Detection of Cyber-Attacks in a Discrete Event System Based on Deep Learning
<p>A DFPA <span class="html-italic">G</span>.</p> "> Figure 2
<p>The general schematic of the cyber-attack detection model.</p> "> Figure 3
<p>An event-graph <math display="inline"><semantics> <mrow> <mi>G</mi> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics></math> derived from <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>=</mo> <msub> <mi>σ</mi> <mn>1</mn> </msub> <msub> <mi>σ</mi> <mn>2</mn> </msub> <mo>…</mo> <msub> <mi>σ</mi> <mi>n</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 4
<p>A block consisting of <span class="html-italic">I</span> ordered event-graphs by the index of an event-graph sequence.</p> "> Figure 5
<p>The features model of a <math display="inline"><semantics> <mrow> <mi>G</mi> <mo>(</mo> <msub> <mi>s</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 6
<p>A framework for the two-layer GCN model.</p> "> Figure 7
<p>A GRU model.</p> "> Figure 8
<p>A group of GRUs.</p> "> Figure 9
<p>The GCN and GRUs processing event sequences.</p> "> Figure 10
<p>An attention model framework.</p> "> Figure 11
<p>A DFPA <span class="html-italic">G</span>, the source of the PDES dataset (upper part), and an attack DFPA <math display="inline"><semantics> <msub> <mi>G</mi> <mi>a</mi> </msub> </semantics></math> (lower part with a red dashed box).</p> "> Figure 12
<p>The relationship between the attack threshold <math display="inline"><semantics> <msub> <mi>P</mi> <mi>a</mi> </msub> </semantics></math> and the accuracy rate <math display="inline"><semantics> <mrow> <mi>A</mi> <mi>c</mi> <mi>c</mi> </mrow> </semantics></math> in the PDES dataset.</p> "> Figure 13
<p>The relationship between the attack threshold <math display="inline"><semantics> <msub> <mi>P</mi> <mi>a</mi> </msub> </semantics></math> and the accuracy rate <math display="inline"><semantics> <mrow> <mi>A</mi> <mi>c</mi> <mi>c</mi> </mrow> </semantics></math> in the attacked dataset.</p> "> Figure 14
<p>ROC curves of the cyber-attack detection model.</p> "> Figure 15
<p>ROC curves for GRU and LSTM models.</p> "> Figure 16
<p>The distribution of different <math display="inline"><semantics> <msub> <mi>s</mi> <mrow> <mi>a</mi> <mi>t</mi> <mi>t</mi> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msub> </semantics></math> in the attacked dataset.</p> "> Figure 17
<p>Cyber-attack detection model’s prediction of probability distribution for each possible next event.</p> ">
Abstract
:1. Introduction
2. Preliminaries
3. Methodology
3.1. Problem Definition
3.2. Methodology Overview
3.3. Spatial Correlation Model
3.4. Temporal Correlation Model
3.5. Attention Model
3.6. Loss Function
3.7. Cyber-Attack Detection Model
4. Experiments
4.1. Data Description
4.2. Evaluation Metrics
4.3. Experimental Results
4.4. Experimental Complexity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cardenas, A.; Amin, S.; Sastry, S. Secure Control: Towards Survivable Cyber-Physical Systems. In Proceedings of the 2008 The 28th International Conference on Distributed Computing Systems Workshops, Beijing, China, 17–20 June 2008; pp. 495–500. [Google Scholar]
- Lefebvre, D.; Seatzu, C.; Hadjicostis, C.N.; Giua, A. Correction to: Probabilistic state estimation for labeled continuous time Markov models with applications to attack detection. Discret. Event Dyn. Syst. 2022, 32, 539–544. [Google Scholar] [CrossRef]
- Zacchia Lun, Y.; D’Innocenzo, A.; Smarra, F.; Malavolta, I.; Di Benedetto, M.D. State of the art of cyber-physical systems security: An automatic control perspective. J. Syst. Softw. 2019, 149, 174–216. [Google Scholar] [CrossRef]
- Keroglou, C.; Hadjicostis, C.N. Verification of detectability in Probabilistic Finite Automata. Automatica 2017, 86, 192–198. [Google Scholar] [CrossRef]
- Lefebvre, D.; Seatzu, C.; Hadjicostis, C.N.; Giua, A. Probabilistic verification of attack detection using logical observer. IFAC-PapersOnLine 2020, 53, 95–100. [Google Scholar] [CrossRef]
- Meira-Góes, R.; Kwong, R.; Lafortune, S. Synthesis of sensor deception attacks for systems modeled as probabilistic automata. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 9–11 July 2019; pp. 5620–5626. [Google Scholar]
- Fritz, R.; Zhang, P. Modeling and detection of cyber attacks on discrete event systems. IFAC-PapersOnLine 2018, 51, 285–290. [Google Scholar] [CrossRef]
- Gao, C.; Seatzu, C.; Li, Z.; Giua, A. Multiple attacks detection on discrete event systems. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 2352–2357. [Google Scholar]
- Desgeorges, L.; Georges, J.P.; Divoux, T. Detection of cyber-attacks in network control planes using Hidden Markov Model. IFAC-PapersOnLine 2022, 55, 66–72. [Google Scholar] [CrossRef]
- Carvalho, L.K.; Wu, Y.C.; Kwong, R.; Lafortune, S. Detection and mitigation of classes of attacks in supervisory control systems. Automatica 2018, 97, 121–133. [Google Scholar] [CrossRef]
- Lin, L.; Su, R. Synthesis of covert actuator and sensor attackers. Automatica 2021, 130, 109714. [Google Scholar] [CrossRef]
- Su, R. Supervisor synthesis to thwart cyber attack with bounded sensor reading alterations. Automatica 2018, 94, 35–44. [Google Scholar] [CrossRef]
- Meira-Góes, R.; Kang, E.; Kwong, R.H.; Lafortune, S. Synthesis of sensor deception attacks at the supervisory layer of cyber–physical systems. Automatica 2020, 121, 109172. [Google Scholar] [CrossRef]
- Shi, D.; Elliott, R.J.; Chen, T. Event-based state estimation of discrete-state hidden Markov models. Automatica 2016, 65, 12–26. [Google Scholar] [CrossRef]
- Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. AI Open 2020, 1, 57–81. [Google Scholar] [CrossRef]
- Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches. arXiv 2014, arXiv:1409.1259. [Google Scholar]
- Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-gcn: A temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3848–3858. [Google Scholar] [CrossRef]
- Lavrova, D.; Zegzhda, D.; Yarmak, A. Using GRU neural network for cyber-attack detection in automated process control systems. In Proceedings of the 2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Sochi, Russia, 3–6 June 2019; pp. 1–3. [Google Scholar]
- Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv 2017, arXiv:1707.01926. [Google Scholar]
- Bai, J.; Zhu, J.; Song, Y.; Zhao, L.; Hou, Z.; Du, R.; Li, H. A3t-gcn: Attention temporal graph convolutional network for traffic forecasting. ISPRS Int. J. Geo-Inf. 2021, 10, 485. [Google Scholar] [CrossRef]
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar] [CrossRef]
- Fu, G.; Han, G.Q.; Lu, F.; Xu, Z.X. Short-term traffic flow forecasting model based on support vector machine regression. Hua Nan Li Gong Da Xue Xue Bao. Zi Ran Ke Xue Ban 2013, 41, 71–76. [Google Scholar]
- Wu, C.H.; Ho, J.M.; Lee, D.T. Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 2004, 5, 276–281. [Google Scholar] [CrossRef]
- Yin, H.; Wong, S.; Xu, J.; Wong, C. Urban traffic flow prediction using a fuzzy-neural approach. Transp. Res. Part C Emerg. Technol. 2002, 10, 85–98. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, C.; Yu, G. A Bayesian network approach to traffic flow forecasting. IEEE Trans. Intell. Transp. Syst. 2006, 7, 124–132. [Google Scholar] [CrossRef]
- Lawford, M.; Wonham, W.M. Supervisory control of probabilistic discrete event systems. In Proceedings of the 36th Midwest Symposium on Circuits and Systems, Detroit, MI, USA, 16–18 August 1993; pp. 327–331. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Ding, S. Cyber Attack Detection, GitHub Repository. Available online: https://github.com/dingsichen/Cyber_Attack_Detection (accessed on 29 April 2024).
Model | Average F1-Score | Weighted F1-Score |
---|---|---|
Cyber-Attack Detection Model | 0.7049 | 0.8126 |
GRU | 0.6277 | 0.7061 |
LSTM | 0.6313 | 0.6979 |
Sequence of Events in | Predicted Probability of the Next Event | |||||
---|---|---|---|---|---|---|
2.7246 × 10−1 | 3.1141 × 10−11 | 1.0720 × 10−12 | 4.2394 × 10−1 | 9.3816 × 10−13 | 3.0360 × 10−1 | |
1.9997 × 10−1 | 5.9786 × 10−17 | 7.6584 × 10−20 | 6.2751 × 10−1 | 3.8545 × 10−9 | 1.7252 × 10−1 | |
3.9776 × 10−10 | 7.4531 × 10−1 | 2.5437 × 10−1 | 1.2297 × 10−14 | 6.8716 × 10−9 | 3.1642 × 10−4 | |
3.3856 × 10−3 | 2.9502 × 10−13 | 5.5116 × 10−12 | 1.3036 × 10−4 | 8.0290 × 10−1 | 1.9358 × 10−1 | |
1.2152 × 10−1 | 5.3249 × 10−27 | 3.4663 × 10−30 | 7.8465 × 10−1 | 3.9487 × 10−4 | 9.3434 × 10−2 | |
8.0296 × 10−28 | 5.0607 × 10−1 | 4.9393 × 10−1 | 1.5381 × 10−33 | 7.0198 × 10−37 | 2.8788 × 10−26 | |
1.1120 × 10−21 | 5.0890 × 10−1 | 4.9110 × 10−1 | 1.8804 × 10−27 | 1.3971 × 10−15 | 2.6832 × 10−22 | |
7.7555 × 10−2 | 6.3743 × 10−6 | 4.0476 × 10−5 | 8.6314 × 10−1 | 1.0257 × 10−4 | 5.9153 × 10−2 | |
1.3825 × 10−1 | 1.3482 × 10−14 | 4.3889 × 10−13 | 7.0813 × 10−1 | 2.0630 × 10−25 | 1.5362 × 10−1 | |
3.1315 × 10−41 | 5.1623 × 10−1 | 4.8377 × 10−1 | 0.0000 | 1.0692 × 10−38 | 9.8392 × 10−41 | |
3.9102 × 10−3 | 2.4155 × 10−1 | 7.4626 × 10−1 | 5.5154 × 10−3 | 6.7057 × 10−10 | 2.7653 × 10−3 | |
6.9098 × 10−5 | 5.2647 × 10−10 | 3.6647 × 10−6 | 1.3030 × 10−4 | 7.0593 × 10−1 | 2.9387 × 10−1 | |
3.5789 × 10−4 | 1.7910 × 10−13 | 1.8230 × 10−9 | 3.1316 × 10−4 | 9.2634 × 10−1 | 7.2987 × 10−2 | |
3.7429 × 10−4 | 1.5784 × 10−13 | 1.6159 × 10−9 | 3.2754 × 10−4 | 9.2359 × 10−1 | 7.5707 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, S.; Liu, G.; Yin, L.; Wang, J.; Li, Z. Detection of Cyber-Attacks in a Discrete Event System Based on Deep Learning. Mathematics 2024, 12, 2635. https://doi.org/10.3390/math12172635
Ding S, Liu G, Yin L, Wang J, Li Z. Detection of Cyber-Attacks in a Discrete Event System Based on Deep Learning. Mathematics. 2024; 12(17):2635. https://doi.org/10.3390/math12172635
Chicago/Turabian StyleDing, Sichen, Gaiyun Liu, Li Yin, Jianzhou Wang, and Zhiwu Li. 2024. "Detection of Cyber-Attacks in a Discrete Event System Based on Deep Learning" Mathematics 12, no. 17: 2635. https://doi.org/10.3390/math12172635
APA StyleDing, S., Liu, G., Yin, L., Wang, J., & Li, Z. (2024). Detection of Cyber-Attacks in a Discrete Event System Based on Deep Learning. Mathematics, 12(17), 2635. https://doi.org/10.3390/math12172635