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Abstract: With the advent of large-scale data, the demand for information is increasing, which
makes signal sampling technology and digital processing methods particularly important. The
utilization of 1-bit compressive sensing in sparse recovery has garnered significant attention due
to its cost-effectiveness in hardware implementation and storage. In this paper, we first leverage
the minimax concave penalty equipped with the least squares to recover a high-dimensional true
signal x ∈ Rp with k-sparse from n-dimensional 1-bit measurements and discuss the regularization by
combing the nonconvex sparsity-inducing penalties. Moreover, we give an analysis of the complexity
of the method with minimax concave penalty in certain conditions and derive the general theory
for the model equipped with the family of sparsity-inducing nonconvex functions. Then, our
approach employs a data-driven Newton-type method with stagewise steps to solve the proposed
method. Numerical experiments on the synthesized and real data verify the competitiveness of the
proposed method.

Keywords: 1-bit compressive sensing; sparsity-inducing nonconvex function; data driven
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1. Introduction

With the advent of big data, people’s demand for signal processing is increasing,
which drives the need for simpler signal processing technology. In the past decade or
two, compressive sensing (CS), as a high-efficiency tool in signal processing, has garnered
a lot of interest. However, classical CS faces substantial computing challenges when
dealing with larger-dimensional signals due to storage bottlenecks, high transmission
bandwidth requirements, and algorithmic inefficiencies. To mitigate these computing
costs, it is often effective to quantize measurements by using a finite number of bits.
A quantized signal collection method for high-dimensional sparse data processing and
storage is 1-bit compressive sensing [1], which transforms the measurements to a single
bit, i.e., y = sign(Ax) with y ∈ Rn, “sign” captures the sign of Axl ∈ Rp, dl ∈ Rp, and the
element yi is 1 or −1, yi ∈ {−1, 1}, A ∈ Rn×p, x ∈ Rp, n and p are positive integers. Such
1-bit compressive sensing lowers transmission costs, resulting in a significant decrease for
hardware implementation. A 1-bit quantizer only needs the sign of the measurements, and
thus, is admissible to nonlinear distortion. Furthermore, 1-bit CS can be used effectively in
computation due to the binary measurements. The 1-bit CS is suitable for various fields
including wireless sensing network and radar analysis [2,3], and in domains like machine
learning research, scientific studies, and industrial application. Researchers need to deal
with quantized data for producing portable devices, which are necessary in modern life.

In their pioneering work [1], Boufounos and Baraniuk firstly took into account 1-bit
noiseless measurements and studied the ℓ1-norm optimization problem to recover x with
two constraints y⊙ Ax ≥ 0 and ∥x∥2 = 1, where the sign “ ≥ ” represents the element-wise
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inequality and the Hadamard product is represented by ⊙. Jacques et al. [4] considered
ℓ0-norm instead of ℓ1-norm to enhance sparsity, and established the binary iterative hard
thresholding (BIHT or BIHT-ℓ2) algorithm for 1-bit noisy measurements y = sign(Ax + b),
b ∈ Rn. Matsumoto et al. [5] studied a noisy version with iterative hard thresholding,
where a fraction of the measurements can be flipped. Yan et al. [6] considered sign flips
in 1-bit measurements by using an adaptive outlier pursuit (AOP) algorithm that was a
modified version of BIHT. Plan et al. [7] discussed a combination between the linear loss
(y, Ax) and ℓ1-constraint, just as minx(y, Ax)/n, s.t.∥x∥1 ≤

√
k and ∥x∥2 ≤ 1. Ref. [8]

studied the Lagrange optimization of the linear loss and ℓ1-norm and attained the analysis
solution min

∥x∥2≤1
(y, Ax)/n+ λ∥x∥1. Dai et al. [9] considered the one-sided ℓ0 objective model

for the noisy 1-bit CS model. Subsequently, Ref. [10] introduced the pitball loss (it involves
both ℓ1-norm and ℓ2-norms), and proposed the PBAOP algorithm to decode from binary
noisy data. Aiming at solutions with better sparsity, Ref. [11] introduced the nonconvex
minimax concave penalty (MCP) with linear loss. Refs. [12,13] extended this to the family
of nonconvex sparsity-inducing penalties with analytical solutions. However, Refs. [12,13]
did not give the estimation error. Ref. [14] considered projected least squares and proposed
the LinProj algorithm to decode unknown signals. Huang et al. [15] studied ℓ1-regularized
least squares to decode from 1-bit noisy compressive measurements, and, respectively,
proposed PDASC algorithms. Ref. [16] considered nonconvex least-squares loss with ℓq
constrained with a higher sparsity level. To attain the target signal with more sparsity,
Ref. [17] used the double sparsity of the unknown signal and the measurement to solve
1-bit CS optimization. The above works use the assumption of a sparse signal. In practice,
there are other signals such as the gradient sparse signal or block sparse signal. Hou and
Liu [18] studied the L1-TV model to solve signals possessing both element sparse and
gradient sparse properties. Zhong et al. [19] proposed total variation minimization in the
binary setting. Inspired by [20,21], the family of noncovex sparsity reducing penalties has
been shown to enjoy good performance when it approximates ℓ0-norm in conventional CS.
In this paper, we try to study the least squares with minimax concave penalty (MCP) and
other nonconvex sparsity-inducing penalties to decode from 1-bit CS measurements.

We end this section by giving the structure of this paper as follows. Section 2 gives
some notation and preliminaries. Section 3 proposes the least-squares loss equipped with
MCP and other nonconvex sparsity-inducing penalties, and discusses the estimation of the
non-asymptotical error and the complexity. It then utilizes a Newton-type algorithm with
a data-driven parameter voting rule to implement the proposed approach. In Section 4,
experiments on synthetic and real datasets are implemented to verify the superiority of the
proposed model, and illustrate the robustness and high efficiency of our method. Section 5
gives a short conclusion.

2. Preliminaries

In our work, the 1-bit CS measurement is generally modeled as [15,22]

y = c ⊙ sign(Ax + b), (1)

where A ∈ Rn×p is the Gaussian measurement matrix, x ∈ Rp is the unknown signal to
recover, the measurement y ∈ {−1, 1}n, b ∈ Rn is the random Gauss noise sampled from
N (0, ϵ2 In) with noise level ϵ, c ∈ Rn is the sign flip, and ⊙ is the Hadamard product. Due
to binary nature of the sign function, (1) is nonlinear, and so it is challenging to decode the
unknown signal from the noisy and sign-flipped data.

We then introduce assumptions and notation in the sequel. The unknown recov-
ered signal is assumed up to a positive constant. Since only the signs of real-valued
measurements are preserved, scaling x will not make changes to the measurements, i.e.,
sign(Ax + b) = sign(Aαx + αb) with ∀α > 0, which indicates that the best way is to
recover x up to a scale factor. The measurement matrix A = (At

1, At
2, · · · , At

n)
t ∈ Rn×p

is a random matrix, whose rows Ai ∈ Rp×1, i = 1, 2, · · · , n is independently distributed
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(i.i.d.) from N (0, Σ), where Σ is the unknown covariance matrix. For x ∈ Rp, the ℓr-norm
is defined as ∥x∥r = (∑r

i=1 |xi|r)1/r, with r ∈ (1,+∞). ∥x∥∞ = max
1≤i≤p

|xi| is the infinity

norm. Let x∗ be the target signal with k sparse level. And the true x is given. We use
[p] to denote the integer set, i.e., [p] = {1, 2, · · · , p}. For a subset U ⊆ [p] with the car-
dinality of |U |, V is the supplementary set of U , i.e., V = U . xU = {xi, i ∈ U} ∈ R|U |

and AU = {Jj, j ∈ U} ∈ Rn×|U|, where Jj ∈ Rn×1 is the jth column of the measurement
matrix A. For the entries of sign flips b, it is assumed that the probability of positive
signs is η and that of negative signs is 1 − η. A, b, and c are mutually independent. O(·)
denotes that a positive numerical constant is ignored. Next, we give the definition and the
theoretical basis.

Definition 1 ([20,23]). The mapping F : D ⊆ X → Z is called Newton differentiable in the open
subset U ⊆ D if there exists a family of mappings G : U → L(X, Z) such that

lim
∥h∥→0

∥F(x + h)− F(x)− G(x + h)h∥
∥h∥ = 0, ∀x ∈ U.

The mapping G is called a Newton derivative for F in U.

This definition can be used to analyze and solve the proposed model.

Lemma 1 ([20]). Let ỹi = c̃i ⊙ sign(Ãt
ix+ b̃i) be the 1-bit model (1) at the population level, where

the elements yi, ci, Ai, and bi in model (1) are random variables with the same distributions as
those of ỹi, c̃i, Ãi, and b̃i, respectively. Let P[c̃ = 1] = η ̸= 1

2 , Ai ∈ N (0, Σ), b ∈ N (0, ϵ2). It
follows that

Σ−1E[ỹÃi]/α = x,

where α = (2η − 1)
√

2
π(ϵ2+1) and x is the true signal.

Based on this lemma, x is a multiple of Σ−1E[ỹÃi]/α. Note that

E[At A/n] = E
[ n

∑
i=1

Ai At
i

]
/n = Σ,

and

E[Aty/n] = E
[ n

∑
i=1

Aiy
]

/n = E[ỹÃ].

Meanwhile, if At A/n is invertible, though y consists of a flipped signal,

xls = (At A/n)−1 Aty/n.

where xls indicates the least-squares loss can be used as a loss function if Σ ̸= In.

3. The Least-Squares Approach with MCP Regularized
3.1. Combination of Least Squares and MCP

In this subsection, we try to recover the sparse signal x from the 1-bit CS model
(1) with n < p. L0-norm is the best choice to use for sparsity recovery. Nonetheless,
the L0-norm optimization problem is generally difficult because of the nonconvexity and
nonsmoothness. MCP regression models have the oracle property and produce unbiased
solutions [24]. Based on these advantages, we combine MCP with least-squares loss to
decode the unknown signal from the binary measurements as follows:

x̂ = arg min
x∈Rp

1
2n

∥Ax − y∥2
2 +Mλ,ξ(x), (2)
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where x̂ ∈ Rp is the minimum of model (2), the element x is denoted by xj,
j = 1, 2, · · · , p, Mλ,ξ(x) = ∑n

j=1 mλ,ξ(xj) is defined by

mλ,ξ(xj) = λ
∫ xj

0
(1 − t/(λξ))+dt

with a regularization parameter ξ > 1, and (t)+ = max{t, 0}, where t is a scalar. The form
of MCP after integration is generally used, namely,

mλ,ξ(t) =


λ(|t| − t2

2λξ
), |t| < λξ,

λ2ξ

2
, |t| ≥ λξ.

(3)

Then, mλ,ξ(t) can be formulated as the sum of the ℓ1-penalty and a concave part
mλ,ξ(t) = λ|t|+ hλ,ξ(t) for all |t| < λξ. Even though mλ,ξ(t) is nonconvex and nonsmooth,
hλ,ξ(t) is differentiable. MCP satisfies the following unbiasedness, selection features, and
bounded properties:

(a) m′
λ,ξ(t) = 0, ∀t ≥ λξ ≥ 0;

(b) m′
λ,ξ(0

+) = λ, where 0+ denotes that the variable approaches 0 from the right;
(c) |h′λ,ξ(t)| ≤ λ, ∀|t| < λξ.

When ξ = ∞, MCP coincides with the ℓ1-penalty; when ξ → 0+, MCP approaches the
L0-penalty. Further, these properties are suitable for the SCAD function. As we know, this
is the first time the least-squares loss has been combined with MCP regularization in a 1-bit
CS setting.

To solve the nonlinear model problem (2), we adopt the concentration of measure
theorem and use the linear model to approximate the measurement data. First, we give one
assumption.

Assumption 1 (ν-null consistency condition). Assume that y = Ax + b and ν ∈ (0, 1), the
least-squares model with the nonconvex sparsity-inducing Pλ(x) regularization, i.e.,

min
x∈Rp

∥Ax − y∥2/(2n) + ∥Pλ(x)∥1

has the ν-null consistency condition if it satisfies

min
x∈Rp

∥b/ν − Ax∥2
2/(2n) + ∥Pλ(x)∥1 = ∥b/ν∥2

2/(2n).

This condition guarantees that the global minimizer by the model is achievable at
x̂ = 0 if the target signal x = 0. The null consistency condition is used to attain the
ℓ2-regularity condition [25] for large-scale optimization.

Lemma 2. Assume that xmcp is a global minimizer of (2). Let x̃ = αx∗, where x∗ is the given true
signal with k sparse level. R = xmcp − x̃; ∆ = y − Ax̃; ζ = (1 + ν)/(1 − ν); and S = supp(x).
If Assumption (1) holds, then it has

1
2n

∥AR∥2
2 + ∥Mλ,ξ(RS )∥1 ≤ ξ∥Mλ,ξ(RS )∥1. (4)

Proof. Since xmcp is the minimizer of the problem (2), xmcp satisfies the following inequality

1
2n

∥Axmcp − y∥2
2 + ∥Mλ,ξ(xmcp)∥1 ≤ 1

2n
∥Ax̃ − y∥2

2 + ∥Mλ,ξ(x̃)∥1. (5)
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We put y = ∆ + Ax̃ and R = xmcp − x̃ into the above inequality (5), and obtain

1
2n

∥AR − ∆∥2
2 + ∥Mλ,ξ(xmcp)∥1≤

1
2n

∥∆∥2
2 + ∥Mλ,ξ(x̃)∥1.

1
2n

∥AR∥2
2 + ∥Mλ,ξ(xmcp)∥1 ≤ ⟨R, At∆/m⟩+ ∥Mλ,ξ(x̃)∥1.

Next, applying ν-null consistency, we have

⟨R, At∆/n⟩ ≤ ν

2n
∥AR∥2

2 + ν∥Mλ,ξ(R)∥1. (6)

Using ∥x + y∥1 ≤ ∥x∥1 + ∥y∥1 and x̃S = 0 and (6), we have

(1 − ν)∥AR∥2
2/(2n) ≤ (ν + 1)∥Mλ,ξ(RS )∥1 + (ν − 1)∥Mλ,ξ(RS )∥1.

Finally, by ζ = (1 + ν)/(1 − ν), this gives the conclusion.

Due to Lemma 2, with z ∈ Rp the error of the model (2) satisfies

R ∈ {z : ∥Mλ,ξ(zS )∥1 ≤ ξ∥Mλ,ξ(zS )∥1}. (7)

In order to give the bound of the random measurement matrix, we find the property
of the measurement matrix. Here, an ℓ2-regularization condition is needed, which is used
for concave penalty functions in other works.

Definition 2. Let T ⊆ [p], ζ > 0, q ≥ 1; a cone invertibility factor (CIF) is defined by [25]

CIFq(ζ, T) := inf
{
|T|1/q∥At Au∥∞

n∥u∥q
: ∥uT∥1 ≤ ζ∥uT∥1

}
. (8)

Definition 3. Let T ⊆ [p], ζ > 0, q ≥ 1; Pλ(x) denotes any penalty function; the restricted
invertibility factor is defined as [25]

RIFq(ζ, T) := inf
{
|T|1/q∥At Au∥∞

n∥u∥q
: ∥Pλ(uT)∥1 ≤ ζ∥Pλ(uT)∥1

}
. (9)

Comparing the definitions of the above invertibility factors, the RIFq(ζ, T) factor
is more general than the CIFq(ζ, T) factor. When Pλ is specifically the ℓ1-norm penalty
function, RIFq = CIFq. For the MCP function Mλ,ξ(t), there is a relationship between RIFq
and CIFq described in the following proposition.

Lemma 3. If t/mλ,ζ(t) is increasing when t ∈ (0, ∞), then it holds that

RIFq(ζ, T) ≥ inf
|B|=|T|

CIFq(ζ, B).

Hence, when 1 ≤ q ≤ 2, RIFq(ζ, T) ≍ 1 is an ℓ2 regularity condition for the measure
matrix A, where the notation f ≍ 1 denotes f asymptotically approaching 1. Since mλ,ξ(t)
is concave in t ∈ [0, ∞), then t/mλ,ξ(t) is increasing in t. Lemma 3 is applicable to MCP,
SCAD, and other nonconvex sparsity-inducing functions.

From this proposition, we know that if the lower bound of CIFq exists, then the lower
bound of RIFq exists, and therefore, the upper bound of 1/RIFq exists. When 1 ≤ q ≤ 2,
the sparse eigenvalue of the measurement is uniformly bound from below in terms of
CIFq [26]. Thus, there exists a constant C0 with respect to the sparse eigenvalue of the given
measurements, such that

1/RIFq(ζ, T) ≤ C0.
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Let q = 2 and T = S , with (7); for ∀R ∈ {z ∈ Rp : ∥Mλ,ξ(zI)∥1 ≤ ζ∥zS∥1}, we attain
the property of the measurement matrix as follows:

m∥R∥2RIF2(ζ,S) ≤ |S|1/2∥At AR∥∞, (10)

Then, we give the non-asymptotic error estimates of the model (2).

Theorem 1. Let x∗ be the true signal with k-sparse level and C3 > ∥x∥1 and C0 ≥ 1/RIF2(ζ, S). If
the ν-consistency condition (1) holds, as n > 4C1

C2
2

log p, then with probability at least 1− 2/p3 − 2/p2,

it holds that ∥∥xmcp/α − x∗
∥∥

2 ≤ 6(1 + |α|C3)

C0|α|
√

C1

√
k log p

n
, (11)

where C1 and C2 are generic positive constants depending on the maximum sub-Gaussian norm of
rows of A, respectively, (see details in Lemma B.2 of [15]) and α = (2η − 1)

√
2/(π(ϵ2 + 1)).

Proof. As xmcp is a minimizer of the model (2), from the optimization conditions of vector
extremum problems, xmcp satisfies the following inequality:

1
2n

∥Axmcp − y∥2
2 + ∥Mλ,ξ(xmcp)∥1 ≤ 1

2n
∥Ax̃ − y∥2

2 + ∥Mλ,ξ(xmcp)∥1.

From the KKT optimal condition, it has 1
n At(Axmcp − y) + ∂Mλ,ξ(xmcp) = 0. And we

define dmcp = ∂Mλ,ξ(x̃). Moreover, due to |h′λ,ξ(t)| ≤ λ, we obtain

∥dmcp∥∞ ≤ 2λ. (12)

Due to (10) and Lemma 2, it holds that

∥R∥2RIF2(ζ,S) ≤
√

k∥At AR∥∞/n

≤
√

k∥At(Axmcp − y) + At(y − Ax̃)∥∞/n

≤
√

k
(
∥At(Axmcp − y)∥∞/n + ∥At(y − Ax̃)∥∞/n

)
≤

√
k(∥dmcp∥∞ + ∥At∆∥∞/n)

≤
√

k(2λ + λ)

≤ 3λ
√

k,

where the third inequality uses the trigonometric inequality for the infinite norms, the
right item of the fourth inequality uses Lemma D.2. in [15], and the fifth inequality applies

Formula (12). Let λ = 2(1+|α|C3)√
C1

√
log p

n , and then,

|α|
∥∥xmcp/α − x∗

∥∥
2 ≤ 3λ

RIF2(ζ,S) .

Since C0 ≥ 1/RIF2(ζ,S), we have

∥∥xmcp/α − x∗
∥∥

2 ≤ 3λ

|α|C0
,

i.e., ∥∥xmcp/α − x
∥∥

2 ≤ 6(1 + |α|C3)

C0|α|
√

C1

√
k log p

n

This gives a conclusion.
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Remark 1. Through Theorem 1, we know that for any δ > 0, if n ≥ O(
k log p

δ2 ), the estimated signal
decoded from (2) xmcp belongs to the δ-neighborhood of αx∗. Based on Theorem 1, we attain the
same order of sample complexity n = O(

k log p
δ2 ) with [8,15,17]. The least-squares model based on

the MCP penalty function has lower sample complexity than that of the ℓq-constrained least-squares
model [16], which coincides with less computational time in experiments.

Remark 2. MCP belongs to a class of nonconvex penalty functions that can reduce the sparsity,
which are proved to satisfy the ν-null consistency (see details of [25]). The SCAD function also has
the special property Section 3.1. Hence, under the ν-null consistency assumption and the definition
of RIF for the least squares based on the SCAD penalty function, we can arrive at a similar upper
bound for the reconstruction error.

Finally, we obtain the estimated error of a one-class sparsity-inducing nonconvex
penalty. Here, as a convenience, we concentrate all regularization parameters in the penalty
function on one parameter λ. For the 1-bit noisy and sign-flipped compressive sensing
measurement, the least-squares model based on the sparse nonconvex penalty function is
written as

min
x∈Rp

1
2n

∥Ax − y∥2
2 + ∥Pλ(x)∥1. (13)

Theorem 2. Let S = supp(x) and ν ∈ (0, 1), ζ = (1+ ν)/(1− ν). Suppose that x̂ is a minimum
of model (13). If the ν-null consistency condition 1 holds, it has

∥x̂/α − x∥2 ≤ C0(1 + ν)λk1/2/α, (14)

where λ := inf
t>0

{t/2 + ϕλ(t)/t}, α = (2η − 1)
√

2/(π(ϵ2 + 1)), and C0 ≥ 1/RIF2(ζ,S).

Proof. Let R = x̂ − αx and ∆ = y − A(αx). Due to the given conditions, we have that if
Assumption 1 holds, then it has

min
x∈Rp

(∥∆/ν − Ax∥2
2/(2n) + ∥Pλ(x)∥1 = ∥∆/ν∥2

2/(2n).

Therefore, it holds that
Pλ(RS )∥1 ≤ ξ∥Pλ(RS )∥1,

and
∥At∆/n∥∞ ≤ νλ.

Since the lower bound of RIF2(ζ,S) exists, we obtain C0 ≥ 1/RIF2(ζ,S), and

∥At AR∥∞ ≤ (1 + ν)λ.

So, we give a conclusion about the reconstruction error that

∥x̂/αx − x∗∥2 ≤ C0(1 + ν)λk1/2/α.

Remark 3. The above theorem gives the estimated error under the general cases. That is, there
exists a upper bound for the least-squares loss with a class of sparsity-inducing nonconvex penalty
functions. Theorem 1 gives a more precise calculation for the reconstruction error. We can extend
the result of the linear measurement model to the nonlinear 1-bit measurement model.

For the comparison, Table 1 is reported.
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Table 1. The complexity of 1-bit compressive sensing for many methods.

1-Bit CS
x Is Exactly Sparse x Is Approximately Sparse Others

Sample Complexity Reference Sample Complexity Reference Reference

Noiseless
O(

s log n
δ ) [4,27]

O(
s log2 n

δ5 ) [22]
O(

s log n
δ5 ) [22] -

Noisy

O(
s log n

δ4 ) [7]
O(

s log n
δ4 )

[8,22] |xi| ≥ ν,O(s/δ2) [11]

O(
s log n

δ2 ) [8,15] (2) |xi| ≤ ν,O(s log n/δ2) [11]

O(min( s log n
δ2 ), s

√
n log n

δ ) [8] O(min( s log n
δ4 ), s

√
n log n
δ3 ) [8] –

O(
s1/q−1/2 log n

δ2 ) [16] - - –

3.2. Algorithm for (2)

For the proposed method, MCP and other penalties are nonconvex. This is not
easy to compute effectively. Fortunately, these noncovex sparsity-inducing functions
equipped with the least-squares loss obtain the thresholding operator [20]. We first give
the description of the thresholding operator and derive the Karush–Kuhn–Tucker (KKT)
equations of the minimizer solution and necessary condition for the global minimizer of (2).
Specifically, we show that the global minimizer satisfies the Karush–Kuhn–Tucker (KKT)
equations.

Theorem 3. Let xmcp be the global minimizer of (2). Then,{
d̂ = At(y − Axmcp)/m,

xmcp = Tλ,ξ(d̂ + xmcp),
(15)

where Tλ,ξ(t) is the thresholding operator of the MCP function, defined as

Tλ,ξ(t) =


0, |t| ≤ λ,

sgn(t)
ξ|t| − λ

ξ − 1
, |t| < λξ,

t, |t| > λξ.

(16)

Proof. The proof refers to Lemma 3.4 of [20].

Then, based on the KKT system, we let Ja = At A/n, ŷ = Aty/n and introduce a
nonlinear operator F : R2p → R2p as

F(x, d) =
[

Jax + d − ŷ
x − Tλ,ξ(d + x)

]
Let z = (x; d) be the root of F(x, d) = 0. We use the Newton-type to find the root. Denote
the derivative function of F(x, d) as ∇F = G(x, d) by

G(x, d) =
[

Ja I
IS −IS

]
From (15), we can derive that

|(xmcp + d̂)i| < λ ⇒ (xmcp)i ̸= 0. (17)
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For an initial x0 ∈ Rp and d0 ∈ Rp given [20], we implement the following procedure to up-
date the l-th iterated value xl+1 ∈ Rp, dl+1 ∈ Rp. Let an active set Ul = {i : |xl

i + dl
i | > λ}

and an inactive set Vl = Ul . Then, we use the Newton update as[
xl+1

dl+1

]
=

[
xl

dl

]
− G(xl , dl)−1F(xl , dl)

which, after some algebra computation, becomes
xl
V l =0,

At
U l AU l xl

U l =At
Uy − nvl

U l ,

dl =At(y − Axl)/n

(18)

with

∀i ∈ Ul , vl
i =


1
ξ
(sign(xl

i + dl
i)λξ − xl

i), if λ ≤ |xl
i + dl

i | ≤ λξ and |xl
id

l
i | ≥ 0,

0, otherwise.

To obtain the effective solution, we introduce the weight w ∈ (0, 1) into the active set, i.e.,
Ul = {i : |wxl

i + (1 − w)dl
i | > λ}.

The method is a Newton-type method, and therefore, it heavily relies on the input
value and the Lagrange multiplier λ to obtain a meaningful result. So, the continuation
technique [15,20] is used to attain the initial value and a proper tuning parameter is simul-
taneously selected by using a decreasing sequence and majority-vote strategy. Specifically,
from a decreasing sequence {λl}, the output of the λl-problem is used as the initial value of
the λl+1-problem. Let λ0 ≥ ∥Aty/n∥, since 0 is a minimizer to the model (2), and λl = λ0βl ,
β ∈ (0, 1), l = 1, . . .. By using the series {λl}k (a scalar), we conduct the algorithm until
the stopping criterion is satisfied, i.e.,

∥∥xλl

∥∥
0 >

⌊
m

log n

⌋
, where xλl x

l ∈ Rp, dl ∈ Rp and
the symbol ⌊·⌋ represents the largest integer smaller than itself. The algorithm on λl is
conducted to obtain a solution path and select a λ by using the majority-vote rule [28], i.e.,

λ̂ = max{Λī} and ī = arg max
i

{|Λi|}. (19)

Then, we solve the proposed model by Algorithm 1 below, for simplicity termed MCPWP.

Algorithm 1 MCPWP

1: Input: y, A, b, w, L, α, λ0 = ∥Aty∥∞, xλ0 = 0.
2: for l = 1, 2, . . . , L do
3: λl = λ0βl−1, x0 = xλl−1

, d0 = At(y − A x0)/n;
4: for j = 1, 2, . . . , J do
5: update the active sets Uj and inactive sets Vj,

6: Uj = {i :| wxj−1
i + (1 − w)dj−1

i |> λl} and Vj = Aj;
7: update xj and dj by (18)
8: Check stopping criterion: Uj = Uj−1;
9: end for

10: Stop if ∥xλl∥0 >
⌊

n
log p

⌋
;

11: end for
12: Output: Solution path xλl , k = 1, 2, . . .;
13: Select λ̂ by majority vote rule (19);
14: Output xλ̂.
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4. Experiments

We conduct all experiments on MATLAB 2018a running on a PC with Intel(R) Core
(TM)i5-8265 CPU (1.60 GHz) and RAM with 8 GB. For the code of the proposed algorithm,
refer to “https://github.com/cjia80/mcpwp” (accessed on 12 June 2024).

4.1. Testing Examples

Example (correlated covariance [15]). The rows of a random Gaussian measurement
matrix A ∈ Rn×p are independently and identically distributed (i.i.d.) from N (0, Σ) with
Σl,s = µ|s−l|, 1 ≤ l, s ≤ n, µ ∈ (0, 1). The nonzero true signal vector x is generated from the
normal Gaussian distribution. To avoid negligible entries of the true signal, we modify
x = x + sign(x), while ensuring that the number of nonzero elements is k. The noise term b
is sampled from the Gaussian distribution, i.e., b ∼ N (0, ϵ2Im), where ϵ represents the noise
level. The sign flips with the probability η are also given. Then, the measurement data y
are generated by y = c ⊙ sign(Ax + b). Additionally, for the data-driven selection method,
we divide the interval [λL, λ0] into L subintervals, i.e., [λl , λl+1], l = 0, · · · , L, L = 200 to
choose the parameter λ and obtain a good initial value of our Newton-type algorithm. All
the 1-bit recovered signals need to be normalized for comparison. Furthermore, based
on previous studies [6,8,15], we set all experiments with 100 epochs, and manually adjust
values of ξ and w in subsequent epochs. For the comparison of the recovered performance,
we choose the computational (CPU) time, the exact recovery probability (PrE; defined as
the frequency of the number of trials where the estimated support coincides with the true
support), and the signal-to-noise ratio (SNR; denoted by −20 ∗ log10∥x∗ − xrec∥)) in dB
(where xrec is the recovered signal) or estimated error ( ∥x∗ − xrec∥).

4.2. Implementation and the Effect of Parameter Selection

We firstly consider the effect of the probability of the sparsity k, the noise level ϵ, and
the sign flip probability η when using the MCPWP algorithm to solve the model (2). We
run MCPWP under the following three cases: p = 1000, n = 500, µ = 0.3, with various
sparsity k, noise level ϵ, and probability of sign flips η. The experiment results are plotted
accordingly in Figure 1. Let us take a close look at the results. From Figure 1a, the proposed
method has an accuracy of 99% PrE if the target is very sparse and is above 91% if k < 10.
In Figure 1b, the recovery probability changes very little if the noise level is below 0.8. The
same result is shown in terms of various sign flip rates in Figure 1c. This figure implies that
our method is robust to the sparsity, noise level, and sign flips.

0 2 4 6 8 10 12 14 16 18

0

0.2

0.4

0.6

0.8

1

(a) Sparsity level k

0 0.3 0.6 0.9 1.2 1.5

0

0.2

0.4

0.6

0.8

1

(b) Noise level ϵ

0 0.03 0.06 0.09 0.12 0.15

0

0.2

0.4

0.6

0.8

1

(c) Sign flip ratio η

Figure 1. The robustness of MCPWP for various k, ϵ, η under p = 1000, n = 500, µ = 0.3. (a) k = 1:2:20,
ϵ = 0.01, η = 0.05; (b) k = 5, ϵ = 0 : 0.1 : 1, η = 0.05; (c) k = 5, µ = 0.3, ϵ = 0.01, η = 0:0.03:0.15.

4.3. Benchmark Methods

In this test, we try to verify the superiority of our method in comparison with other
methods with respect to SNR, the exact probability (PrE(%)), and average computational
time (CPU time (s)). The benchmark methods consist of BIHT [4], AOP [6], PBAOP [10], Lin-
Proj [29,30], PDASC [15], MCP [12], WPDASC [16], and [17]. Although GPSP is an effective

https://github.com/cjia80/mcpwp
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method to improve sparsity in synthesis experiments, GPSP needs the two priors of sparsity.
And the first four algorithms and MCP require the prior knowledge of sparsity. In addition,
the sign flip rate is specified in AOP and PBAOP. Our method, PDASC, and WPDASC do
not need priors. The performance is illustrated in Figures 2 and 3 through the three indexes
SNR, PrE, and CPU time when the experiments are conducted at various sparsity level
settings. Figure 2 shows that MCPWP and WPDASC exhibit superior performance, while
GPSP, MCP, and BIHT are more likely to fail as the sparsity increases. In Figure 3a, MCPWP
demonstrates a higher exact recovery probability compared to all other methods except for
WPDASC. Meanwhile, it is evident that MCPWP requires less CPU time than WPDASC
from Figure 3b. These findings highlight that our method MCPWP is an optimal choice in
terms of both performance metrics here. Then, the performance of different methods on the
various noise levels with others’ fixed is depicted in Figures 4 and 5. As is plotted, MCPWP
generally exhibits a higher SNR than other methods across most scenarios. Notably, for the
three noise levels, MCPWP demonstrates the highest SNR, which reveals the robustness
of the proposed method. When the sign flip rate becomes larger, our method has a higher
SNR and less CPU time, as illustrated in Figures 6 and 7. In addition, with high noise
ϵ and a high sign flip rate η, MCPWP has a higher SNR than the benchmark methods.
Additionally, as the sparsity k increases, MCPWP surpasses the other approaches in CPU
time except for LinProj (due to its lower computational time as a convex approach). Thus,
the above experiments demonstrate that MCPWP is robust against noise, sign flips, and
sparsity level, and also outperforms other methods. More higher-dimensional experiments
are reported in Table 2. By comparison with other methods, our model is superior.
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(a) sparsity level s = 2
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(b) sparsity level s = 4

BIHT AOP LinProj PBAOP PDASCWPDASC MCP GPSP MCPWP

method

0

5

10

15

20

25

30

S
N

R

s=6

(c) sparsity level s = 6

Figure 2. The SNR for different methods with different sparsities. p = 1000, n = 500, k = 2:2:6, µ =

0.1, ϵ = 0.05, η = 0.01.
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(b) CPU time

Figure 3. The exact probability and CPU time for different methods with different sparsities. p =

1000, n = 500, k = 2:2:6, µ = 0.1, ϵ = 0.05, η = 0.01.
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Figure 4. The SNR for different methods with different sparsities. p = 1000, n = 500, k = 5,
µ = 0.1, ϵ = 0.1 : 0.2 : 0.05, η = 0.01.
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Figure 5. The exact probability and CPU time for different methods with different sparsities. p =

1000, n = 500, k = 5, µ = 0.1, ϵ = 0.1 : 0.2 : 0.5, η = 0.01.
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Figure 6. The SNR for different methods with different sparsities. p = 1000, n = 500, k = 5,
µ = 0.1, ϵ = 0.05, η = 0.05:0.05:0.15.
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Figure 7. the exact probability and CPU time for different methods on the different sparsity.
p = 1000, n = 500, k = 5, µ = 0.1, ϵ = 0.05, η = 0.05:0.05:0.15.

Table 2. Comparison of many methods under higher-dimension situations.

(a) p = 10, 000, n = 2000, k = 30 (b) p = 10, 000, n = 2000, k = 30 (c) p = 30, 000, n = 7000, k = 20
µ = 0.3, ϵ = 0.3, η = 0.05 µ = 0.3, ϵ = 0.5, η = 0.1 µ = 0.3, ϵ = 0.3, η = 0.1

Method Time (s) ℓ2-error PrE (%) Time (s) ℓ2-error PrE (%) Time (s) ℓ2-error PrE (%)
BIHT 4.28 5.55 × 10−1 84 3.82 7.12 × 10−1 0 8.98 × 10−2 7.06 × 10−1 0
AOP 1.10 × 101 1.75 × 10−1 100 9.25 3.19 × 10−1 0 1.10 × 10−1 1.95 × 10−1 90
LinProj 2.16 × 10−1 4.96 × 10−1 61 1.65 × 10−1 5.12 × 10−1 0 4.00 × 10−4 3.59 × 10−1 90
PBAOP 4.21 3.15 × 10−1 100 3.68 2.98 × 10−1 0 3.68 × 10−2 1.68 × 10−1 90
PDASC 1.17 1.19 × 10−1 97 8.85 × 10−1 3.37 × 10−1 0 1.05 × 10−2 6.28 × 10−2 100
GPSP 3.11 × 101 2.56 × 10−1 89 6.81 × 102 1.10 0 6.17 6.28 × 102 100
MCP 8.02 × 10−1 3.24 × 10−1 89 6.34 × 10−1 4.22 × 10−1 0 1.19 × 10−1 6.28 × 10−2 100
WPDASC 1.80 1.19 × 10−1 100 1.41 4.22 × 10−1 100 3.36 × 10−1 6.28 × 10−2 100
MCPWP 6.43 × 10−1 1.58 × 10−1 100 5.89 × 10−1 1.44 × 10−1 100 5.10 × 10−3 6.28 × 10−2 100

(a) p = 25, 000, n = 5000, k = 20 (b) p = 25, 000, n = 5000, k = 20 (c) p = 30, 000, n = 7000, k = 20
µ = 0.3, ϵ = 0.3, η = 0.01 µ = 0.3, ϵ = 0.5, η = 0.1 µ = 0.3, ϵ = 0.5, η = 0.1

Method Time (s) ℓ2-error PrE (%) Time (s) ℓ2-error PrE (%) Time (s) ℓ2-error PrE (%)
BIHT 2.37 × 101 2.20 × 10−1 70 2.16 × 101 6.80 × 10−1 0 3.65 × 102 7.91 × 10−1 0
AOP 5.83 × 101 1.62 × 10−1 80 5.25 × 101 1.91 × 10−1 90 1.09 × 102 2.35 × 10−1 70
LinProj 3.36 × 10−1 3.89 × 10−1 90 3.11 × 101 3.89 × 10−1 100 4.00 3.61 × 10−1 100
PBAOP 2.18 × 101 3.61 × 10−1 70 2.15 × 101 2.04 × 10−1 100 3.49 × 101 3.59 × 10−1 60
PDASC 7.22 4.93 × 10−2 100 6.16 × 101 7.46 × 10−2 90 9.80 7.20 × 10−2 100
GPSP 4.19 × 102 4.93 × 102 100 4.23 × 102 7.46 × 10−2 100 1.44 × 103 1.03 × 10−1 80
MCP 6.49 4.93 × 10−2 100 5.79 7.46 × 10−2 100 1.12 × 101 7.20 × 10−2 100
WPDASC 9.31 4.93 × 10−2 100 6.02 7.46 × 10−2 100 5.44 7.20 × 10−2 100
MCPWP 3.67 4.93 × 10−2 100 3.00 7.47 × 10−2 100 5.20 7.20 × 10−2 100

4.4. Numerical Comparisons on 1-D Real Data

In this section, we aim to decode a 1-dimensional signal from real-world data with
k = 15 under the wavelet basis “Db1” [31]. There is a random Gaussian and an inverse
wavelet transform in measurement matrix A ∈ Rn×p with the noise level ϵ = 0.5 and sign
flip ratio η = 0.04. It should be noted that since GPSP is not suitable for real data, it has
been omitted from our analysis. The behaviors of the aforementioned methods are reported
in Table 3 and Figure 8. Among three indexes, the peak signal-to-noise ratio (PSNR) is
defined as 10 log M2

∥xrec−x∥2 , in which M is the absolute value of the maximum in the true
vector. In Table 3, as shown in our findings, MCPWP has both higher PSNR values and
smaller recovery errors compared to other methods while maintaining a faster CPU time.
These results demonstrate the superiority of our decoder.
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Table 3. Comparison of methods for 1-D real signal. p = 8000, n = 2500, ϵ = 0.5, η = 0.04.

Method BIHT AOP LinProj PBAOP PDASC WPDASC MCP MCPWP

PSNR 28.82 32.65 32.81 30.62 36.44 44.89 35.82 46.32
Err 0.764 0.491 0.482 0.621 0.318 0.120 0.341 0.102
Time (s) 3.299 3.410 0.133 3.493 2.320 2.874 0.358 1.825

(a) True signal

BIHT, PSNR = 29

(b) BIHT

AOP, PSNR = 33

(c) AOP

LinProj, PSNR = 31

(d) LinProj

PBAOP, PSNR = 31

(e) PBAOP

PDASC, PSNR = 32

(f) PDASC

MCP, PSNR = 36

(g) MCP

WPDASC, PSNR = 45

(h) WPDASC

MCPWP, PSNR = 46

(i) MCPWP

Figure 8. Comparison of different methods under 1-D real signal. p = 8000, n = 2500, k = 15,
µ = 0.1, ϵ = 0.5, η = 0.04.

Finally, we conduct an investigation into the performance of the sparsity-inducing
nonconvex regularization function, which contains ℓq, MCP, SCAD, and Capped-ℓ1. We
utilize the data-driven semi-smooth Newton algorithm equipped with continuity described
in [20]. The recovery performance with different regularization functions is presented in
Table 4. It is worth noting that the CPU time is very similar across all cases, indicating that
the least-squares method with sparsity-inducing nonconvex functions proves to be efficient
for 1-bit compressive sensing.
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Table 4. Comparison of penalty functions under different situations.

(a) p = 1000, n = 500, k = 5 (b) p = 5000, n = 1000, k = 15 (c) p = 20, 000, n = 5000, k = 50
µ = 0.3, ϵ = 0.3, η = 0.05 µ = 0.5, ϵ = 0.3, η = 0.05 µ = 0, ϵ = 0.3, η = 0.05

Method Time (s) ℓ2-error PrE (%) Time (s) ℓ2-error PrE (%) Time (s) ℓ2-error PrE (%)
WPDASC 1.74 × 10−2 8.43 × 10−2 100 2.69 × 10−1 1.44 × 10−1 92 5.62 1.03 × 10−1 100
MCPWP 2.10 × 10−2 8.43 × 10−2 100 1.84 × 10−1 1.48 × 10−1 90 4.02 1.03 × 10−1 99
SCAD 2.30 × 10−2 8.43 × 10−2 100 1.84 × 10−1 1.53 × 10−1 88 3.95 1.03 × 10−1 99
Capped-ℓ1 1.78 × 10−2 8.43 × 10−2 100 1.82 × 10−1 1.45 × 10−1 91 1.00 1.03 × 10−1 99

5. Conclusions

In this work, we have analyzed the least-squares regularization approach with MCP
and other nonconvex sparsity-inducing functions to reconstruct the signal from 1-bit CS
data with added noise and sign flips. We have obtained the competitive complexity of the
proposed method, i.e., m ≥ O(

s log n
δ2 ) with the accuracy δ as long as η ̸= 1/2. A data-driven

Newton type with an active set and majority-vote selection rule are utilized to implement
the unknown signal. Through a lot of numerical simulations, we validate that the proposed
model surpasses other state-of-the-art methods.
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