GaitAE: A Cognitive Model-Based Autoencoding Technique for Gait Recognition
<p>Common low-quality gait sequences.</p> "> Figure 2
<p>The GaitAE framework. The components within the red dotted lines represent the primary innovations of GaitAE. <math display="inline"><semantics> <msup> <mi>X</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msup> </semantics></math> represents the <span class="html-italic">n</span>th input sample. <span class="html-italic">h</span> is the sequence encoder for extracting frame-level features, <math display="inline"><semantics> <mi mathvariant="script">G</mi> </semantics></math> aggregates video features across frames, and <math display="inline"><semantics> <mi mathvariant="script">H</mi> </semantics></math> learns a discriminative representation of the training data. <math display="inline"><semantics> <mi mathvariant="script">G</mi> </semantics></math> and <math display="inline"><semantics> <mi mathvariant="script">H</mi> </semantics></math> together refine the gait features. ⊕ is addition.</p> "> Figure 3
<p>Horizontal occlusion restriction (HOR). <math display="inline"><semantics> <msup> <mi>W</mi> <mo>′</mo> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mi>H</mi> <mo>′</mo> </msup> </semantics></math> represent the width and height of the frames in gait sequences, respectively. <math display="inline"><semantics> <msub> <mi>H</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>H</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>H</mi> <mn>3</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>H</mi> <mn>4</mn> </msub> </semantics></math> are parameters that control the position and size of the horizontal occlusion. (<b>a</b>) Complete gait silhouette. (<b>b</b>–<b>e</b>) Schematic diagrams in HOR with different numbers of occlusions and occlusion heights.</p> "> Figure 4
<p>The image restoration effect of the proposed method. The input is on the left of the arrow, and the output is on the right.</p> "> Figure 5
<p>Square occlusions of side lengths 4, 8, and 16.</p> "> Figure 6
<p>Comparison between the original model and the model with the introduction of GaitAE under three walking conditions in CASIA-B: NM, BG, and CL.</p> ">
Abstract
:1. Introduction
- (1)
- Designing an AE mechanism capable of adapting gait feature descriptors to different quality sequences.
- (2)
- Introducing the HOR strategy to enhance model robustness by minimizing the impact of confounding factors.
- (3)
- (4)
- Our method demonstrates flexibility and effectiveness when integrated into existing gait recognition methods.
2. Related Work
2.1. Video-Based Methods
2.2. Gait Quality Restoration Methods
3. GaitAE
3.1. Gait Autoencoder
3.2. Horizontal Occlusion Restriction Strategy
4. Experiments
4.1. Datasets
4.1.1. CASIA-B
4.1.2. OU-MVLP
4.1.3. SUSTech1K
4.2. Training and Testing
4.3. Effectiveness of GaitAE
4.4. Ablation Study
4.5. Practicality of GaitAE
4.6. Robustness of GaitAE
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, C.; Liang, J.; Shen, C.; Hou, S.; Huang, Y.; Yu, S. Opengait: Revisiting gait recognition towards better practicality. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 9707–9716. [Google Scholar]
- Wang, T.; Ng, W.W.; Pelillo, M.; Kwong, S. Lissa: Localized stochastic sensitive autoencoders. IEEE Trans. Cybern. 2019, 51, 2748–2760. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qiu, Y.; Zhao, H.; Zhan, J.; Chen, R.; Wei, T.; Huang, Z. Gaitslice: A gait recognition model based on spatio-temporal slice features. Pattern Recognit. 2022, 124, 108453. [Google Scholar] [CrossRef]
- Qin, H.; Chen, Z.; Guo, Q.; Wu, Q.J.; Lu, M. Rpnet: Gait recognition with relationships between each body-parts. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 2990–3000. [Google Scholar] [CrossRef]
- Wei, T.; Liu, M.; Zhao, H.; Li, H. Gmsn: An efficient multi-scale feature extraction network for gait recognition. Expert Syst. Appl. 2024, 252, 124250. [Google Scholar] [CrossRef]
- Huang, X.; Wang, X.; He, B.; He, S.; Liu, W.; Feng, B. Star: Spatio-temporal augmented relation network for gait recognition. IEEE Trans. Biom. Behav. Identity Sci. 2022, 5, 115–125. [Google Scholar] [CrossRef]
- Hou, S.; Liu, X.; Cao, C.; Huang, Y. Gait quality aware network: Toward the interpretability of silhouette-based gait recognition. IEEE Trans. Neural Netw. Learn. 2022, 34, 8978–8988. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hou, S.; Zhang, M.; Liu, X.; Cao, C.; Huang, Y.; Li, P.; Xu, S. Qagait: Revisit gait recognition from a quality perspective. Proc. AAAI Conf. Artif. 2024, 38, 5785–5793. Available online: https://ojs.aaai.org/index.php/AAAI/article/view/28391 (accessed on 24 March 2024). [CrossRef]
- Yu, S.; Tan, D.; Tan, T. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In Proceedings of the IEEE 18th International Conference on Pattern Recognition (ICPR’06), Washington, DC, USA, 20–24 August 2006; Volume 4, pp. 441–444. [Google Scholar]
- Takemura, N.; Makihara, Y.; Muramatsu, D.; Echigo, T.; Yagi, Y. Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Trans. Comput. Vis. Appl. 2018, 10, 1–14. [Google Scholar] [CrossRef]
- Shen, C.; Fan, C.; Wu, W.; Wang, R.; Huang, G.Q.; Yu, S. Lidargait: Benchmarking 3D gait recognition with point clouds. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 1054–1063. [Google Scholar]
- Zhang, Z.; Tran, L.; Liu, F.; Liu, X. On learning disentangled representations for gait recognition. IEEE Trans. Pattern Anal. Mach. 2020, 44, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Li, J.; Ahmed, M. Spidernet: A spiderweb graph neural network for multi-view gait recognition. Knowl.-Based Syst. 2020, 206, 106273. [Google Scholar] [CrossRef]
- Chao, H.; Wang, K.; He, Y.; Zhang, J.; Feng, J. Gaitset: Cross-view gait recognition through utilizing gait as a deep set. IEEE Trans. Pattern Anal. Mach. 2021, 44, 3467–3478. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Peng, Y.; Cao, C.; Liu, X.; Hou, S.; Chi, J.; Huang, Y.; Li, Q.; He, Z. Gaitpart: Temporal part-based model for gait recognition. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 14225–14233. [Google Scholar]
- Huang, T.; Ben, X.; Gong, C.; Xu, W.; Wu, Q.; Zhou, H. Gaitdan: Cross-view gait recognition via adversarial domain adaptation. IEEE Trans. Circuits Syst. Video Technol. 2024, 1. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Zheng, C.; Zeng, K.; Zou, Q.; Cui, L. Gaitamr: Cross-view gait recognition via aggregated multi-feature representation. Inf. Sci. 2023, 636, 118920. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, S.; Yu, X. Gait recognition via effective global-local feature representation and local temporal aggregation. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 14648–14656. [Google Scholar]
- Huang, Z.; Xue, D.; Shen, X.; Tian, X.; Li, H.; Huang, J.; Hua, X.-S. 3D local convolutional neural networks for gait recognition. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 14920–14929. [Google Scholar]
- Huang, T.; Ben, X.; Gong, C.; Zhang, B.; Yan, R.; Wu, Q. Enhanced spatial-temporal salience for cross-view gait recognition. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 6967–6980. [Google Scholar] [CrossRef]
- Li, G.; Guo, L.; Zhang, R.; Qian, J.; Gao, S. Transgait: Multimodal-based gait recognition with set transformer. Appl. Intell. 2023, 53, 1535–1547. [Google Scholar] [CrossRef]
- Peng, Y.; Ma, K.; Zhang, Y.; He, Z. Learning rich features for gait recognition by integrating skeletons and silhouettes. Multimed. Tools Appl. 2024, 83, 7273–7294. [Google Scholar] [CrossRef]
- Hsu, H.-M.; Wang, Y.; Yang, C.-Y.; Hwang, J.-N.; Thuc, H.L.U.; Kim, K.-J. Learning temporal attention based keypoint-guided embedding for gait recognition. IEEE J. Sel. Top. Signal Process. 2023, 17, 689–698. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, J.; Ouyang, W. Quality Aware Network for Set to Set Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5790–5799. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Hermans, A.; Beyer, L.; Leibe, B. In defense of the triplet loss for person re-identification. arXiv 2017, arXiv:1703.07737. [Google Scholar]
- Chao, H.; He, Y.; Zhang, J.; Feng, J. Gaitset: Regarding Gait as a Set for Cross-View Gait Recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2019; Volume 33, pp. 8126–8133. [Google Scholar]
Model | CASIA-B | OU-MVLP | SUSTech1K | |||
---|---|---|---|---|---|---|
Origin | GaitAE | Origin | GaitAE | Origin | GaitAE | |
GaitSet [27] | 84.2 | 86.4 ↑2.2 | 87.9 | 88.3 ↑0.4 | 48.4 | 49.0 ↑0.6 |
GaitPart [15] | 88.8 | 90.3 ↑1.5 | 88.7 | 89.6 ↑0.9 | 47.6 | 48.1 ↑0.5 |
GaitGL [18] | 91.8 | 92.6 ↑0.8 | 89.7 | 90.0 ↑0.3 | 47.3 | 47.6 ↑0.3 |
GaitSlice [3] | 90.2 | 91.6 ↑1.4 | 89.3 | 89.7 ↑0.4 | 47.8 | 48.3 ↑0.5 |
GMSN [5] | 93.7 | 94.1 ↑0.4 | 89.7 | 90.1 ↑0.4 | 50.0 | 50.3 ↑0.3 |
Model | CASIA-B | OU-MVLP | SUSTech1K | ||||||
---|---|---|---|---|---|---|---|---|---|
Origin | AE | HOR | Origin | AE | HOR | Origin | AE | HOR | |
GaitSet [27] | 84.2 | 85.2 ↑1.0 | 85.7 ↑1.5 | 87.9 | 88.0 ↑0.1 | 88.2 ↑0.3 | 48.4 | 48.6 ↑0.2 | 48.9 ↑0.5 |
GaitPart [15] | 88.8 | 89.4 ↑0.6 | 89.4 ↑0.6 | 88.7 | 89.1 ↑0.4 | 89.5 ↑0.8 | 47.6 | 47.9 ↑0.3 | 48.0 ↑0.4 |
GaitGL [18] | 91.8 | 92.0 ↑0.2 | 92.2 ↑0.4 | 89.7 | 89.8 ↑0.1 | 89.9 ↑0.2 | 47.3 | 47.4 ↑0.1 | 47.5 ↑0.2 |
GaitSlice [3] | 90.2 | 90.7 ↑0.5 | 91.2 ↑1.0 | 89.3 | 89.6 ↑0.3 | 89.6 ↑0.3 | 47.8 | 48.1 ↑0.3 | 48.2 ↑0.4 |
GMSN [5] | 93.7 | 94.0 ↑0.3 | 93.9 ↑0.2 | 89.7 | 89.8 ↑0.1 | 89.0 ↑0.2 | 50.0 | 50.1 ↑0.1 | 50.1 ↑0.1 |
Group | J | Acc | |||
---|---|---|---|---|---|
1 | 12 | 40 | 4 | 1 | 91.0 |
12 | 40 | 4 | 2 | 91.2 | |
12 | 40 | 4 | 3 | 91.1 | |
2 | 8 | 44 | 4 | 2 | 90.8 |
12 | 40 | 4 | 2 | 91.2 | |
16 | 35 | 4 | 2 | 91.0 | |
3 | 12 | 40 | 2 | 2 | 90.9 |
12 | 40 | 4 | 2 | 91.2 | |
12 | 40 | 6 | 2 | 90.5 |
Model | 4 × 4 | 8 × 8 | 16 × 16 | |||
---|---|---|---|---|---|---|
Origin | GaitAE | Origin | GaitAE | Origin | GaitAE | |
GaitSet [27] | 1.9 | 1.6 ↑0.3 | 5.4 | 5.2 ↑0.2 | 14.3 | 14.1 ↑0.2 |
GaitPart [15] | 1.5 | 1.1 ↑0.4 | 4.4 | 4.1 ↑0.3 | 12.4 | 12.0 ↑0.4 |
GaitGL [18] | 0.6 | 0.4 ↑0.2 | 1.7 | 1.6 ↑0.1 | 6.5 | 6.2 ↑0.3 |
GaitSlice [3] | 1.2 | 1.0 ↑0.2 | 3.9 | 3.6 ↑0.3 | 13.0 | 12.8 ↑0.2 |
GMSN [5] | 0.3 | 0.2 ↑0.1 | 1.2 | 1.0 ↑0.2 | 5.9 | 5.8 ↑0.1 |
Model | NM | BG | CL | |||
---|---|---|---|---|---|---|
Origin | GaitAE | Origin | GaitAE | Origin | GaitAE | |
GaitSet [27] | 95.0 | 96.1 ↑1.1 | 87.2 | 88.8 ↑1.6 | 70.4 | 74.2 ↑3.8 |
GaitPart [15] | 96.0 | 96.7 ↑0.7 | 91.5 | 92.8 ↑1.3 | 78.7 | 81.1 ↑2.4 |
GaitGL [18] | 97.4 | 97.4 ↑0.3 | 94.5 | 95.6 ↑0.9 | 83.6 | 84.9 ↑1.3 |
GaitSlice [3] | 96.7 | 97.4 ↑0.7 | 92.4 | 93.4 ↑1.0 | 81.6 | 84.2 ↑2.6 |
GMSN [5] | 98.2 | 98.3 ↑0.1 | 96.0 | 96.5↑0.5 | 87.0 | 87.7 ↑0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Li, H.; Qiu, Y.; Ren, J.; Ng, W.W.Y.; Zhao, H. GaitAE: A Cognitive Model-Based Autoencoding Technique for Gait Recognition. Mathematics 2024, 12, 2780. https://doi.org/10.3390/math12172780
Li R, Li H, Qiu Y, Ren J, Ng WWY, Zhao H. GaitAE: A Cognitive Model-Based Autoencoding Technique for Gait Recognition. Mathematics. 2024; 12(17):2780. https://doi.org/10.3390/math12172780
Chicago/Turabian StyleLi, Rui, Huakang Li, Yidan Qiu, Jinchang Ren, Wing W. Y. Ng, and Huimin Zhao. 2024. "GaitAE: A Cognitive Model-Based Autoencoding Technique for Gait Recognition" Mathematics 12, no. 17: 2780. https://doi.org/10.3390/math12172780
APA StyleLi, R., Li, H., Qiu, Y., Ren, J., Ng, W. W. Y., & Zhao, H. (2024). GaitAE: A Cognitive Model-Based Autoencoding Technique for Gait Recognition. Mathematics, 12(17), 2780. https://doi.org/10.3390/math12172780