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Abstract: The symmetry for two-dimensional (2D) dispersionless Toda lattice hierarchy (dTLH)
is firstly derived, and then the 2D dTLH is extended based on the symmetry constraint. The
commutativity of two different flows for this new hierarchy is shown, which leads to the 2D dToda
lattice equation with self-consistent sources (dTLESCSs) together with its conservation equation. The
hodograph solutions to 2D dTLESCSs are also given. One dimensional reduction of extended 2D
dTLH is finally investigated by finding the constraint, and a one-dimensional dTLESCS is shown.
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1. Introduction

In recent years, dispersionless integrable systems (DISs) have been one of the hot topics
in mathematical physics [1–23]. Dispersionless integrable hierarchies can be viewed as the
dispersionless limit of ordinary integrable hierarchies and have important applications
in conformal maps, hydrodynamics, and topological field theory [1–10]. The operators
in the Lax equations are replaced by phase space functions for dispersionless hierarchies.
In addition, the commutator is replaced by the Poisson bracket and the role of Lax pair
equations by the conservation equations. Note that these dispersionless systems can be
solved by using the hodograph reduction method [4], twistorial method [8,9], and the
quasi-classical ∂-method [10].

As an important DIS, dTLH has attracted much attention from many researchers.
In 1993, dTLH was introduced by Takasaki and Takebe and it was represented in two
equivalent ways: in the Lax–Sato form or in the Hirota form [11,12]. Some progresses
have been made for the dTLH such as dispersionless Hirota equations for the extended
dTLH [13], symmetric solutions [14], constrained reductions, Hamiltonian structure and
interface dynamics [15], and so on. In 2006, the source generalizations of dispersionless KP
(dKP) and dispersionless modified KP (dmKP) hierarchies were investigated by treating the
constrained integrable hierarchy as the stationary system of the corresponding hierarchy.
The hodograph solutions to dKP and dmKP equations with self-consistent sources were
given as well [16,17]. However, up to now, the source generalization of dTLH still remains
unsolved, and some integrable properties of the extended 2D dTLH such as hodograph
solutions and one-dimensional reduction also deserve our further study.

In 2008, a systemic and unified method was proposed to obtain the generalization of
integrable generalization [18,19]. It can be easily found that these new extended integrable
systems are also the multi-component generalizations of original integrable systems. Quite
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recently, four-component integrable systems have been investigated by Ma (see [24–26]).
Later, this method was used to extend other integrale systems [27]. In this paper, we will
apply the method presented in [18,19] to explore the source generalization of dTLH . We
think this paper will fill the gap of the work mentioned above and give an important
supplement to dispersionless Sato theory.

The outline of this paper is as follows. In Section 2, the 2D Toda lattice hierarchy
and dTLH are briefly reviewed. In Section 3, the symmetry for 2D dTLH is derived by
taking dispersionless limit of the 2D Toda lattice hierarchy. In Section 4, based on the
symmetry for 2D dTLH, 2D dTLH is extended, and the 2D dTLESCS is obtained as its
first nontrivial equation. In Section 5, the hodograph solutions to the dTLESCS are given.
In Section 6, one-dimensional reduction for extended 2D dTLH is constructed, which leads
to a one-dimensional dTLESCS.

2. 2D Toda Lattice Hierarchy and 2D dToda Lattice Hierarchy

Here we briefly review 2D Toda lattice hierarchy and 2D dTLH. Let L, M be two Lax
operators given by

L = Λ + u0 + u1Λ−1 + u2Λ−2 + · · · ,

M = v−1Λ−1 + v0 + u1Λ1 + u2Λ2 + · · · ,
(1)

where Λ = exp( ∂
∂s ) is called shift operator satisfying Λ f (n) = f (n + 1)Λ [19,20]. All

the coefficient functions ui and vi depend on x, y, in which x = (x1, x2, x3, · · · ) and
y = (y1, y2, y3, · · · ) are two series of independent time variables.

2D Toda lattice hierarchy is defined by four infinite collections of Lax equation [18,19]

Lxn = [Bn, L] , Lyn = [Cn, L],

Mxn = [Bn, M] , Myn = [Cn, M] , n = 1, 2, · · · ,
(2)

where Bn = (Ln)≥0 = Ln
+, Cn = (Mn)<0 = Mn

− denote the "non-negative" part of Ln with
respect to the powers of Λ and the "negative" part of Mn, respectively. The bracket stands
for the usual commutator of operators. Lxn , Lyn are the derivatives of L with respect to
xn, yn, and Mxn , Myn are defined similarly.

It is noticed that the commutativity of (2) gives rise to zero-curvature equations of
2dTLH, which leads to the 2D Toda lattice equation. The (2)D Toda lattice equation is an
important integrable system and has attracted attention from all over the world. In recent
years, the exact solutions to Toda-type integrable equations have been given using the
Casoratian technique [28,29].

Introducing a Planck constant h̄ into the 2D Toda lattice hierarchy (2) and taking
X = h̄x, Y = h̄y, 2D dTLH is obtained by the dispersionless limit of (2), as follows [11]:

∂XnL = {Bn,L} , ∂YnL = {Cn,L},

∂XnM = {Bn,M} , ∂YnM = {Cn,M}.
(3)

whereX = (X1, X2, X3, · · · ), Y = (Y1, Y2, Y3, · · · ). The Sato functions L and M are defined
by

L = p +
∞

∑
n=0

Un(X, Y, S)p−n,

M = V−1(X, Y, S)p−1 +
∞

∑
n=0

Vn(X, Y, S)pn,
(4)

where S is a new spatial variable. The two sets of flows in (3) commute, which follows from
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the zero-curvature representation
for m ̸= n

Bm,xn −Bn,xm + {Bm,Bn} = 0,

Cm,Yn − Cn,Ym + {Cm, Cn} = 0,

Bm,Yn − Cn,Xm + {Bm, Cn} = 0,

(5)

and for m = n,
Bm,Ym − Cm,Xm + {Bm, Cm} = 0, (2.6)

in which Bn = Ln
+ and Cn = Mn

− denote as functions of p and the Poisson bracket is
defined as [11]

{A(p, S), B(p, S)} = p · ∂A
∂p

∂B
∂S

− p · ∂A
∂S

∂B
∂p

.

The conservation equation associated with (6) reads as

pXm = p[Bm(p)]S , pYm = p[Cm(p)]S. (6)

When m = n = 1, (6) yields 2D dToda lattice equation [21]

VS + [∂−1
S (

VX
V

)]Y = 0, (7)

where U = U0 , V = V−1 , X = X1 , Y = Y1 and U0SV−1 = V−1X .
The conservation equation of (7) reads as

pX = p[∂−1
S (

VX
V

) + p]S , pY = p[
V
p
]S.

3. The Symmetry of 2D dToda Lattice Hierarchy

In order to construct the extended 2D Toda lattice hierarchy, the authors in [18] made
full use of the symmetry for 2D Toda lattice hierarchy to introduce a new time-flow ym.
A new evolution equation was obtained as follows [18]:

Lym
= [Cm, L] , Mym

= [Cm, M], (8a)

Cm = Cm +
N

∑
i=1

wi∆−1
− w∗

i , Cm = Mm
− , m ≥ 1, (8b)

where ∆−1
− =

N
∑

i=1
Λ−i, wi, and w∗

i satisfy

wi,xn = Bn(wi) , w∗
i,xn

= −B∗
n(w

∗
i ),

wi,yn = Cn(wi) , w∗
i,yn

= −C∗
n(w

∗
i ) , i = 1, 2, · · · , N,

(9)

where wi and w∗
i are called wave and adjoint wave functions, respectively. B∗

n and C∗
n are

the adjoint operators of Bn and Cn.
It can be easily found that the compatibility of (1) and (8) leads to the extended 2D Toda

lattice hierarchy given in [18,19]. In addition, we also find that
N
∑

i=1
wi∆−1

− w∗
i is the symmetry

for 2D Toda lattice hierarchy.
Next, we will construct the symmetry of 2D dTLH by taking the dispersionless limit of
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Equation (8b). Defining h̄: exp(nh̄ ∂
∂S ) f (S) = f (S + nh̄) as [11] and considering the limit

h̄ −→ 0, L and M in (2) are changed into

Lh̄ = eh̄ ∂
∂S +

∞

∑
n=0

un(h̄, x, y, s)e−nh̄ ∂
∂S ,

Mh̄ = v−1(h̄, x, y, s)e−h̄ ∂
∂S +

∞

∑
n=0

vn(h̄, x, y, s)enh̄ ∂
∂S .

(10)

Thinking of un(h̄, x, y, s) = Un(X, Y, S) + O(h̄) and vn(h̄, x, y, s) = Vn(X, Y, S) + O(h̄) as
h̄ −→ 0, then Equation (8b) becomes

Ch̄m = Ch̄m +
N

∑
i=1

wi(h̄, x, y)(e−h̄ ∂
∂S + · · ·+ e−nh̄ ∂

∂S + · · · )w∗
i (h̄, x, y),

Ch̄m = (Mm
h̄ )− , m ≥ 1, i = 1, 2, · · · ,

(11)

where wi(h̄, x, y, s) and w∗
i (h̄, x, y, s) satisfy

h̄[wi(h̄, x, y, s)]Xn = Bh̄n(wi(h̄, x, y, s)) , h̄[w∗
i (h̄, x, y, s)]Xn = −B∗

h̄n(w
∗
i (h̄, x, y, s)),

h̄[wi(h̄, x, y, s)]Yn = Ch̄n(wi(h̄, x, y)) , h̄[w∗
i (h̄, x, y, s)]Yn = −C∗

h̄n(w
∗
i (h̄, x, y, s)).

(12)

It was shown in [11] that

L = σh̄(Lh̄) = p +
∞

∑
n=0

Un(X, Y, S)p−n,

M = σh̄(Mh̄) = V−1(X, Y, S)p−1 +
∞

∑
n=0

Vn(X, Y, S)pn,
(13)

is a solution of 2D dTLH, and satisfies

∂YnL = {Bn,L} , ∂YnM = {Cn,M},

where σh̄ denotes the principal symbol.
Regarding

wi(h̄, x, y, s) ∼ exp[
S(X, Y, S, λi)

h̄
+ αi1 + O(h̄)] , h̄ −→ 0,

w∗
i (h̄, x, y, s) ∼ exp[−S(X, Y, S, λi)

h̄
+ αi2 + O(h̄)] , i = 1, 2, · · · , N,

(14)

we find that when h̄ −→ 0

wi(h̄, x, y, s)(e−h̄ ∂
∂S + · · ·+ e−nh̄ ∂

∂S + · · · )w∗
i (h̄, x, y, s)

= exp(αi1 + αi2)[exp(
∂S(X, Y, S, λi)

∂S
)e−h̄ ∂

∂S + · · ·

+ exp(
∂S(X, Y, S, λi)

∂S
)e−nh̄ ∂

∂S + · · · ].

(15)

Setting

ai = exp(αi1 + αi2) , pi = exp(
∂S(X, Y, S, λi)

∂X
) , p = exp(

∂S(X, Y, S, λ)

∂X
).
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and substituting (15) into (11), and then, taking the principal symbol of both sides of (11),
we have

Cm = Cm +
N

∑
i=1

exp(αi1 + αi2)(pi p−1 + p2
i p−2 + · · · )

= Cm +
N

∑
i=1

ai pi
p − pi

,

(16)

where Cm = Mm
−.

We find that
N
∑

i=1

ai pi
p−pi

is the symmetry of 2D dTLH. In addition, it was also shown in [11]

that ψ , ψ have the following WKB asymptotic expansions as h̄ −→ 0

ψ = exp[
S(X, Y, S, λ)

h̄
+ O(h̄0)],

ψ = exp[
S(X, Y, S, λ)

h̄
+ O(h̄0)],

(17)

and they satisfy the following linear equation,

h̄∂Xn ψ = Bnψ , h̄∂Yn ψ = Cnψ. (18)

Combining (17) with (18), we obtain a hierarchy of conservation equations for the momen-

tum function p = exp ∂S(X,Y,S,λ)
∂S = exp ∂S(X,Y,S,λ)

∂S ,

pXn = p[Bn(p)]S , pYn = p[Cn(p)]S.

In the same way as [16,17], we obtain the equations of hydrodynamical type from (12), (14),
and (16).

pi,Xn = pi[Bn(pi)]S , ai,Xn = [ai pi(
∂Bn(pi)

∂pi
)]S,

pi,Yn = pi[Cn(pi)]S , ai,Yn = [ai pi(
∂Cn(pi)

∂pi
)]S , i = 1, 2, · · · , N.

(19)

4. New Extension of 2D dToda Lattice Hierarchy

In this section, inspired by [18,19], we will use Equation (16), in which ai and pi are
defined by (18), to investigate the new extension of 2D dTLH. It is found that a particular
Ym -flow will be extended to Ȳm-flow given by

LYm
= {Cm,L} , MYm

= {Cm,M}.

where Cm are defined by (16) and (18). Then, we have the following extended 2D dTLH.

Definition 1. For a fix m ∈ N, the extended 2D dTLH is defined by

LXn = {Bn,L} , MXn = {Bn,M} (20a)

LYn = {Cn,L} , MYn = {Cn,M} (20b)

LYm
= {Cm,L} , MYm

= {Cm,M} , n ̸= m, (20c)

pi,Xn = pi[Bn(pi)]S , ai,Xn = [ai pi(
∂Bn(pi)

∂pi
)]S) (21a)
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pi,Yn = pi[Cn(pi)]S , ai,Yn = [ai pi(
∂Cn(pi)

∂pi
)]S , i = 1, 2, · · · , N. (21b)

We can show that flows defined by (20) commute when Equations (21a) and (21b) are
satisfied, in which the following Lemma is needed. However, we find that the proof of
Lemma 1 is similar to [22,23], so we omit it here.

Lemma 1. There holds the identity

(
ai pi

p − pi
)Xn = {Bn,

ai pi
p − pi

}−, (22)

(
ai pi

p − pi
)Yn = { ai pi

p − pi
,Mn

+, }− , i = 1, 2, · · · , N. (23)

Next, we will use Lemma 1 to show the following theorem. We can easily find from The-
orem 1 that the zero-curvature representation of the extended 2D dTLH (20) is 2D dTLH
with self-consistent sources.

Theorem 1. Under (21a,b), the commutativity of (20a)–(20c) led to the zero-curvature representa-
tion of the extended 2D dTLH (20), which should be written in two cases, n ̸= m or m = k.
For n ̸= m, the zero-curvature form for the extended 2D dTLH (20) is

Bn,Xm −Bm,Xn + {Bn,Bm} = 0, (24a)

mathcalCn,Ym
− Cm,Yn + {Cn, Cm} = 0, (24b)

Bn,Ym
− Cm,Xn + {Bn, Cm} = 0, (24c)

Bm,Yn − Cn,Xm + {Bm, Cn} = 0, (24d)

pi,Xn = pi[Bn(pi)]S , ai,Xn = [ai pi(
∂Bn(pi)

∂pi
)]S, (25a)

pi,Yn = pi[Cn(pi)]S , ai,Yn = [ai pi(
∂Cn(pi)

∂pi
)]S , i = 1, 2, · · · , N. (25b)

and for n = m, the zero-curvature form for the extended 2D dTLH (20) is

Bm,Ym
− Cm,Xm + {Bm, Cm} = 0, (26a)

pi,Xm = pi[Bm(pi)]S , ai,Xm = [ai pi(
∂Bm(pi)

∂pi
)]S , i = 1, 2, · · · , N, (26b)

where Cm = Cm +
N
∑

i=1

ai pi
p−pi

, Cm = Mm
−.

Under (25b), the conservation equation of (25a)

pXm = p[Bm(p)]S , pYm
= p[Cm(p) +

N

∑
i=1

ai pi
p − pi

]S. (27)

Example 1. A 2+1 dimensional dToda lattice equation with self-consistent sources.

When n = m = 1 in (25), we determine the 2D dTLESCS as follows

(V +
N

∑
i=1

ai pi)S + [∂−1
S (

VX
V

)]Y = 0, (28a)
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pi,X = pi(∂
−1
S (

VX
V

) + pi)S , ai,X = (ai pi)S, (28b)

where U = U0 , V = V−1 , X = X1 , Y = Y1 and U0SV−1 = V−1X .
The associated conservation equation of (28) reads as

pX = p[∂−1
S (

VX
V

) + p]S , pY = p[
V
p
+

N

∑
i=1

ai pi
p − pi

]S. (29)

Remark 1. We can also replace Xm-flow in (20) by X̄m-flow as

LXm
= {Bm,L} , MXm

= {Bm,M},

where Bm = Bm +
N
∑

i=1

ai pi
p−pi

.

Then, Lax-type equations and the zero-curvature representation of the resulting extended 2D dTLH
can be given likewise; however, we omit it here.

5. The Hodograph Solutions for the 2D dToda Lattice Equation with
Self-Consistent Sources

In this section, using M-reduction method together with the hodograph transforma-
tion, we derive the hodograph solutions to the 2D dTLESCSs (28). Following [4], one
can consider the M-reduction of the conservation Equation (29) so that the momentum
function p, the auxiliary potentials ai, and pi , i = 1 · · · N only depend on a set of functions
W = (W1, · · · , WM) with W1 = V , and (W1, · · · , WM) satisfies commuting flows

∂W
∂Tn

= An(W)
∂W
∂X

, n ≥ 2, (30)

where the N × N matrice An are only the functions of (W1 · · ·WM). In the following, we
will take the 2D dTLESCS (28) as an example and show its hodograph solutions in the case
of M = 1 and M = 2.

1. M = 1

In this case, we will get

p = p(V) , ai = ai(V) , pi = pi(V), (31)

and
VX = A(V)VS , VY = B(V)VS. (32)

(31), which, together with (25b) and (27), imply that

(
V
pi

− V
A
)

dpi
dV

= 1,

(
V
p
− V

A
)

dp
dV

= 1,

(A − pi)
dai
dV

= ai
dpi
dV

,

B
dp
dV

= 1 − V
p

dp
dV

+
N

∑
i=1

ppi
p − pi

dai
dV

+
N

∑
i=1

ai p
p − pi

dpi
dV

−
N

∑
i=1

ai ppi
(p − pi)2 (

dp
dV

− dpi
dV

).

(33)

Equations (32) implies that

B = −V
A

− V
N

∑
i=1

dai
dV

, A = V
dU
dV

. (34)
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It is very easy to verify that with (33) and (32), (31) are compatible, making the hodograph
transformation with the change of variables (S, X, Y) → (V, X, Y) with S = S(V, X, Y).
The hodograph equations for S are given by

∂S
∂X

= −A ,
∂S
∂Y

= −B =
V
A

+ V
N

∑
i=1

dai
dV

. (35)

which can be easily integrated as

S + A(V)X − (
V
A

+ V
N

∑
i=1

dai
dV

)Y = F(V), (36)

where F(V) is an arbitrary function of V.
If we chose A(V) = 2V2 , F(V) = 0 , ai = ciV2 , ci , i = 1, · · · , N, as constants, using the
Carl Dan formula, we get an explicit solution for the 2D dTLESCS (28)

V =
3

√
−ξ +

√
ξ2 + η3 +

3

√
−ξ −

√
ξ2 + η3, (37a)

ai = ciV2 = ci(
3

√
−ξ +

√
ξ2 + η3 +

3

√
−ξ −

√
ξ2 + η3)2, (37b)

pi = V2 = (
3

√
−ξ +

√
ξ2 + η3 +

3

√
−ξ −

√
ξ2 + η3)2 , i = 1, · · · , N. (37c)

where ξ = Y
8Y ∑N

i=1 ci−8X
, η = S

6X−6Y ∑N
i=1 ci

.

We find when ∑N
i=1 ci = 0, (37) is degenerated to the hodograph solution for the 2D dToda

lattice equation.

2. M = 2

In this case, we denote W1 = V , W2 = W , ai = ai(V, W) , pi = pi(V, W) ,
p = p(V, W), in which (V, W) satisfies the following commuting flow

(
V
W

)
X
= A

(
V
W

)
S

,
(

V
W

)
Y
= B

(
V
W

)
S
, (38)

where A = (A)ij and B = (B)ij are 2 × 2 matrix functions of V and W, and A is invertible.
By requiring that VX and WX are independent, (25b) and (27) give rise to the following
equations for ai(V, W) , pi(V, W) and p(V, W),

(
∂p
∂V

,
∂p
∂W

)A =p(
∂p
∂V

,
∂p
∂W

) +
p
V
(A11, A12),

(
∂pi
∂V

,
∂pi
∂W

)A =pi(
∂pi
∂V

,
∂pi
∂W

) +
pi
V
(A11, A12),

(
∂ai
∂V

,
∂ai
∂W

)A =pi(
∂ai
∂V

,
∂ai
∂W

) + ai(
∂pi
∂V

,
∂pi
∂W

),

(
∂p
∂V

,
∂p
∂W

)B =(1, 0)− V
p
(

∂p
∂V

,
∂p
∂W

) +
N

∑
i=1

ppi
p − pi

(
∂ai
∂V

,
∂ai
∂W

) +
N

∑
i=1

ai p
p − pi

(
∂pi
∂V

,
∂pi
∂W

)

+
N

∑
i=1

ai ppi
(p − pi)2 (

∂(p − pi)

∂V
,

∂(p − pi)

∂W
).

(39)
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We can easily find from (39) that A(V, W) and B(V, W) must satisfy

B = −VA−1 − V
N

∑
i=1

∂ai
∂V

I −
(

0 ∂ai
∂W

A21
A12

∂ai
∂W

A22−A11
A12

∂ai
∂W

)
, (40)

where A−1 denotes the inverse matrix of A, and I is the 2 × 2 identity matrix, and A11 =

V ∂U
∂V and A12 = V ∂U

∂W . For simplicity, we assume ∂ai
∂W = 0 , i = 1, · · · , N, by using the

formula
A2 = (trA)A − (detA)I =⇒ A−1 =

trA
detA

I − A
detA

, (41)

and we have

B =
VA

detA
− (

VtrA
detA

+ V
N

∑
i=1

∂ai
∂V

)I, (42)

where detA = A11 A22 − A12 A21 and trA = A11 + A22.
With (42), the compatibility condition for (38) requires A to satisfy

(− ∂

∂W
(

VtrA
detA

+ V
N

∑
i=1

∂ai
∂V

)

∂

∂V
(

VtrA
detA

+ V
N

∑
i=1

∂ai
∂V

)

)
= A

(− ∂

∂W
(

V
detA

)

∂

∂V
(

V
detA

)

)
. (43)

To solve (38), we use hodograph transformation by changing the independent variables
(S, X, Y) to (V, W, Y) with the dependent variables S = S(V, W, Y) , X = X(V, W, Y).
In terms of the new variables, (38) becomes

(
−SW
SV

)
= A

(
XW
−XV

)
,
( ∂(S,X)

∂(W,Y)

− ∂(S,X)
∂(V,Y)

)
= B

(
XW
−XV

)
, (44)

where ∂(S,X)
∂(W,Y) = SW XY − SYXW .

It can be easily found that (55) has solutions in the form

S − (
VtrA
detA

+ V
N

∑
i=1

∂ai
∂V

)Y = F(V, W),

X +
V

detA
Y = G(V, W),

(45)

where XW and XV are required to be independent, and F and G are two arbitrary functions
satisfying the linear equations (

−FW
FV

)
= A

(
GW
−GV

)
, (46)

An example of a solution is given by

A =

[
2V2 0

−3VW V2

]
, (47a)

and
pi = V2 , ai = ciV2 , U = V2 , i = 1, · · · , N, (47b)
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where ci , i = 1, · · · , N are constants.
Then, (45) becomes

S − (
3

2V
+ 2V2

N

∑
i=1

ci)Y = F(V, W),

X +
Y

2V3 = G(V, W).

From (46) and FUW = FWU , G must satisfy

VGW + V2GWV − 3VWGWW = 0. (48)

We notice that G = W
V is a particular solution of (5.19). From (46), we get F = −2VW, and

via the Carl Dan formula, we can get an explicit hodograph solution for the 2D dTLESCS
(28)

V =
3

√
−ξ +

√
ξ2 + η3 +

3

√
−ξ −

√
ξ2 + η3, (49a)

ai = ciV2 = ci(
3

√
−ξ +

√
ξ2 + η3 +

3

√
−ξ −

√
ξ2 + η3)2, (49b)

pi = V2 = (
3

√
−ξ +

√
ξ2 + η3 +

3

√
−ξ −

√
ξ2 + η3)2 , i = 1, · · · , N. (49c)

where ξ = Y
8Y ∑N

i=1 ci−8X
, η = S

6X−6Y ∑N
i=1 ci

.

6. One-Dimensional Reduction for Extended 2D dToda Lattice Hierarchy

In this section, we will consider one-dimensional reduction for the extended 2D dTLH
(20). The constraint is given by

L+ L−1 = M+M−1, (50a)

(L+ L−1)|p=pi = µi + µ−1
i , (50b)

[ai pi(
∂(L+ L−1)

∂p
|p=pi )]S = 0. (50c)

where µi are constants. It was noticed that this constraint (50) has never been obtained
before, which will reduce the 2D extended dTLH to one-dimensional dTLH with self-
consistent sources (dTLHSCSs). Before we show this result, we need to prove two lemmas
as follows.

Lemma 2. The constraint (50) is compatible with extended 2D dTLH (20).

Proof. (1) We firstly prove that the constraint (50a) is compatible with the ∂Xn , ∂Yn , ∂Ym
flows, respectively, noting that

(L+ L−1)Xn = LXn + (L−1)Xn = LXn − (L−2)LXn = {Bn,L} − L−2{Bn,L},

then, one has

(L+ L−1)Xn = {Bn,L}+ {Bn,L−1} = {Bn,L+ L−1}.
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From the constraint (50a), we obtain

(L+ L−1)Xn = {Bn,M+M−1} = (M+M−1)Xn .

Therefore, we conclude that the ∂Xn -flow is compatible with constraint (50a). In the same
way, we can prove that ∂Yn , ∂Ym

-flows are also compatible with the constraint (50a).

(2) Secondly, we prove that ∂Xn , ∂Yn flows are both compatible with (50b), noting that

[(L+ L−1)|p=pi ]Xn
= {Bn,L+ L−1}|p=pi +

∂(L+ L−1)

∂p
|p=pi ·

∂pi
∂Xn

.

By using the definition of the Poisson bracket, we have

[(L+ L−1)|p=pi ]Xn
=[p

∂Bn

∂p
∂(L+ L−1)

∂S
− p

∂Bn

∂S
∂(L+ L−1)

∂p
]|p=pi

+
∂(L+ L−1)

∂p
|p=pi ·

∂pi
∂Xn

.
(51)

Noting that pi,Xn = pi[Bn(pi)]S, we get from (51)

[(L+ L−1)|p=pi ]Xn
=pi

∂Bn(pi)

∂pi

∂(L+ L−1)

∂S
|p=pi − pi

∂Bn(pi)

∂S
∂(L+ L−1)

∂p
|p=pi+

pi[Bn(pi)]S
∂(L+ L−1)

∂p
|p=pi

=pi
∂Bn(pi)

∂pi

∂(L+ L−1)

∂S
|p=pi .

By means of the constraint (50b), one has

[(L+ L−1)|p=pi ]Xn
= pi

∂Bn(pi)

∂pi

∂(µi + µ−1
i )

∂S
|p=pi = 0.

With the help of (24b), ∂Yn -flow is similarly shown to be compatible with the constraint
(50b). It can be shown from (50b) that (50c) holds for L, ai and pi. We noticed that (50b) is
compatible with ∂Yn , ∂Xn flows, respectively, and so is (50c).

Lemma 3. The constraint (50a) implies that

Bn + Cn = Ln + L−n = Mn +M−n,

Bn − Cn = (Ln + L−n)+ − (Ln + L−n)− , (n ∈ N).

Proof. Noting that the proof of Lemma 3 is similar to [19], we omit the details here.

We change the "X" and "Y" time variables of the extended 2D dTLH (20) to the "τ" and
"T" time variables by skewing the coordinates as

τn = Xn , τm = Xm , Tn = Xn − Yn , Tm = Xm − Ym , n ̸= m.

Next, we will use Lemma 2 and Lemma 3 to show the following theorem. We will
find that the constraint (50) will reduce the extended 2D dTLH (20) to a one-dimensional
dTLHSCS.
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Theorem 2. Under the constraint (50), the Lax operators L and M will not depend on the time
variables τn. The extended 2D dTLH can be reduced to the following one-dimensional dTLHSCS.

LTm
= {Bm −

N

∑
i=1

ai pi
p − pi

,L}, (52a)

(L)|p=pi = µi + µ−1
i , (52b)

[ai pi(
∂L|p=pi

∂pi
)]S = 0. (52c)

where L = B1 + C1 , Bm = (Lm +∑m−1
i=0 cmiL

i)+, and the coefficients cmi are integers determined
by the recurrence relation

cm+1,i = cm,i−1 − cm−1,i , (m > 1 , 0 ≤ i ≤ m), (53)

with the initial and boundary conditions: cmm = 1 , cm,0 = 2 cos(mπ
2 ) and cmi = 0 when i < 0 or

i > m.

Proof. Noting that the proof of Theorem 2 is similar to [19], we omitted the details here.
Especially, when m = 1, we obtain the one-dimensional dTLESCS as follows

(∂−1
S UT)US − ∂−1

S UTT + (
N

∑
i=1

ai pi)T + (
N

∑
i=1

ai p2
i )S = 0, (54a)

pi + U +
V
pi

= µi + µ−1
i , (54b)

[ai pi(U − V
p2

i
)]S = 0, (54c)

where U = U0 , V = V−1 , T = T1 , V = ∂−1
S UT − ∑N

i=1 ai pi.

7. Summary

In this article, the symmetry for 2D dTLH is derived by taking the dispersionless
limit of that for 2D Toda lattice hierarchy. In addition, the new extension of the dTLH is
considered. We can easily find that the new extended 2D dTLH is Lax integrable, and that
the zero-curvature equation contains a 2D dTLESCS. The hodograph solutions to the 2D
dTLESCS are obtained by the reduction method together with hodograph transformation.
One-dimensional reduction of the extended 2D dTLH is finally constructed, which leads to
a one-dimensional dTLESCS. Our results give a supplement to the previous studies about
the dToda hierarchy.
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