, irrational elements such as market sentiment contribute to complexity, ren-
dering stock prices highly nonlinear and stochastic and challenging to predict [4]. Early
approaches predominantly relied on statistical and econometric methods such as moving
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averages and regression analysis. While these methods capture market trends to some
extent, their capacity to handle nonlinear data is limited. With the advancement of machine-
learning technology, data-driven approaches have emerged as effective tools for prediction
across various domains [5]. Machine-learning algorithms such as support vector machines,
random forests, and neural networks are used to construct prediction models. These algo-
rithms can handle complex nonlinear relationships, but they usually require considerable
feature engineering and are very sensitive to the selection of model parameters [6]. In
recent years, deep-learning techniques have exhibited substantial promise across diverse
domains, notably in areas such as image recognition [7], natural language processing [8],
and reinforcement learning [9]. In financial technology, deep-learning models, particularly
hybrid models that combine LSTM and CNN, have proven effective for capturing both
long- and short-term dependencies within time-series data. The inclusion of attention
mechanisms, such as the convolutional block attention module (CBAM), further enhances
these models by facilitating adaptive feature refinement, a key advantage in the highly
variable environment of financial forecasting [10,11]. As a result, deep-learning-based hy-
brid models incorporating attention mechanisms have gained significant research interest,
offering a robust approach to managing the complexities inherent in stock market data.

This paper proposes a new method, CNN-CBAM-LSTM. This method uses multiple
attention mechanisms and a CNN as its main component. The multi-head attention
mechanism and CBAM capture the time correlation in the stock time series, whereas the
CNN integrates the characteristics of stock data. CNN-CBAM-LSTM addresses the issue of
feature extraction existing in traditional machine learning. There is no manual extraction
from the data input to the prediction, which shortens the prediction time. This research
utilizes Australia’s Standard & Poor’s 200 (AS51) daily trading data from 4 January 2005,
to 26 April 2024, with the first 70% allocated for training and the remaining 30% allocated
for testing.

This study makes the following contributions.

• Innovative Model Structure: The proposed model introduces a novel architecture
capable of capturing stock information across different time scales, resulting in im-
proved prediction accuracy. The model demonstrates a higher rate of return, with the
experimental results confirming the significance of these performance gains.

• Efficient performance with CBAM: CBAM enhances the model performance while
maintaining minimal additional computational costs, offering a balanced trade-off
between efficiency and effectiveness.

In Section 3, the proposed model is introduced in detail. In Section 4, this study
compares LSTM, CNN-LSTM, CNN-Bi-LSTM, random walk, random forest, and SVM
across various stock datasets. Section 5 summarizes the advantages of the proposed deep
model over existing models across different stock datasets and discusses its limitations.

2. Related Work
2.1. Challenges and Importance of Stock Price Prediction

The complexity and high volatility of financial markets pose significant challenges
for stock price prediction. These challenges stem from numerous nonlinear and stochastic
factors, including economic indicators, geopolitical events, and fluctuations in investor
sentiment [12]. While traditional machine-learning models offer some predictive value,
their accuracy is limited due to the high dimensionality and nonlinear nature of financial
data [13]. In this context, recent advancements in deep learning, particularly through hybrid
models and attention mechanisms, have introduced promising approaches to overcoming
these challenges. By effectively capturing both short- and long-term dependencies and
emphasizing essential features within complex datasets, deep-learning methods, such as the
integration of CNN-LSTM with CBAM attention modules, have become widely utilized in
financial forecasting. These methods not only enhance the prediction stability and accuracy
but also provide valuable support for financial decision-making and risk management.
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2.2. Hybrid Deep-Learning Models in Financial Forecasting

With the continuous improvement in the international financial system and the advent
of the era of big data, machine-learning models have become one of the main analysis meth-
ods for stock forecasting. Machine-learning methods, such as neural networks, support
vector machines, and random forests, are used to predict stock prices [14].

Deep learning represents a more advanced branch of machine learning, which is partic-
ularly dominant in predictive tasks involving random processes. It offers clear advantages
in handling complex challenges such as image recognition and natural language processing.
Minjun Kim et al. [15] verified its efficacy by constructing a complex network time series
of the S&P 500 index, demonstrating that integrating network metrics into the ARIMA
model enhances prediction accuracy. Lei Lin et al. [16] utilized an RNN model to develop a
three-layer neural network to predict the Shanghai Stock Exchange Index’s stock prices
and analyze its convergence speed and feasibility. Daiyou Xiao et al. [17] introduced an
ARIMA-LSTM hybrid model, which was evaluated using New York Stock Exchange data
from 2010 to 2019. The model achieved a strong performance across three datasets, with
MSE = 0.103, RMSE = 0.320, and MAE = 0.250 on the Develop set, highlighting its robust-
ness and potential applicability for portfolio optimization. Patra et al. [18] constructed
a hybrid LSTM-GRU model to predict the adjusted closing price of the S&P 500 index,
which demonstrated an improved accuracy over baseline models in experimental trials.
Shahzaheer et al. [19] adopted five deep-learning hybrid models and used six features of the
Shanghai Composite Index to verify their effects. Through the experimental performance
analysis, the single-layer RNN model is found to be superior to all other models. This
finding verifies the feasibility of the model and helps investors make decisions at the right
time to maximize profits.

Researchers such as Jithin Eapen [20] introduced a hybrid model that combines CNNs
and Bi-LSTM, which achieves a 9% performance improvement over single-network models.
Konark Yadav et al. [21] proposed FastRNN+CNN+Bi-LSTM, a high-speed, accurate hybrid
deep-learning model that outperforms ARIMA, FBProphet, LSTM, and other hybrids in
terms of the RMSE and calculation time. Jilin Zhang et al. [22] developed the CNN-BiLSTM-
Attention model to overcome classical time-series prediction limitations, demonstrating
its stability and effectiveness across three Chinese and eight international stock indices,
outperforming the LSTM, CNN-LSTM, and CNN-LSTM-Attention models in accuracy. Man
Li et al. [23] presented a clustering-enhanced deep-learning framework that uses logistic
weighted dynamic time warping (LWDTW) to improve the stock similarity measurement
and clustering effects. Their experimental results underline the practical significance of
aiding optimal investment decisions. Junji Jiang et al. [24] proposed HMM-ALSTM, a
model that combines hidden Markov models (HMMs) and attention-LSTM (ALSTM),
which enhances the daily stock market status exploration and price estimation efficiency
and generalizability through extensive experimentation.

Chaojie Wang et al. [25] used the transformer model to predict global stock indices,
outperforming traditional models in terms of accuracy and returns by leveraging the
encoder–decoder architecture and multi-head attention. Fuwei Yang et al. [26] proposed a
stock price prediction model using an improved particle swarm optimization (PSO) algo-
rithm with adaptive inertia weights, which demonstrated a strong performance in handling
high-noise, nonlinear data. Jujie Wang et al. [27] developed a GRU-based stock selection
model optimized with cuckoo search, integrating financial, technical, and sentiment factors,
achieving a Sharpe ratio of 127.08% and an annualized return of 40.66%. Jinghua Zhao [28]
applied attention-enhanced models (AT-RNN, AT-LSTM, and AT-GRU) for stock price
prediction, with GRU and LSTM outperforming RNN, while attention mechanisms further
improved its accuracy. Xuan Ji and colleagues [29] combined social media and financial
data in a deep-learning model (Doc2Vec, SAE, and LSTM) with a wavelet transform for
noise reduction, outperforming traditional models in capturing investor sentiment. Hadi
Rezaei [30] proposed a CEEMD-CNN-LSTM hybrid model that excelled in handling com-
plex financial data. Yu Lin and team [31] developed a CEEMDAN-LSTM model, which
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outperforms the SVM and BP models in terms of accuracy and robustness for S&P500 and
CSI300 index prediction, confirming its strong potential for trend forecasting.

Deep learning outperforms traditional machine learning by effectively handling high-
dimensional data and uncovering relevant information and patterns. It excels in prediction
tasks, demonstrating superior accuracy, recall ability, robustness, and computational effi-
ciency. Deep learning significantly enhances accuracy and applicability in classification
tasks, driving advancements in mathematical and quantitative modeling [32].

3. Proposed Methodology

The structure of the proposed stock price forecasting method is depicted in Figure 1.
It comprises a short-time-series information mining model, a long-time-series information
mining model, and a linear layer. Given that stock information is typical time-series data,
extracting insights solely from long sequences may overlook short-term data coupling,
whereas focusing solely on short-term sequences may somewhat decrease periodic stock
information characteristics. To balance these aspects, this paper proposes a deep-learning
model that integrates both long- and short-time-series information mining to address these
aspects that are unique to stocks. Section 3.1 details the extraction of stock data features,
while Sections 3.2 and 3.3 introduce the short- and long-term time-series information
mining models, respectively.
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Figure 1. Architecture of the method proposed in this paper.

The method consists of an embedding layer, short-term sequence information mining,
long-term sequence information mining, and a linear layer. The embedding layer enhances
the relevance of stock information characteristics. The long- and short-time-series infor-
mation mining models extract feature information from stock data across varying time
scales. Finally, the linear regression model uses these extracted features for prediction
and regression.

3.1. Data Features
3.1.1. Sliding Time Window Construction

The full-sequence stock price information cannot be directly input into the neural
network. Given the variability of stock data over time, the most prevalent method for
predicting the data for the first T + 1 day is to construct a sliding time window, utilizing the
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historical data from the past T days for prediction. Using these stock data characteristics of
different subtime domains, the input data can be constructed as follows:

R =
[

R1, R2, · · · , Rn
]

(1)

where Ri represents the stock data information of the time length of T acquisition for the
ith time. When F is used to represent the number of input factors, the formula for Ri is
as follows:

Ri =

p1,1 · · · p1,F
...

. . .
...

pT,1 · · · pT,F

 (2)

3.1.2. Data Distribution Analysis

To comprehensively examine the distribution characteristics of the dataset, histograms
and boxplots were generated for each feature (e.g., open, close, high, and low), as shown
in Figure 2. The histograms illustrate the overall distribution and potential skewness of
each variable, while the boxplots highlight any outliers. This analysis provides insight into
inherent biases or skewness within the dataset, ensuring that the features are accurately
represented for predictive modeling purposes.
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3.2. Short-Order Information Mining

Stock series are a typical type of time-series information. A recurrent neural network
(RNN) [33] structure is considered a mainstream solution for extracting the context features
of sequence information. However, RNNs and their derivative structures (such as long
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short-term memory [LSTM]) [34], which are mostly used in this field to memorize time
series, still have difficulty solving the problem of gradient disappearance. In this work,
convolution is utilized to extract information from various sequences effectively. This
approach captures local features without over-relying on long-term temporal information,
thereby avoiding issues like gradient vanishing or exploding. Convolution also enhances
parallel computing capabilities, speeding up both training and inference. Specifically,
1D convolution is applied to extract temporal features and identify local patterns and
dependencies within sequences. A sliding window mechanism is logically constructed by
stacking multiple convolution kernels of different sizes (e.g., 3, 5, and 7).

The convolution process, given Wd as the convolution kernel weight, t as the input
dimension, and u as the output dimension, is expressed as follows:

Oi(t, u) =
k

∑
i=1

Wd(u, i)·
(

Ri
)T

([
t + i − [k + 1]

2

]
, u

)
(3)

where k is the size of the convolution kernel and d is the number of output channels. The
output results are subsequently spliced together, and the formula is as follows:

O = concat
(

O1, O2, . . . , Ok
)

(4)

The data are input into the batch norm structure for numerical normalization. To
accelerate the convergence of the network, the data are input into the average pooling
module for pooling. The formula is as follows:

O1 = AvgPool(BatchNorm(O)) (5)

3.3. Long-Order Information Mining

To effectively extract information across long stock sequences, this study incorporates
a convolutional block attention module (CBAM) [35], which integrates both channel at-
tention and spatial attention mechanisms. In this context, O denotes the initial feature
map produced after convolution operations, which captures essential temporal and spa-
tial characteristics. This feature map is then used as input for the channel and spatial
attention mechanisms. Likewise, Ms represents the spatial attention feature map within
CBAM, emphasizing spatially important regions in O to improve the model’s focus on
relevant areas.

A residual structure is added to this module to preserve effective data. The channel
attention module, the first component of CBAM, is illustrated in Figure 3. Initially, data
undergo average pooling and max pooling to generate two spatial descriptors for each
channel. These descriptors are then fed into a shared, fully connected network where
spatial information is updated and combined. The resulting channel-focused feature data
are obtained through an activation function. This process can be formulated as follows:

G1 = σ(MLP(AvgPool(O1)) + MLP(MaxPool(O1))) (6)Mathematics 2024, 12, 3738 7 of 19 
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The second component of CBAM, which is designed to examine internal relationships
within the spatial dimensions of feature information, is the spatial attention module,
which enhances the interactive perception ability of the model toward input features. Its
architecture, depicted in Figure 4, begins with average pooling and max pooling operations,
followed by concatenation of the pooled results. A standard 7 × 7 convolutional layer
and sigmoid activation function are subsequently applied to generate the spatial attention
feature map. This process can be outlined as follows:

G2 = σ( f7×7(concat(AvgPool(G1), MaxPool(G1)))) (7)

To enhance network stability and mitigate overfitting issues, the spatial attention mod-
ule incorporates a residual mechanism. This involves adding the input feature mapping to
the output feature from the spatial attention mechanism, followed by prediction through a
linear layer. The process is represented as follows:

ŷ = Linear(G1 + G2) (8)
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4. Experiment

To better show the model’s efficacy, this study compares it with the LSTM, CNN-
LSTM, CNN-BiLSTM, random walk, random forest, and SVM models trained on identical
datasets. The inputs consist of the opening price, highest price, lowest price, closing price,
and trading volume, aimed at predicting the cumulative rate of return. Solely relying on
historical single-stock indicators for future predictions may limit the model’s ability to
capture comprehensive market trends. The incorporation of multidimensional data inputs
enhances the model’s information retrieval capabilities.

Moreover, macroeconomic indicators exhibit a lag and weak correlation with short-
term asset price fluctuations. Moreover, macro data can be subject to artificial manipulation.
For this reason, for short-term price predictions, greater emphasis should be placed on
technical indicators and market trading behaviors.

4.1. Dataset

This study focuses on the Australian stock market, specifically the AS51 index, also
known as the ASX200. This index reflects the diverse characteristics of the Australian econ-
omy and its connections to the global market. The ASX200, based on market capitalization,
includes the top 200 companies listed on the Australian Stock Exchange, covering sectors
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such as pharmaceuticals, banking, mining, and emerging industries like telecommunica-
tions technology. The total assets represented by the ASX200 exceed 130 billion US dollars,
making it a stable and representative indicator of the Australian stock market.

The dataset utilized in this study spans from 4 January 2005, to 26 April 2024, with a
total of 4874 trading days. It includes historical data on the opening price, highest price,
lowest price, closing price, and trading volume. In the process of data collection, strict
quality inspection was carried out to ensure the integrity and reliability of the dataset. No
missing values were found in the selected indicators, and the data showed a stable trend
without obvious fluctuations. Therefore, no additional preprocessing techniques, such as
interpolation or smoothing, are required.

For the experiment, a random selection of a 600-day period from this dataset was
made to analyze the most predictive price change indicators. The daily changes in opening
price, highest price, lowest price, and closing price were the primary variables used for
analysis in the deep-learning model training and testing.

4.2. Experimental Setup

The objective of this experiment is to predict daily price changes for the Australian
S&P/ASX200 Index. A random subset of 600 trading days was selected from the dataset
for analysis. The dataset includes historical data on the opening price, highest price, lowest
price, closing price, and trading volume. These variables were used as input features
to predict the cumulative return. A deep-learning model was employed for end-to-end
training and testing on these data.

The results show that the daily changes in opening price significantly outperform
other price change indicators in terms of prediction accuracy. To illustrate the model’s
performance, fit plots were generated to compare the actual and predicted values (Figure 5).
These plots clearly highlight the predictive capability of the opening price changes over
different periods. Furthermore, a detailed analysis of a subset of 100 days from the 600-day
sample (Figure 6) further confirmed the stability and reliability of the predictions.
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We use the following strategy to simulate actual stock trading: when the model
predicts that the opening price will rise on the second day, we buy on the current day and
sell on the second day (regardless of whether it actually rises or falls); otherwise, we do not
take any action.

The findings of this study confirm the effectiveness of deep-learning models in pre-
dicting daily changes in opening prices and provide empirical support for the development
of future trading strategies.
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4.3. Performance Metrics

Model evaluation plays a pivotal role in model development and analysis, partic-
ularly in regression tasks. The key metrics typically employed include the cumulative
rate of return (RETURN) [36], root-mean-squared error (RMSE) [37], mean absolute error
(MAE) [38], and R2 score (R2), which facilitate an accurate assessment of the model perfor-
mance for optimization and refinement. The cumulative rate of return is calculated under
the premise of the aforementioned trading strategy, serving as a measure of the model’s
profitability. Moreover, other indicators are compared with the model’s predictive ability.
The calculation formulae are outlined below:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2,∈ [0,+∞) (9)

RETURN =
n

∏
t=1

(1 + Rt · It)− 1 (10)

MAE =
1
n

n

∑
i=1

|yi − ŷi|,∈ [0,+∞) (11)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (12)

where n represents the number of samples, yi represents the true value, and ŷi represents
the predicted value. In the return metric, Rt represents the return rate on day t, and n
represents the total number of trading days. It is an indicator function. If it is predicted
that the price will rise on day t + 1, It = 1; otherwise, It = 0.

4.4. Ablation Experiment

We conducted a series of ablation experiments to evaluate each component’s contribu-
tion to the proposed method. The main purpose of this section is to analyze the impact of
removing different model components on the prediction accuracy to verify the role of these
components in model performance.

First, we gradually removed key components from the model and evaluated each
ablation model. Specifically, we removed the embedding layer, SIM, and LIM separately. All
the ablation models were trained and tested on the same dataset (ASX200) using five-fold
cross-validation to ensure the robustness and reliability of the results.

In the ablation experiment, we observed the following results: after removing the
embedding layer, the R2 value of the model decreased to 91.41%. This finding indicates
that, although the embedding layer has little impact on the overall accuracy, it is still
crucial for improving the model’s accuracy. After removing the SIM module, the R2 value
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of the model significantly decreased to 57.03%, highlighting the critical role of the SIM
module in the model’s predictive performance. On the other hand, after removing the LIM
module, the (R2) value of the model was 72.44%, indicating that CBAM, as an essential
component of this part, can effectively integrate information across different scales, fully
utilize multi-scale features, and further improve prediction performance.

Finally, we demonstrated the performance of the complete model (i.e., the proposed
method) that includes all the components, with an R2 value of 97.23%, as shown in Table 1.
This result indicates that the integrated model of the embedding layer, SIM, and LIM can
significantly improve the fitting ability of the data, verifying the necessity and effectiveness
of these components in the model.

Table 1. Comparison of the forecasting results corresponding to the different evaluation metrics.

Model RETURN

Remove Spatial_attention 3.8659
Remove Channel_attention 3.8507

Remove CNN 3.7147
The proposed method 4.1678

Through these ablation experiments, we verified each component’s independent
effects in the proposed method and provided important references for further research
and application.

4.5. S&P/ASX200 Forecast

This dataset contains 4874 data points from the past 19 years. The first 70% of the
daily historical data are used as the training set, and the last 30% are used as the test
set; that is, 3411 data points from 4 January 2005 to 12 July 2018 are used as the training
set, and 1463 data points from 13 July 2018 to 26 April 2024 are used as the test set for
later model training. The above performance indices are used to evaluate the prediction
results of different models. In order to reduce excessive quasi-consolidation and ensure
the robust evaluation of the prediction performance of the model, the future verification
method is adopted. In this method, the model is trained only on the early part of the
dataset (training set), and the model is tested on the non-overlapping section (test set).
This setting ensures that the model is evaluated based on the invisible future data, closely
simulates the real-world prediction scenarios, and enhances its generalization ability to
new market conditions.

The look-back period (days) refers to the historical data range used for prediction,
typically focusing on recent days. In this experiment, the data encompass the five daily
trading technical indicators mentioned earlier. To assess the performance of the four
models across various review periods, this study chose five different review periods:
5 days, 10 days, 20 days, 40 days, and 60 days. Each model was evaluated using seven
performance indicators across these five review periods, with the best results highlighted
in bold in Table 2.

Table 2 shows that the prediction accuracy does not increase with an increasing number
of review days. The experiment revealed that, when the number of review days was 20, the
effect of the model was the greatest. The follow-up experiments with different datasets still
use a 20-day review cycle.

In the 20-day review period experiment, the performance of the CNN-CBAM-LSTM
model is significantly superior to that of the other models. Its RMSE is 21.03, which is 0.63
lower than that of the LSTM model (21.66), 5.32 lower than the CNN-Bi-LSTM model (26.35),
and 2.05 lower than the CNN-LSTM model (23.08). The MAE of CNN-CBAM-LSTM is
14.81, 0.30 lower than LSTM (15.11), 5.29 lower than CNN-Bi-LSTM (20.10), and 1.44 lower
than CNN-LSTM (16.25). For R2, CNN-CBAM-LSTM is 85.15%, 0.90% higher than LSTM
(84.25%), 8.46% higher than CNN-Bi-LSTM (76.69%), and 3.05% higher than CNN-LSTM
(82.10%). Finally, the return rates of CNN-CBAM-LSTM were 416.78% and 18.72% higher
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than those of LSTM (398.06%), 59.86% higher than those of CNN-Bi-LSTM (356.92%), and
24.67% higher than those of CNN-LSTM (392.11%). These results highlight the advantages
of CNN-CBAM-LSTM in terms of various indicators. All the experiments demonstrate that
our model is highly competitive in terms of prediction accuracy and profitability.

Table 2. Comparison of the forecasting results corresponding to the different evaluation metrics.

Look-Back
(Days) Model RMSE MAE R2 (%)

RETURN
(%)

5 CNN-CBAM-LSTM 22.4853 16.5815 82.7398 416.6013
5 LSTM 21.9569 15.6231 83.5414 408.6176
5 CNN-LSTM 29.7536 22.2981 69.7775 347.7133
5 CNN-Bi-LSTM 39.7168 30.6344 46.1483 240.8474
5 Random Walk 303.9385 52.3066 −12.7287 3.0846
5 Random Forest 22.8900 15.4864 82.1128 393.8533
5 SVM 31.1021 19.1712 66.9759 398.0802

10 CNN-CBAM-LSTM 21.0038 14.5103 85.0408 415.1590
10 LSTM 22.9625 16.8651 82.1206 413.5471
10 CNN-LSTM 23.5179 16.7758 81.2453 402.4180
10 CNN-Bi-LSTM 22.9564 16.8524 82.1301 392.9585
10 Random Walk 304.6167 52.5227 −12.8847 3.2745
10 Random Forest 22.9621 15.5427 82.1213 390.8926
10 SVM 31.2150 19.2601 66.9600 395.0941

20 CNN-CBAM-LSTM 21.0257 14.8079 85.1536 416.7809
20 LSTM 21.6573 15.1139 84.2483 398.0633
20 CNN-LSTM 23.0843 16.2489 82.1041 392.1141
20 CNN-Bi-LSTM 26.3461 20.0950 76.6894 356.9154
20 Random Walk 299.8871 52.4538 −8.4948 5.8192
20 Random Forest 23.1425 15.7282 82.0138 384.1477
20 SVM 31.4624 19.4984 66.7568 388.2915

40 CNN-CBAM-LSTM 21.2100 14.7332 85.0272 380.0213
40 LSTM 24.5280 18.8498 79.9763 353.9234
40 CNN-LSTM 21.8224 15.2465 84.1501 382.4799
40 CNN-Bi-LSTM 21.6754 15.0017 84.3631 385.6259
40 Random Walk 311.6648 53.6068 −14.0334 3.4455
40 Random Forest 23.2080 15.6797 82.0735 366.3835
40 SVM 31.7496 19.6352 66.4498 368.5855

60 CNN-CBAM-LSTM 21.1959 14.5356 84.3838 363.6592
60 LSTM 23.3538 17.8295 81.0424 344.0035
60 CNN-LSTM 23.5733 16.9221 80.6843 353.4915
60 CNN-Bi-LSTM 25.1808 18.3487 77.9601 334.0270
60 Random Walk 293.4858 52.1406 −0.0038 11.9090
60 Random Forest 23.5102 15.8988 80.7876 343.4913
60 SVM 30.7820 19.1231 67.0646 345.5852

Figure 7 presents the index prediction results of the six models applied to the same
dataset (AS51) over a 50-day period. Evidently, the predictions from CNN-CBAM-LSTM
are closer to the actual values.

This experiment compares the performance of the CNN-CBAM-LSTM model and
three other models in terms of the AS51 index from 13 July 2018 to 26 April 2024. The
results show that the random walk model performs the worst in this time period, whereas
the CNN-CBAM-LSTM model performs significantly better than the other models.

The partially enlarged subgraph in Figure 8 shows that the CNN-CBAM-LSTM pre-
diction is very close to the true value curve. Even when the opening price fluctuates too
much (absolute value greater than 50), it is difficult for the model to fit to the peak, but the
general direction of the rise and fall is correct, which proves that the model successfully
captures the changes in the opening price.
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4.6. Diebold–Mariano Test for Predictive Performance Evaluation

After quantitatively comparing the predictive performance of different models, we
conducted the Diebold–Mariano (DM) test to further validate the significant differences in
predictive ability among the models [39]. The DM test is a statistical method widely used
for comparing the accuracy of two forecasting models, particularly in time-series prediction.
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In this study, we employed the DM test to compare the CNN-CBAM-LSTM model
with other models, including LSTM, CNN-LSTM, CNN-Bi-LSTM, random forest, and
support vector machine (SVM), to assess their predictive performance in terms of actual
returns. The hypotheses for the DM test are as follows:

Hypotheses:

Null Hypothesis (H0): There is no significant difference in predictive performance between the
two models.

Alternative Hypothesis (H1): There is a significant difference in predictive performance between
the two models.

We calculated the DM statistics and their corresponding p values for each model
comparison, which are presented in Table 3.

Table 3. DM statistics and p values for different predictive models.

Model DM Statistic p Value

LSTM −12.283 4.06 × 10−31

CNN-LSTM −6.390 3.32 × 10−10

CNN-Bi-LSTM −6.275 6.69 × 10−10

Random Forest −5.460 6.95 × 10−8

SVM −4.024 6.44 × 10−5

The DM test results highlight the significant advantage of the CNN-CBAM-LSTM
model over the other models. For example, the DM statistic for the LSTM model is −12.283,
with an extremely low p value (4.06 × 10−31), indicating that the LSTM model’s predictive
performance is significantly weaker than that of the CNN-CBAM-LSTM. This pattern
is consistent across the other models—CNN-LSTM, CNN-Bi-LSTM, random forest, and
SVM—whose DM statistics and p values similarly demonstrate inferior predictive abilities
compared with those of the CNN-CBAM-LSTM model.

These findings reinforce the conclusions from earlier model comparisons and under-
score the importance of choosing the right model for practical applications. The DM test
quantitatively assesses differences in predictive performance, offering a solid foundation
for more informed decision-making.

4.7. Model Confidence Set (MCS) Robustness Test

To further evaluate the robustness of the models, we conducted a model confidence
set (MCS) test. The MCS is a statistical procedure that identifies a set of models that are
statistically indistinguishable in terms of predictive performance at a specified confidence
level [40]. In other words, the MCS test helps determine which models are likely to be
among the “best” performers on the basis of their predictive capabilities.

In this experiment, we compared the performance of seven models: CNN-CBAM-
LSTM, LSTM, CNN-LSTM, CNN-Bi-LSTM, SVM, random forest, and random walk. The
MCS test was conducted at the 95% confidence level, and the resulting p values are pre-
sented in Table 4.

The MCS results indicate that the CNN-CBAM-LSTM model is the only model with a
p value of 1.000, making it the most likely candidate for inclusion in the confidence set of
best-performing models. This finding suggests that the CNN-CBAM-LSTM model is more
robust than the other models. In contrast, the p values for the remaining models—LSTM
(0.042), CNN-LSTM (0.091), CNN-Bi-LSTM (0.091), SVM (0.091), random forest (0.091), and
random walk (0.091)—indicate that their performances are statistically indistinguishable
from one another but inferior to that of the CNN-CBAM-LSTM model.
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Table 4. p values of different models based on MCS testing.

Model p Value

LSTM 0.042
CNN-Bi-LSTM 0.091

SVM 0.091
CNN-LSTM 0.091

Random Forest 0.091
Random Walk 0.091

CNN-CBAM-LSTM 1.000

These findings affirm the robustness of the CNN-CBAM-LSTM model and reinforce
its superior performance observed in earlier tests. By identifying CNN-CBAM-LSTM as
the only model included in the MCS with a high degree of confidence, this test underscores
its strong predictive capability across varying conditions.

4.8. Experimental Comparison of Different Stock Indices

Six well-known indices, namely, the HSI, N255, SPX, FTSE, IXIC, and TWII, were
obtained for the experiments to verify the robustness and generalizability of the model.

The Hang Seng Index (HSI) is a crucial indicator for tracking stock market movements
in Hong Kong. The Nikkei 225 Index (N225) monitors the performance of 225 stocks listed
on the Tokyo Stock Exchange in Japan, encompassing metrics such as opening price, highest
price, lowest price, closing price, and trading volume. The Standard & Poor’s 500 Index
(SPX) is a widely recognized benchmark in the U.S. stock market, comprising 500 large-cap
companies weighted by their market capitalizations. The FTSE 100 Index is a benchmark
for the largest companies in the UK listed on the London Stock Exchange, comprising
100 blue-chip stocks. The Nasdaq Composite Index (IXIC) tracks all stocks in the U.S. on
the Nasdaq Stock Exchange, primarily focusing on technology and growth companies.
The Taiwan weighted index (TWII) is an important index compiled by the Taiwan Stock
Exchange that reflects the overall performance of the Taiwan stock market.

For consistency in the experimental results, the six aforementioned stock indices were
chosen to coincide with the same time frame as the Australian Standard & Poor’s 200
(AS51). Similarly, the initial 70% of the data was allocated for model training, whereas the
remaining 30% was reserved for testing purposes.

Figures 9–14 illustrates how well the model predicts outcomes across six diverse stock
indices in this study. The red line signifies the actual observed values, whereas the purple
line denotes the values predicted from the CNN-CBAM-LSTM model. The experimental
results are shown in Table 5.
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Table 5. Comparison of the experimental results corresponding to different stock indices and
evaluation metrics.

Index Look-Back
(Days) Model RMSE MAE R2 (%)

RETURN
(%)

HSI 20 CNN-CBAM-LSTM 191.91 142.23 59.32 1388.87
N225 20 CNN-CBAM-LSTM 213.73 192.55 44.72 498.15
SPX 20 CNN-CBAM-LSTM 23.91 18.11 73.86 766.15

FTSE 20 CNN-CBAM-LSTM 515.27 417.04 99.33 555.09
IXIC 20 CNN-CBAM-LSTM 116.86 87.25 61.90 1705.14
TWII 20 CNN-CBAM-LSTM 76.95 54.27 73.21 527.69

The experimental results show that the predicted price change curves for the six stock
indices closely match the actual values, highlighting not only the universal applicability
of the CNN-CBAM-LSTM model but also, more importantly, its significant advantage in
predicting stock returns.

While the results demonstrate the versatility and reliability of CNN-CBAM-LSTM
in forecasting these indices, certain limitations should be acknowledged. In particular,
the relatively small dataset used in the experiment may limit the model’s generalizability
and robustness. To provide a more comprehensive evaluation of the model’s performance,
future research could expand the scope by incorporating a broader and more diverse
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range of stock data for validation. Additionally, exploring other factors that may affect the
model’s effectiveness—such as changing market conditions, data frequency, and feature
selection—could further enhance its ability to predict returns and its practical utility. More
extensive studies are needed to thoroughly assess and optimize the stock return prediction
performance of the CNN-CBAM-LSTM model.

5. Conclusions

To predict stock price changes, this study introduces the SANet deep-learning network
model with a feature fusion module. The method utilizes five key features from time-
series data: opening price, highest price, lowest price, closing price, and trading volume.
Four performance indicators (RMSE, MAE, R2, and RETURN) are employed to assess the
model’s effectiveness. The experiment focuses on Australia’s S&P 200 (AS51) stock index
to validate the CNN-CBAM-LSTM model’s predictive performance. The results indicate
that, compared with the other models, the proposed CNN-CBAM-LSTM model has the
lowest RMSE and MAE, an R2 (%) value closer to 100%, and a significantly higher RETURN
(%). This highlights the model’s superior accuracy in predicting stock price changes while
also demonstrating its advantage in generating higher returns, making it highly effective
for stock market forecasting applications. Furthermore, to test the model’s robustness,
the study applies it to six well-known global stock indices. The findings consistently
demonstrate the superior performance of the proposed CNN-CBAM-LSTM model. This
research underscores the effectiveness of CNN-CBAM-LSTM and its potential applicability
across diverse global stock market indices.

Although the results are promising, several limitations should be acknowledged. First,
this study focuses on a limited set of stock-specific indicators, which may not fully capture
the broader market dynamics. Additionally, the model’s reliance on historical price data
may result in a lower accuracy during high-volatility scenarios with sudden market shifts.
These factors may limit the model’s adaptability to predict unpredictable events.

Future work will focus on enhancing the model by incorporating additional factors
such as macroeconomic indicators and industry-specific data, which could improve its
adaptability to external environmental changes. Investigating other feature-engineering
techniques may also strengthen the model’s robustness under conditions of high fluctuation.
Furthermore, the application of ensemble-learning strategies could enhance the model’s
versatility across different markets. A quantitative analysis approach will be used to assess
the impact of these extended features on prediction accuracy, with the goal of developing a
more general and reliable financial prediction model.
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