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Abstract: A variant of the vehicle routing problem (VRP) known as the Vehicle Routing Problem in 
Omnichannel Retailing Distribution Systems (VRPO) has recently been introduced in the literature, 
driven by the increasing adoption of omnichannel logistics in practice. The VRPO scenario involves 
a large retailer managing several stores, a depot, and a homogenous fleet of vehicles to meet the 
demands of both stores and online customers. This variant falls within the class of VRPs that con-
sider precedence constraints. Although the vehicle routing problem in omnichannel retailing distri-
bution (VRPO) has been addressed using a few heuristic and metaheuristic approaches, the use of 
Simulated Annealing (SA) remains largely unexplored in the pickup and delivery problem (PDP) 
literature, both before and after the rise of omnichannel logistics. This article introduces the Efficient 
Simulated Annealing (ESA) algorithm, demonstrating its suitability in generating new benchmark 
solutions for the VRPO. In experiments with sixty large instances, ESA significantly outperformed 
two previous algorithms, discovering new best-known solutions (BKSs) in fifty-nine out of sixty 
cases. Additionally, ESA demonstrated superior efficiency in 68.3% of the test cases in terms of re-
duced computational times, showcasing its higher effectiveness in handling complex VRPO in-
stances 
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1. Introduction 
The progress in omnichannel operations gives rise to increasingly complex last-mile 

distribution networks over which customer information flows quickly and timely access 
is critical for effective customer response. As the last mile represents the most costly seg-
ment of the supply chain, achieving a cost-efficient vehicle routing continues to be a sig-
nificant challenge. One of the most-studied Vehicle Routing Problem (VRP) variants aris-
ing from omnichannel applications is the Pickup and Delivery Problem (PDP). The PDP 
uses a set of vehicles to fulfill transportation requests consisting of a pickup location and 
a delivery location with a precedence constraint. Lokin [1] initially explored PDP, intro-
ducing a modified version of the traveling salesman problem. Precedence relations are 
imposed on specific customers, requiring certain nodes to be visited before others. The 
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PDP consists of three main types of problems based on the origin–destination of each re-
quest, namely, many-to-many problems (type 1), one-to-many-to-one problems (type 2), 
and one-to-one problems (type 3) [2]. In type 1 PDP, requests are carried from more than 
one start node to more than one end node. In type 2 PDP, some requests start at the depot 
and end at many customers, while others start at a customer and end at the depot. In type 
3 PDPs, each request moves from a single start node to a single end node. 

In this work, we build on the capacitated Vehicle Routing Problem in Omnichannel 
Retailing Distribution Systems (VRPO), which was first introduced by Abdulkader et al. 
[3]. The VRPO is a VRP hybrid with CVRP and PDP features. It is an instance of omni-
channel distribution, which is a business model that seeks to offer customers a seamless 
experience that involves both physical and online stores. The VRPO has two types of re-
quests: (i) requests for store pickup and/or delivery and (ii) requests for customer delivery. 
Customer requests are made through online order points. A VRPO route follows the de-
pot–store–customer precedence. This means that once a vehicle departs from the depot, it 
should pick up all store requests assigned to it before visiting the first store (delivery). 
Furthermore, the same vehicle should load (pickup) from the same store all the customer 
requests assigned to it before visiting those customers (delivery). 

The VRPO inherits the NP-hard complexity of the VRP, resulting in prohibitively 
high computational time to reach an optimal solution. As exact methods struggle with 
scalability, heuristic approaches become a practical alternative. However, despite ad-
vances in heuristic approaches, a gap exists in the application of Simulated Annealing 
within the omnichannel VRP context. The reviewed studies predominantly rely on genetic 
algorithms, savings heuristics, and hybrid approaches, leaving SA underexplored. This 
gap highlights the potential for future research to utilize SA, leveraging its strengths in 
navigating complex solution landscapes and escaping local optima, to address the chal-
lenges presented by omnichannel logistics. Given the growing attention to the challenges 
of omnichannel VRPs and the clear literature gap in exploring simulated annealing (SA) 
for PDP, this work focuses on tailoring an SA-based metaheuristic approach, the Efficient 
Simulated Annealing (ESA) for the VRPO. 

The remainder of this paper is organized as follows: Section 2 discusses the related 
works. Section 3 details the ESA for the VRPO. Section 4 presents the computational ex-
periment and analysis. Finally, Section 5 discusses the conclusions and recommendations 
for future studies. 

2. Review of Related Literature 
2.1. The Pickup and Delivery Problem in Vehicle Routing 

The VRP is a combinatorial optimization problem that aims to determine the optimal 
routes for a fleet of vehicles to deliver orders to customers while minimizing costs [4]. The 
PDP, a key VRP class, aims to determine the most efficient routes for a fleet of capacitated 
vehicles to fulfill customer requests, each involving a pickup location and a corresponding 
delivery location. Vehicles start from the depot, pick up or deliver goods at specified loca-
tions, and return to the depot. The mathematical formulation of the general PDP, with its 
variants classified, is given by Parragh et al. [5]. The PDP has been extensively studied by 
Battara et al. [6] and divided into three categories: (i) many-to-many, in which commodi-
ties can have multiple origins and destinations, (ii) one-to-many-to-one, in which some 
commodities are delivered from a depot to customers and others are collected from cus-
tomers and returned to the depot, and (iii) one-to-one, in which each commodity has a 
single origin and destination. Parragh et al. [5,7] provided another classification of PDP 
into two general classes: (i) transportation to/from the depot and (ii) transportation be-
tween customers. The first class includes cases in which deliveries (linehauls) must occur 
before pickups (backhauls), linehauls and backhauls can be served in any order, and cus-
tomers have both linehaul and backhaul needs, either requiring or not requiring a single 
visit. The second class involves unpaired pickup and delivery locations, in which any 
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pickup can fulfill any delivery, and paired locations, in which no other customer is visited 
between pickup and delivery. Since then, the development of the PDP has been extensive, 
but the recent rise of omnichannel distribution has introduced new challenges that add 
complexity to the problem. 

2.2. VRP in Omnichannel Distribution Context 
The omnichannel logistics landscape has evolved significantly in recent years, driven 

by the increasing demand for seamless integration across multiple sales and distribution 
channels, including physical stores, online platforms, and hybrid modes. In omnichannel, 
the interactions of customers with the retailer can be varied via online or physical stores. 
This complexity poses significant challenges for the omnichannel VRP giving way to the 
class of omnichannel VRP involving pickups, or deliveries, or mixed, or simultaneous. In 
VRPO, the fleet of vehicles is required to simultaneously perform bulk deliveries to retail 
stores from a main central depot and pick up online customer orders from retail stores 
and subsequently deliver orders to online customers. 

The VRPO can be considered as an integrated 2E-VRP since retailers and online con-
sumers correspond to the customers of two distinct layers of the supply chain. A catego-
rization of multiple-channel retailing in multi-, cross-, and omnichannel retailing for re-
tailers and retailing is comprehensively presented by Beck and Rygl [8]. The VRPO in-
volves two types of customers: some with pickup requests, some with delivery requests, 
or both. A customer with both types of requests is visited once, and a pickup can be paired 
with multiple deliveries. The network consists of a depot or a distribution center, some 
local stores, and some home-delivery consumers. Vehicles serve both stores (for stock re-
plenishment) and home delivery customers using the same fleet. A key difference in the 
VRPO is that only stores handle both pickups and deliveries, while consumers receive 
deliveries only. Additionally, vehicles follow a depot–store–customer visit order, loading 
all store requests from the depot before making deliveries. Customer orders are placed 
through multiple online platforms, such as apps and websites. For a detailed mathemati-
cal formulation of the general PDP, readers can refer to Abdulkader et al. [3]. 

Table 1 outlines the recent studies on omnichannel vehicle routing problems. Since 
the combination of VRP and PDP in an omnichannel retail context was first introduced in 
year 2018, we have limited our review to related papers published from 2018 to the pre-
sent. The related literature on VRP under omnichannel logistics encompasses a variety of 
problem classes and solution methodologies, illustrating the increasing complexity of 
modern last-mile distribution. Early works such as those by Martins et al. [9], Martins et 
al. [10], and Bayliss et al. [11] focused on mixed and simultaneous pickup and delivery 
(MPD and SPD) problems. They tackled the dual challenges of replenishing retail stores 
while managing direct-to-consumer deliveries, emphasizing operational efficiency 
through mixed routes and shared fleets. Sawicki et al. [12] further extended this focus by 
exploring a two-tier system that serves both retail stores and online customers, while Jan-
jevic et al. [13] introduced a three-tier, multi-modal last-mile network with differentiated 
service levels, integrating city-level and regional deliveries. Guerrero-Lorente et al. [14] 
provided a novel approach by incorporating both forward and reverse logistics in omni-
channel VRP, accounting for both deliveries and returns, which added complexity to man-
aging customer preferences. 

More recently, Liu et al. [15] addressed MPD problem that aimed to balance cost min-
imization and customer satisfaction. Hendalianpour et al. [16] contributed to the literature 
by focusing on multi-product and multi-level VRP, managing replenishments across dif-
ferent levels in an omnichannel distribution network. Li et al. [17] introduced the selective 
many-to-many pickup and delivery problem with handling costs (SMMPDPH), which ex-
tended traditional VRP by addressing selective routing among multiple nodes. This work 
highlighted the importance of managing handling costs, especially when goods are being 
loaded or unloaded at multiple locations. The most recent studies by Yang and Li [18], 
Qiu et al. [19], and Li and Wang [20] focused on inventory replenishment, strict time 
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windows, and multicommodity deliveries in omnichannel settings, reflecting the growing 
demand for efficient logistics solutions that meet diverse customer expectations. 

From a solution approach perspective, the reviewed studies illustrate the diverse 
strategies used to tackle these omnichannel VRP. Martins et al. [9] and Martins et al. [10] 
used simheuristics and savings-based heuristics, respectively, while Bayliss et al. [11] em-
ployed a discrete-event heuristic followed by a local search, demonstrating hybrid ap-
proaches for MPD. Guerrero-Lorente et al. [14] and Janjevic et al. [13] leveraged mixed-
integer programming (MIP) combined with continuous approximation and capacitated 
location routing to optimize complex network configurations. Li et al. [17] utilized mixed-
integer programming (MIP) alongside iterated local search (ILS) and a memetic algorithm 
(MA) to solve the SMMPDPH. Liu et al. [15] applied advanced metaheuristics, including 
MOGWO and NSGA-II, while Hendalianpour et al. [16] employed Benders decomposi-
tion and Lagrangian relaxation to solve multi-level problems. In their recent work, Qiu et 
al. [19] proposed an optimization model focusing on capacity-sharing, and Li and Wang 
[20] utilized adaptive large neighborhood search (ALNS) to manage time-sensitive deliv-
eries. Yang and Li [18] employed a hybrid heuristic to efficiently handle multicommodity 
flows in an omnichannel context. Finally, Abdulkader et al. [3], our baseline study, pro-
posed two algorithms for comparison, the two-phased heuristic (2PH) and multi-ant col-
ony optimization (MAC).  

In pre-omnichannel PDP applications, Wang et al. used a parallel simulated anneal-
ing (p-SA) algorithm to solve VRPSPDs with time windows, comparing results to existing 
benchmarks [21]. Avci and Topaloglu developed a hybrid local search algorithm combin-
ing simulated annealing and variable neighborhood descent for VRPSPD and VRPMPD, 
with an adaptive self-tuning threshold function [22]. Danloup et al. used large neighbor-
hood search (LNS) and genetic algorithms (GA) to solve SPD with transshipment, com-
paring results to other algorithms [23]. Koc et al. reviewed the VRPSPD, focusing on future 
directions but lacking insights into metaheuristics [24]. While genetic algorithms (GA) and 
tabu search (TS) are well-studied, SA remains understudied in PDP and VRPSPD do-
mains. Additionally, Parragh et al. [6,8] highlighted that genetic algorithms, tabu search 
and simulated annealing are among the most commonly used metaheuristics, with SA 
being the least explored of the three. 

Table 1. Recent studies in omnichannel VRP context. 

Year Authors VRP Class Problem Attributes Solution Approach 

2020 Martins et al. [9] PD 
Handles retail store replenishment and cus-
tomer deliveries using a shared fleet for both 
tasks. 

Savings-Based Heuristic 

2020 
Martins et al. 
[10] 

SPD 
Replenishes retail stores and serves direct 
home deliveries with stochastic travel times. 

Simheuristic and Biased-
Randomized Heuristic 

2020 Bayliss et al. [11] MPD 
Integrates retailer replenishment and direct 
home deliveries; combines store replenish-
ment with customer-focused routes. 

Discrete-Event Heuristic 
and Local Search 

2020 
Guerrero-
Lorente et al. 
[14] 

PD 

Manages deliveries and returns across a 
multi-facility network; supports customer 
preference with city distribution centers and 
parcel stations. 

Mixed-Integer Program-
ming and Continuous 
Approximation 

2021 
Sawicki et al. 
[12] 

Multi-echelon VRP 
with Direct Delivery 

Serves retail stores and online customers 
through a two-tier distribution system; fo-
cuses on optimizing direct deliveries from 
central depots and intermediate hubs. 

Mixed-integer program-
ming 
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2021 
Janjevic et al. 
[13] 

Multi-Tier, Multi-
Service Level VRP 

Replenishes multiple levels of retail inven-
tory; involves replenishing retail stores and 
satellite hubs, as well as delivering products 
directly to customers. 

Capacitated Location-
Routing and Continuum 
Approximation 

2022 Liu et al. [15] MPD 

Serves retail stores and home customers; inte-
grates replenishment of stores with direct 
customer deliveries, aiming for cost minimi-
zation and customer satisfaction. 

Multi-Objective Gray 
Wolf Optimizer 
(MOGWO) and Non-
dominated Sorting Ge-
netic Algorithm II 
(NSGA-II) 

2022 
Hendalianpour 
et al. [16] 

Multi-product, 
Multi-level Omni-
channel VRP 

Replenishes multiple levels of retail inven-
tory; involves replenishing retail stores and 
satellite hubs, as well as delivering products 
directly to customers. 

Benders Decomposition 
and Lagrangian Relaxa-
tion 

2022 Li et al. [17] 

Selective Many-to-
Many Pickup and 
Delivery (SMMP-
DPH) 

Manages selective pickup and delivery 
among multiple nodes; focuses on minimiz-
ing handling costs in omnichannel last-mile 
delivery. 

Mixed-Integer Program-
ming, Iterated Local 
Search (ILS), and Me-
metic Algorithm (MA) 

2023 Yang and Li [18] PD 

Performs pickup and delivery between distri-
bution centers, retail stores, and end custom-
ers; focuses on efficient transport of heteroge-
neous goods in omnichannel retail. 

Mixed-Integer Program-
ming, Tabu Thresholding 
and Memetic Algorithms 

2025 
Li and Wang 
[20] 

PD 
Replenishes retail stores and satellites; man-
ages split deliveries under strict time window 
constraints for various product types. 

Adaptive Large Neigh-
borhood Search (ALNS) 

2025 Qiu et al. [19] 
Inventory Replen-
ishment VRP with 
Capacity-Sharing 

Replenishes inventory across retail stores; 
uses a capacity-sharing strategy to reduce 
travel and inventory holding costs while 
meeting online and in-store demands. 

Optimization Model and 
Solution Procedure 

This paper addresses the gap by applying SA in extensive computational experi-
ments for VRP cases. Since its introduction by Kirkpatrick et al. [25], SA has been widely 
applied, extended, and combined with other methods to solve complex optimization 
problems. SA’s strength lies in avoiding local optima, making it well-suited for combina-
torial problems like the VRPO when properly adjusted. While there are no studies focus-
ing on simulated annealing in the post-omnichannel problem context, some newly 
tweaked SA algorithms include an improved simulated annealing algorithm with a cross-
over operator for the capacitated vehicle routing problem [26]; multiple-temperature sim-
ulated annealing for the permutation flowshop scheduling problem [27]; SA with variable 
neighborhood descent for the heterogeneous fleet vehicle routing problem [28]; a fast sim-
ulated annealing algorithm for the examination timetabling problem [29]; a new hyper-
heuristic based on adaptive simulated annealing and reinforcement learning for the ca-
pacitated electric vehicle routing problem [30]; SA with a mutation strategy for the share-
a-ride problem with flexible compartments [31]; multi-start simulated annealing for the 
team-orienteering problem [32]; a backtracking SA metaheuristic for the job-shop sched-
uling problem [33]; a chaos-enhanced SA for hybrid flowshop scheduling with identical 
machines [34]; and a simulated annealing algorithm for the vehicle routing problem with 
parcel lockers [35]. 
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3. Solution Approach 
This paper presents an efficient SA-based algorithm that employs a method to pre-

determine the ranking of parameters, namely, T0, Niter, beta, Nnimp, and UnitP. The first three 
are standard in classical SA, while the last two are efficiency parameters. The T0, Niter, and 
beta control the temperature cooling, while Nnimp and UnitP manage solution acceptance 
and stopping policy. Nimp, the “non-improving solution” parameter, terminates the outer 
loop if no improvement is found after a set number of iterations. UnitP is used in the pen-
alty method to speed up the search by avoiding redundant objective function evaluations. 
The components of our ESA are detailed in the next sections. 

3.1. Solution Encoding 
The VRPO solution array includes c customers {C1, C2, …, CC}, r stores {R1, R2, …, Rr}, 

and n dummy zeros representing the start and end of routes. In Figure 1a–c, a sample 
solution is shown as a single array with one dummy zero, three stores, and eighteen cus-
tomers, where dummy zeros act as route separators. The array is decoded into two routes. 
Route 1 starts at the depot, visits store R2 for stock replenishment and to pick up customer 
requests, delivers to customers C11, C10, C18, C12, C17, C6, C9, and C5, and returns to the de-
pot. Route 2 visits R3 for customer pickups, delivers to customers C1 and C3, replenishes 
stock at store R1, picks up customer requests, delivers to customers C2, C15, C16, C13, C7, C4, 
C14, and C8, and returns to the depot. 

 
(a) 

 
(b) 

 
(c) 

Figure 1. VRPO solution representation: (a) array representation of a sample solution; (b) vehicle 
route representation; (c) graphical representation. 

Each element of the solution array is decoded from left to right to form the routes. 
There are three cases for handling dummy zeros, as follows: 

Case 1: If the next element after a dummy zero is another dummy zero, it is ignored, 
and the process continues. 

Case 2: If the next element is a local store, the current vehicle terminates its route and 
returns to the warehouse, a new vehicle is activated, and decoding proceeds. 

Case 3: If the next element is a customer, it is ignored, and decoding continues. 
After decoding, travel time and vehicle load are evaluated, ensuring store and cus-

tomer demands are met. If not, a penalty is applied based on the degree of violation, in-
cluding for exceeding the maximum tour length. 
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3.2. Initialization 
The initial solution is constructed using a simple rule to form a complete solution 

array; one vehicle is activated per local store. After visiting a store, the vehicle serves the 
closest unvisited customer. Algorithm 1 illustrates the detailed initialization procedure. 

Algorithm 1: ESA Initialization for the VRPO 

Function: Initialize to obtain an initial solution; 

   Do       

    A vehicle departs from the depot; 

    A vehicle travels to the closest unused local store; 

    Update: (1) vehicle’s current location, (2) vehicle load; 

    Do 

       Find the closest unserved customer which satisfies the following conditions: 

       (1) The current vehicle can provide enough goods for this customer; 

       (2) If this customer is served and the current vehicle 

            goes back to the warehouse, it will not violate the max time of the vehicle; 

            If (one customer is found) { 

                The current vehicle goes to serve this customer; and 

                Update current vehicle location and the amount of goods in the vehicle; 

                Update the partial solution; 

                }    

     } Until no unserved customer can be added to the current vehicle route; 

         The current vehicle goes back to the depot; 

         Update the partial solution; 

     } Until all local stores are used 

3.3. Neighborhood Operators: Swap, Insert, and Invert 
To explore neighborhood solutions, the current solution S is perturbed using three 

neighborhood moves: insert, swap, and invert. A new solution S’, is generated at each 
iteration by applying one of these moves. The Insert move selects a random element of S 
and places it before another random position. The Swap move selects two random ele-
ments in S and swaps them. The Invert move selects a random subsequence of S and re-
verses its order. The probabilities for choosing each move are set equally. 

3.4. Efficient Simulated Annealing (ESA) Algorithm 
Algorithm 2 outlines the ESA algorithm. T0 is the initial temperature, Niter is the num-

ber of iterations at each temperature, and Nnimp is the maximum number of consecutive 
iterations without improvement. This parameter represents the maximum number of tem-
perature reductions without finding a better solution. UnitP is the penalty applied for con-
straint violations, and beta is the cooling schedule coefficient. The algorithm proceeds as 
described. 

The current temperature (T) is set to the initial temperature (T0), and the best solution 
(Sbest) is initialized as the current solution (S). The best objective function value (OFVbest) is 
set as OF(Sbest, UnitP), where OF is the objective function. A penalty, which is calculated 
as the unit penalty times the degree of the constraint violation, is applied when (1) the 
store product quantity is insufficient for the route, (2) the vehicle load exceeds capacity, 
or (3) the tour length exceeds the limit. 

The search goes through a neighborhood search mechanism for each iteration at a 
given temperature. Selection probabilities, set uniformly at one-third for each of the three 
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move operators, determine the move. Let delta be the difference between the new solution 
(S′) and the current solution (S), that is, delta = OF(S′, UnitP)-OF(S, UnitP). If delta <= 0, S′ 
replaces S; otherwise, S′ is accepted at a specific probability lambda between 0 and 1. If 
lambda is less than or equal to e-delta/T, S′ replaces S. The current temperature drops to T 
(beta), where 0 < beta < 1 after Niter iterations at the current temperature. The search termi-
nates when the best solution has not improved after Nnimp consecutive temperature reduc-
tions. Also, the best solution (Sbest) and its objective function value (OFVbest) are updated 
when a better feasible solution is found. When the algorithm terminates, Sbest and OFVbest 
are returned. 

Algorithm 2: ESA for the VRPO 

Function: ESA-VRPO to find the best solution, Sbest; 

Inputs: T0, Niter, Nnimp, UnitP, beta, and “problem instances”; 
begin 

 Generate initial solution, S ← Initialize; 

  T ←T0, Sbest←S, Ncount←0, OFVbest← OF(S, UnitP); 

  While (nimp < Nnimp) do 

      For iter = 1 to Niter do 

       Generate prob = uniform (0,1); 

       If (prob <= ⅓) ←Swap; 

       If (⅓ < prob <= ⅔) ←Insert; 

       If (⅔ < prob <= 1) ←Invert; 

       delta = OF(S′, UnitP)-OF(S, UnitP); 

       If (delta <= 0) then  

        S ←S′; 

       else  

        Generate lambda = uniform (0,1); 

        If (lambda <= e(-delta/T)) then 

        S ←S′; 

        endif 

       endif 

       If (S′  is feasible and OF(S′, UnitP) <= OFVbest) then 

        Sbest←S′, OFVbest = OF(S′, UnitP),  nimp ← 0; 

       endif 

   endfor 

       nimp = nimp +1; T ←T(beta); 

  endwhile 

  return Sbest, OFVbest; 
end 
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4. Experiment 
4.1. Test Instances 

The small and large VRPO instance sets, which were used as benchmarks for this 
study, were obtained from Abdulkader et al. [3] as benchmarks for the comparative study. 
For details on data generation, readers may refer to their work. The small set includes 20 
instances with 3, 4, 5, or 6 retail stores and 6, 9, 12, 15, or 18 consumers. The large set 
contains 60 instances with 10, 15, 20, or 25 stores and 25, 50, 75, 100, or 150 consumers, 
across three inventory cases (see Table 2). Instance data include the depot, stores, consum-
ers, store products, stock levels, x-y coordinates, and pickup/delivery requests. 

Table 2. Inventory availability cases. 

Case Stock Availability Description 

(1) Low �𝐼𝐼𝑝𝑝 =  �𝐷𝐷𝑝𝑝 + 𝑈𝑈[0.1, 0.2] ∗�𝐷𝐷𝑝𝑝 Total stock in the network exceeds consumer demand by 10–20%. 

(2) Moderate �𝐼𝐼𝑝𝑝 =  �𝐷𝐷𝑝𝑝 + 𝑈𝑈[0.5, 1.0] ∗�𝐷𝐷𝑝𝑝 Inventory exceeds demand by 50–100%. 

(3) High �𝐼𝐼𝑝𝑝 =  �𝐷𝐷𝑝𝑝 Each store’s stock can fully meet all demands across the network. 

4.2. Parameter Setting and Fine-Tuning 
The algorithm-related parameters are listed and defined in Table 3, where L is the 

length of the solution array. With the five factors at four levels each, a total of 1024 exper-
iments should be conducted. Alternatively, a representative sampling was conducted us-
ing Type B of the Taguchi L16 (45) orthogonal experimental design. A total of sixteen ex-
perimental combinations were used and compared. For each combination, ESA is imple-
mented ten times independently per random instance of six instances. 

Table 3. ESA parameter levels. 

Parameter Definition Levels 
T0 Initial temperature 10, 20, 30, 40 
Niter Number of iterations per T level 2000 L, 2500 L, 3000 L, 3500 L 
beta Cooling coefficient 0.90, 0.93, 0.96, 0.99 
Nnimp Maximum iterations over non-improving solutions 20, 30, 40, 50 
UnitP Unit penalty per constraint violation 1500, 2000, 2500, 3000 

The performance of each combination is measured using the average relative per-
centage deviation (%Gap) and average computational time from 10 independent runs per 
combination. Tables 4 and 5 present the results. Table 4 shows the average %Gap and 
computational times obtained from the predetermined parameter levels. The results high-
light combinations 4 and 13 on Niter’s effect on the %Gap. The former has the least average 
%Gap (i.e., the least deviation with respect to the best solution found) at the highest Niter, 
while the latter has the highest average %Gap at the least Niter. 

Table 5 shows the rankings of parameters based on percentage gaps. It reveals Niter 
as the most critical parameter with the largest average %Gap range. Parameters beta and 
T0 are the second and third in the ranking, respectively. It is hard to separate the influence 
of beta and T0 when determining the current T in the algorithm. T affects the probability 
of accepting worse solutions. Generally, a worse solution is frequently accepted at a higher 
T (i.e., the earlier search stage). As a result, the convergence at this stage is unlikely. As T 
decreases (i.e., the later search stage), worse solutions are often rejected, and the search 
gravitates locally. Lesser beta values cause drastic drops of current T and often cause the 
search process to become prematurely stuck in local optima. Nnimp helps in termination 
and convergence. Higher values of Nnimp may lead to more and unnecessary evaluations 
during the search. UnitP is considered a trivial parameter, as the search is most likely to 
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reject an infeasible solution, let alone one with a high UnitP. Finally, to balance solution 
quality and computation time, the algorithm’s T0, Niter, beta, Nnimp, and UnitP parameter 
values were set to 30, 3500L, 0.96, 50, and 1500, respectively. 

Table 4. CPU times and %Gaps of predetermined parameter levels. 

Combinations T0 Niter beta Nnimp UnitP 
%Gap * 
(Ave.) 

Time 
(Ave.) 

1 10 2000 L 0.90 20 1500 8.561 28.87 
2 10 2500 L 0.93 30 2000 7.524 49.28 
3 10 3000 L 0.96 40 2500 6.161 91.06 
4 10 3500 L 0.99 50 3000 4.164 279.94 
5 20 2000 L 0.93 40 3000 7.191 49.56 
6 20 2500 L 0.90 50 2500 7.548 57.93 
7 20 3000 L 0.99 20 2000 6.810 202.49 
8 20 3500 L 0.96 30 1500 5.060 109.09 
9 30 2000 L 0.96 50 2000 5.847 79.33 

10 30 2500 L 0.99 40 1500 4.795 252.13 
11 30 3000 L 0.90 30 3000 6.682 54.22 
12 30 3500 L 0.93 20 2500 5.634 68.91 
13 40 2000 L 0.99 30 2500 8.863 176.05 
14 40 2500 L 0.96 20 3000 5.803 78.35 
15 40 3000 L 0.93 50 1500 6.116 85.33 
16 40 3500 L 0.90 40 2000 6.155 72.60 

* %𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 −𝑂𝑂𝑂𝑂𝑂𝑂𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏
𝑂𝑂𝑂𝑂𝑂𝑂𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏𝑥𝑥 100%

. 𝑂𝑂𝑂𝑂𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖  denotes the average objective function value obtained in 10 runs 
per combination. 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑎𝑎𝑏𝑏𝑏𝑏 is the instance’s minimum objective function value obtained in 200 runs. 

Table 5. Rankings of parameters based on %Gap. 

Levels 
%Gap (Ave.)  Time (Ave.) 
T0 Niter beta Nnimp UnitP  T0 Niter beta Nnimp UnitP 

1 6.6025 7.6154 7.2365 6.7021 6.1330  107.26 81.71 52.46 92.06 114.50 
2 6.6522 6.4177 6.6164 7.0323 6.5843  100.09 105.42 62.18 95.40 97.22 
3 5.7398 6.4424 5.7177 6.0756 7.0516  109.94 104.98 86.35 111.95 96.84 
4 6.7344 5.2535 6.1583 5.9189 5.9601  103.08 128.27 219.39 120.97 111.82 

Range 0.9946 2.3619 1.5188 1.1134 1.0915  9.85 46.56 166.93 28.90 17.66 
Rank 5 1 2 3 4  5 2 1 3 4 

4.3. Results and Discussion 
This section presents the results of ESA’s performance compared to the baseline al-

gorithms 2PH and MAC. The experiment was implemented on a server with four 2.1 GHz 
processors with 16 cores each and 256 GB RAM. Our implementation used Microsoft Vis-
ual C++ 2019 on a desktop with an Intel Core i9-10900 CPU @ 2.80GHz, 64 GB of RAM, 
and Windows 11. 

4.3.1. Small Instances 
In small problems, the results as shown in Table 6 suggest that our ESA is at par in 

terms of solution quality and average solution quality but generally superior in terms of 
computational time. ESA consistently obtains the optimal solution for all twenty small 
instances, as demonstrated in the ESA (Best) and %Gap (Best) columns of Table 6, match-
ing the optimal solution provided by the exact solver. While our results are clearly better 
than those of 2PH, there are slight differences in the five instances in which our results are 
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compared to MAC. Finally, ESA outperforms MAC in three instances a8, a15, and a20. 
However, ESA is outperformed by MAC in two instances: a5 and a10. 

Table 6. Comparison of ESA to 2PH, and MAC in small instances. 

 MINLP by Gurobi Abdulkader et al. [3]  ESA 

Ins Optimal 
Time  
(sec.) 

2PH %Gap MAC %Gap 
 ESA 

(Best) 
ESA 
(Ave.) 

Time 
(Ave.) 

%Gap * 
(Best) 

%Gap * 
(Ave.) 

a1 386.906 0.11 479.19 23.85 386.91 0.00  386.906 386.906 1.00 0.00 0.00 
a2 416.346 1.31 589.63 41.62 416.35 0.00  416.346 416.346 1.50 0.00 0.00 
a3 424.309 5.27 512.32 20.74 424.31 0.00  424.309 424.309 2.40 0.00 0.00 
a4 455.288 28.70 767.06 68.48 455.29 0.00  455.288 455.288 3.80 0.00 0.00 
a5 601.363 179.55 936.20 55.68 601.36 0.00  601.363 702.640 4.90 0.00 16.84 
a6 419.327 2.16 512.12 22.13 419.32 0.00  419.327 419.327 1.20 0.00 0.00 
a7 455.912 14.66 688.39 50.99 455.91 0.00  455.912 455.912 1.80 0.00 0.00 
a8 448.831 153.45 711.89 58.61 449.35 0.12  448.831 448.831 2.80 0.00 0.00 
a9 457.319 8.31 746.57 63.25 457.32 0.00  457.319 457.319 4.20 0.00 0.00 
a10 514.376 607.81 740.80 44.02 514.38 0.00  514.376 518.290 5.40 0.00 0.76 
a11 486.037 4.70 545.72 12.28 486.04 0.00  486.037 486.037 1.40 0.00 0.00 
a12 624.812 48.09 881.95 41.15 624.81 0.00  624.812 624.812 1.90 0.00 0.00 
a13 535.437 139.53 961.67 79.60 535.44 0.00  535.437 535.437 3.10 0.00 0.00 
a14 605.028 166.98 838.93 38.66 605.03 0.00  605.028 605.028 4.40 0.00 0.00 
a15 708.226 601.25 898.75 26.90 709.89 0.23  708.226 708.890 6.30 0.00 0.09 
a16 468.885 6.30 582.10 24.15 468.89 0.00  468.885 468.885 1.60 0.00 0.00 
a17 468.610 139.83 608.99 29.96 468.61 0.00  468.610 468.610 2.70 0.00 0.00 
a18 586.624 14400.00 924.41 57.58 586.62 0.00  586.624 586.624 3.70 0.00 0.00 
a19 750.937 437.11 964.11 28.39 750.94 0.00  750.937 750.937 5.10 0.00 0.00 
a20 588.654 14400.00 1005.72 70.85 601.71 2.22  588.654 599.751 6.90 0.00 1.89 

* %𝐺𝐺𝐺𝐺𝐺𝐺 =  𝑜𝑜𝑂𝑂𝑂𝑂𝐻𝐻𝑎𝑎𝐻𝐻𝐻𝐻𝑖𝑖𝑏𝑏𝑏𝑏𝑖𝑖𝐻𝐻−𝑜𝑜𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑜𝑜𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
× 100%. 

4.3.2. Large Instances 
The large instances feature up to 25 local stores and 150 customers. To further evalu-

ate these instances, three inventory scenarios are considered. Table 7a–c show the results 
for instances b1–b20 under low inventory, b21–b40 under moderate inventory, and b41–b60 
under high inventory. 
1. Best Know Solutions (BKS): The ESA found fifty-nine new BKS out of sixty large 

problem instances compared to the 2PH and MAC results. However, for instance b31, 
MAC’s result remains the BKS (refer to the BKS column). 

2. Performance Comparison Based on BKS: Using the BKS, we calculated the percent-
age gaps for 2PH and MAC, which are shown in the %Gap (2PH) and %Gap (MAC) 
columns. Table 7d summarizes the performance improvements of ESA over 2PH and 
MAC.  

• For the ESA-Best results, ESA outperformed 2PH by 78.033%, 80.934%, and 
41.853% in low, moderate, and high inventory cases, respectively. For the ESA-
Ave results, ESA outperformed 2PH by 75.124%, 77.683%, and 4.941% in the 
respective cases.  

• Against MAC, ESA outperformed with ESA-Best results by 10.185%, 10.478%, 
and 4.990% for low, moderate, and high inventory cases, respectively. For the 
ESA-Ave results, ESA outperformed MAC by 7.275%, 7.218%, and 4.077% for 
each corresponding scenario. 

3. Stability and Robustness Analysis: To assess the stability and robustness of ESA, we 
calculated the percentage deviation between the average fitness values (ESA-Ave) 
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and the best solution found (ESA-Best). High-inventory cases exhibited the smallest 
deviation at 0.913%, indicating strong stability. Deviations for low and moderate cases 
are 2.909% and 3.275%, respectively, reflecting consistent performance across inven-
tory levels. Figure 2a–c illustrate the percentage gaps of ESA compared to MAC 
across instances per scenario, showing that ESA consistently maintains greater sta-
bility around the average gaps. Additionally, the gaps decrease as the scenarios be-
come more challenging, demonstrating ESA’s robustness.  

4. Average Computational Time: ESA outperformed MAC in 68.33% of the sixty cases. 
Specifically, ESA demonstrated shorter computation times in 50% of the low inven-
tory cases, 70% of the moderate inventory cases, and 85% of the high inventory cases. 
As instance difficulty increases ESA’s performance becomes better. Figure 3 com-
pares the computational times of MAC and ESA across three cases. While MAC’s 
computational time increased significantly with harder instances, ESA maintained a 
stable trend, demonstrating consistent efficiency and highlighting its scalability and 
effectiveness. 
In summary, ESA significantly outperformed 2PH and MAC, establishing new BKS 

for fifty-nine out of sixty cases. The low percentage deviations in solution quality highlight 
its robustness and stability, particularly in high inventory cases. Moreover, the ESA algo-
rithm not only delivers superior solutions but also excels in computational efficiency, es-
pecially for harder cases. 

Table 7. (a) SA vs. 2PH and MAC algorithms in large instances in low-inventory scenarios. (b) ESA 
vs. 2PH and MAC in large instances in moderate-inventory scenarios. (c) SA vs. 2PH and MAC in 
large instances in high-inventory scenarios. (d) Summary of ESA performance w.r.t. 2PH and MAC. 

(a) 

Ins BKS 
Abdulkader et al. [3]  Efficient Simulated Annealing (ESA) 

2PH MAC 
Time 
(sec.) 

%Gap 
(2PH) 

%Gap 
(MAC) 

 ESA 
(Best) 

ESA 
(Ave.) 

Time (sec.) 
%Gap* 

(Best) 
%Gap* 

(Ave.) 
b1 965.658 1631.63 1002.47 7.0 68.966% 3.812%  965.658 972.471 14.8 0.000% 0.706% 
b2 1131.951 2057.50 1191.97 47.0 81.766% 5.302%  1131.951 1175.557 44.8 0.000% 3.852% 
b3 1523.503 3006.19 1815.42 79.0 97.321% 19.161%  1523.503 1600.928 102.9 0.000% 5.082% 
b4 1486.468 2830.16 1529.04 286.0 90.395% 2.864%  1486.468 1582.114 145.6 0.000% 6.434% 
b5 1757.472 3478.72 1905.19 576.0 97.939% 8.405%  1757.472 1800.644 339.8 0.000% 2.456% 
b6 1312.778 1774.35 1313.69 7.0 35.160% 0.069%  1312.778 1345.565 20.5 0.000% 2.498% 
b7 1430.900 2461.83 1522.29 44.0 72.048% 6.387%  1430.900 1446.444 62.2 0.000% 1.086% 
b8 1669.546 3545.11 2101.77 131.0 112.340% 25.889%  1669.546 1726.145 119.4 0.000% 3.390% 
b9 2038.427 3528.98 2329.53 209.0 73.123% 14.281%  2038.427 2118.569 196.1 0.000% 3.932% 
b10 2314.624 4916.75 3012.18 430.0 112.421% 30.137%  2314.624 2413.788 384.2 0.000% 4.284% 
b11 1574.268 2432.56 1611.34 11.0 54.520% 2.355%  1574.268 1592.868 29.4 0.000% 1.182% 
b12 1720.667 2695.34 1800.87 50.0 56.645% 4.661%  1720.667 1773.679 73.9 0.000% 3.081% 
b13 2406.040 3936.67 2406.04 127.0 92.430% 17.611%  2045.768 2078.285 140.6 0.000% 1.589% 
b14 2227.445 3826.14 2483.81 327.0 71.773% 11.509%  2227.445 2292.73 214.5 0.000% 2.931% 
b15 2432.789 4496.05 2679.15 708.0 84.811% 10.127%  2432.789 2498.48 443.2 0.000% 2.700% 
b16 1630.361 2254.87 1669.56 13.0 38.305% 2.404%  1630.361 1648.857 33.2 0.000% 1.134% 
b17 1904.518 3020.80 1965.56 46.0 58.612% 3.205%  1904.518 1928.351 109.1 0.000% 1.251% 
b18 2279.020 3963.52 2449.76 136.0 73.913% 7.492%  2279.020 2354.603 138.3 0.000% 3.316% 
b19 2412.603 4933.86 2788.48 257.0 104.504% 15.580%  2412.603 2501.918 233.5 0.000% 3.702% 
b20 2570.524 4721.26 2890.29 712.0 83.669% 12.440%  2570.524 2662.451 474.0 0.000% 3.576% 
Ave.   210.1 78.033% 10.185%    166.0 0.000% 2.909% 
(b) 

Ins BKS 
Abdulkader et al. [3]  Efficient Simulated Annealing (ESA) 

2PH MAC Time %Gap %Gap  ESA ESA Time (sec.) %Gap * %Gap * 
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(sec.) (2PH) (MAC) (Best) (Ave.) (Best) (Ave.) 
b21 830.576 1571.63 879.16 10.0 89.222% 5.849%  830.576 838.639 15.0 0.000% 0.971% 
b22 985.593 1920.59 1083.66 85.0 94.866% 9.950%  985.593 1007.615 49.2 0.000% 2.234% 
b23 1307.761 2699.23 1591.52 167.0 106.401% 21.698%  1307.761 1356.962 111.7 0.000% 3.762% 
b24 1180.631 2305.09 1437.68 528.0 95.242% 21.772%  1180.631 1267.620 138.9 0.000% 7.368% 
b25 1341.064 2700.41 1520.51 1836.0 101.363% 13.381%  1341.064 1421.077 336.2 0.000% 5.966% 
b26 1177.616 1665.15 1180.83 11.0 41.400% 0.273%  1177.616 1182.247 21.2 0.000% 0.393% 
b27 1326.928 2320.66 1329.26 73.0 74.890% 0.176%  1326.928 1348.179 62.9 0.000% 1.602% 
b28 1504.426 3016.45 1692.41 279.0 100.505% 12.495%  1504.426 1586.755 129.2 0.000% 5.472% 
b29 1685.024 3302.39 2016.40 567.0 95.985% 19.666%  1685.024 1779.461 193.3 0.000% 5.604% 
b30 1812.834 3918.97 2399.60 1407.0 116.179% 32.367%  1812.834 1970.385 435.6 0.000% 8.691% 
b31 1495.790 1993.49 1495.79 16.0 33.273% 0.000%  1500.196 1514.549 29.9 0.295% 1.254% 
b32 1583.288 2713.01 1656.86 76.0 71.353% 4.647%  1583.288 1604.756 80.6 0.000% 1.356% 
b33 1715.007 3393.34 1799.64 262.0 97.862% 4.935%  1715.007 1772.595 147.7 0.000% 3.358% 
b34 1821.977 3127.49 2018.50 740.0 71.654% 10.786%  1821.977 1883.839 230.5 0.000% 3.395% 
b35 2008.901 3742.21 2290.95 2141.0 86.281% 14.040%  2008.901 2092.139 458.0 0.000% 4.143% 
b36 1496.488 2032.06 1550.01 15.0 35.789% 3.577%  1496.488 1518.099 37.3 0.000% 1.444% 
b37 1833.898 3130.52 1939.50 73.0 70.703% 5.758%  1833.898 1880.449 104.1 0.000% 2.538% 
b38 1944.259 3433.23 2088.58 283.0 76.583% 7.423%  1944.259 1964.290 162.2 0.000% 1.030% 
b39 1996.767 3824.46 2244.14 656.0 91.533% 12.389%  1996.767 2023.750 280.6 0.000% 1.351% 
b40 2051.460 3447.89 2229.43 2077.0 68.070% 8.675%  2051.460 2124.600 480.9 0.000% 3.565% 
Ave.   565.1 80.958% 10.493%    175.3 0.015% 3.275% 
(c) 

Ins BKS 
Abdulkader et al. [3]  Efficient Simulated Annealing (ESA) 

2PH MAC 
Time 
(sec.) 

%Gap 
(2PH) 

%Gap 
(MAC) 

 ESA 
(Best) 

ESA 
(Ave.) 

Time (sec.) 
%Gap 
(Best) 

%Gap 
(Ave.) 

b41 692.317 897.55 711.29 16.0 29.644% 2.741%  692.317 692.317 14.7 0.000% 0.000% 
b42 853.859 1287.81 875.24 143.0 50.822% 2.504%  853.859 855.624 49.2 0.000% 0.207% 
b43 1047.763 1531.06 1132.05 358.0 46.127% 8.044%  1047.763 1054.713 108.8 0.000% 0.663% 
b44 1053.330 1636.54 1224.11 978.0 55.368% 16.213%  1053.330 1079.247 148.9 0.000% 2.460% 
b45 1155.630 1551.75 1273.86 2085.0 34.277% 10.231%  1155.630 1176.100 332.5 0.000% 1.771% 
b46 988.557 1264.32 996.93 22.0 27.896% 0.847%  988.557 988.557 26.1 0.000% 0.000% 
b47 1027.516 1488.07 1080.34 159.0 44.822% 5.141%  1027.516 1036.107 66.3 0.000% 0.836% 
b48 1188.503 1815.22 1252.35 559.0 52.732% 5.372%  1188.503 1216.658 121.3 0.000% 2.369% 
b49 1471.915 2242.40 1594.02 1167.0 52.346% 8.296%  1471.915 1504.279 203.3 0.000% 2.199% 
b50 1503.470 2459.52 1691.42 4126.0 63.590% 12.501%  1503.470 1521.713 439.8 0.000% 1.213% 
b51 1302.884 1660.91 1302.89 33.0 27.479% 0.000%  1302.884 1303.162 33.7 0.000% 0.021% 
b52 1272.812 1740.66 1300.98 156.0 36.757% 2.213%  1272.812 1278.270 80.2 0.000% 0.429% 
b53 1391.373 2096.76 1421.77 605.0 50.697% 2.185%  1391.373 1393.505 139 0.000% 0.153% 
b54 1601.141 2226.39 1640.60 1370.0 39.050% 2.464%  1601.141 1608.418 263.5 0.000% 0.454% 
b55 1638.572 2518.16 1763.31 5321.0 53.680% 7.613%  1638.572 1666.076 484.8 0.000% 1.679% 
b56 1311.628 1550.71 1311.63 36.0 18.228% 0.000%  1311.628 1311.628 39.9 0.000% 0.000% 
b57 1423.865 1835.39 1468.12 203.0 28.902% 3.108%  1423.865 1436.874 113.7 0.000% 0.914% 
b58 1601.873 2276.94 1654.92 791.0 42.142% 3.312%  1601.873 1604.410 166.5 0.000% 0.158% 
b59 1532.106 2061.86 1575.67 1262.0 34.577% 2.843%  1532.106 1546.861 277.8 0.000% 0.963% 
b60 1587.046 2347.76 1653.30 4549.0 47.933% 4.175%  1587.046 1615.076 478.5 0.000% 1.766% 

Ave.   1196.9 41.853% 4.990%    179.4 0.000% 0.913% 

(d) 

 Mean %Gaps w.r.t. BKS per Sce-
nario 

 ESA Outperforms 2PH 
by: 

 
ESA Outperforms MAC by: 
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Case 
ESA  

(Best) 
ESA  

(Ave) 
2PH MAC 

 ESA 
(Best) 

ESA 
(Ave) 

 ESA 
(Best) 

ESA 
(Ave) 

Low 0.000% 2.909% 78.033% 10.185%  −78.033% −75.124%  −10.185% −7.275% 
Moderate 0.015% 3.275% 80.958% 10.493%  −80.943% −77.683%  −10.478% −7.218% 
High 0.000% 0.913% 41.853% 4.990%  −41.853% −40.941%  −4.990% −4.077% 

* %𝐺𝐺𝐺𝐺𝐺𝐺 =  𝑜𝑜𝑂𝑂𝑂𝑂𝐻𝐻𝑎𝑎𝐻𝐻𝐻𝐻𝑖𝑖𝑏𝑏𝑏𝑏𝑖𝑖𝐻𝐻−𝑜𝑜𝑂𝑂𝑂𝑂𝐵𝐵𝐵𝐵𝐵𝐵
𝑜𝑜𝑂𝑂𝑂𝑂𝐵𝐵𝐵𝐵𝐵𝐵

× 100. 
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(b) 
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(c) 

Figure 2. Average %Gap with respect to BKS across inventory cases: MAC vs. ESA. (a) Low; (b) 
Moderate; and (c) High. 

 
Figure 3. CPU time (sec) across 60 cases of MAC vs. ESA. 

5. Summary and Conclusions 
The VRPO is a hybrid VRP with PDP and SPDP features. As omnichannel operations 

evolve, last-mile distribution networks are becoming increasingly complex, making the 
pickup and delivery problems relevant than ever. To solve the VRPO, we tailor an efficient 
SA-based algorithm with two efficiency features: the non-improving solution parameter 
(Nnimp) and the unit penalty function (UnitP) for constraint handling. The experimental 
study demonstrated ESA’s performance in terms of solution quality, average quality, ro-
bustness, and efficiency. 

Building on the study of Abdulkader et al. [3], the experiment revealed the following 
results: (i) ESA obtained optimal solutions for all twenty small instances, (ii) ESA estab-
lished fifty-nine new BKSs out of sixty large instances, (iii) ESA outperformed the MAC 
algorithm by 6.190% in terms of solution quality, (iv) ESA was faster than MAC in 68.3% 
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of the sixty cases, and (v) ESA demonstrated a better robustness than MAC, as evidenced 
by the stable and consistent trend of computational times across all sixty instances. 

The PDP domains in the omnichannel context offer a promising opportunity to test 
and demonstrate various solution approaches, including exact methods, heuristics, me-
taheuristics, and hybrids. This study addresses the gap regarding the underexplored use 
of SA-based algorithms for PDPs in pre- or post-omnichannel settings. As a flexible frame-
work, it is recommended for further exploration of other SA components. Testing VRPO 
instances with neighborhood-based metaheuristics like variable neighborhood search 
(VNS), large neighborhood search (LNS), and variable neighborhood descent (VND), 
which have gained traction recently, would be valuable. Additionally, applying the frame-
work to new omnichannel distribution network variants—such as managing customer re-
turns, delivering goods to secondary markets or recycling, and warehouse milk-run de-
liveries—offers further opportunities to extend the VRPO. 

The landscape of metaheuristics for solving vehicle routing problems has signifi-
cantly evolved, with recent advancements particularly emphasizing hybrid and AI-driven 
approaches. For instance, a hybrid simulated annealing and variable neighborhood search 
algorithm was developed for a novel variant of electric vehicle routing (EVRP) called 
close–open EVRP (COEVRP) [36]. The use of such hybrid approaches has been instrumen-
tal in achieving high-quality solutions, especially in complex VRP variants. Furthermore, 
the integration of adaptive algorithms [37] and reinforcement learning [30] into the simu-
lated annealing algorithm offers a better position for it to advance further. 
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