Numerical Investigation of Radiative Hybrid Nanofluid Flows over a Plumb Cone/Plate
<p>Physical model.</p> "> Figure 2
<p>Effect of <span class="html-italic">K</span> on velocity.</p> "> Figure 3
<p>Effect of <span class="html-italic">M</span> on velocity.</p> "> Figure 4
<p>Effect of <math display="inline"><semantics> <msub> <mi>N</mi> <mi>r</mi> </msub> </semantics></math> on momentum.</p> "> Figure 5
<p>Effect of <math display="inline"><semantics> <msub> <mi>R</mi> <mi>b</mi> </msub> </semantics></math> on velocity.</p> "> Figure 6
<p>Effect of <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mn>1</mn> </msub> </semantics></math> on temperature.</p> "> Figure 7
<p>Effect of <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mn>2</mn> </msub> </semantics></math> on temperature.</p> "> Figure 8
<p>Effect of <span class="html-italic">K</span> on temperature.</p> "> Figure 9
<p>Effect of <span class="html-italic">M</span> on temperature.</p> "> Figure 10
<p>Effect of <math display="inline"><semantics> <msub> <mi>R</mi> <mi>d</mi> </msub> </semantics></math> on temperature.</p> "> Figure 11
<p>Effect of <math display="inline"><semantics> <msub> <mi>P</mi> <mi>r</mi> </msub> </semantics></math> on temperature.</p> "> Figure 12
<p>Effect of <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mn>1</mn> </msub> </semantics></math> on concentration.</p> "> Figure 13
<p>Effect of <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mn>2</mn> </msub> </semantics></math> on concentration.</p> "> Figure 14
<p>Effect of <span class="html-italic">K</span> on concentration.</p> "> Figure 15
<p>Effect of <span class="html-italic">M</span> on concentration.</p> "> Figure 16
<p>Effect of <math display="inline"><semantics> <msub> <mi>K</mi> <mi>r</mi> </msub> </semantics></math> on concentration.</p> "> Figure 17
<p>Effect of <math display="inline"><semantics> <msub> <mi>S</mi> <mi>c</mi> </msub> </semantics></math> on concentration.</p> "> Figure 18
<p>Effect of <span class="html-italic">K</span> on microorganisms.</p> "> Figure 19
<p>Effect of <span class="html-italic">M</span> on microorganisms.</p> "> Figure 20
<p>Effect of <math display="inline"><semantics> <msub> <mi>K</mi> <mi>r</mi> </msub> </semantics></math> on microorganisms.</p> "> Figure 21
<p>Effect of <math display="inline"><semantics> <msub> <mi>R</mi> <mi>d</mi> </msub> </semantics></math> on microorganisms.</p> "> Figure 22
<p>Effect of <math display="inline"><semantics> <msub> <mi>P</mi> <mi>e</mi> </msub> </semantics></math> on microorganisms.</p> "> Figure 23
<p>Effect of <math display="inline"><semantics> <msub> <mi>L</mi> <mi>b</mi> </msub> </semantics></math> on microorganisms.</p> ">
Abstract
:1. Introduction
2. Mathematical Model
3. Numerical Investigation
- Initially, the nonlinear coupled ODE system is transformed into a system of first-order coupled ODEs.
- Then, an appropriate finite-difference scheme is applied to discretize these equations.
- To linearize the equations, Newton’s method is employed during the discretization process.
- Finally, the resulting linear equation system is solved using the block elimination method.
4. Results and Discussion
4.1. Velocity Profile
4.2. Temperature Profile
4.3. Concentration Profile
4.4. Microorganism Profile
5. Conclusions
- When increasing the MHD and Eyring–Powell fluid parameters:
- The heat transfer increased by 24.3% and 6.2%.
- The mass transfer increased by 17.4% and 4.5%.
- The microorganism diffusion increased by 18.2% and 4.1%.
- When increasing the volume fraction :
- The heat transfer increased by 5.8%.
- The mass transfer increased by 4.6%.
- When increasing the thermal radiation parameter:
- Heat transfer increased by 16.4%.
- The microorganism diffusion increased by 4.6%.
- When decreasing the chemical reaction parameter:
- The mass transfer increased by 18.4%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Nomenclature | Greek Symbols | ||
b | Chemotaxis constant | Thermal diffusivity of hybrid nanofluid | |
Magnetic parameter | Characteristics parameter of the | ||
Eyring–Powell fluid | |||
C | Concentration | Volumetric expansion of thermal, concentration | |
Specific heat | The average volume of microorganisms | ||
d | Physical Eyring–Powell fluid parameter | Dimensionless function of temperature | |
D | Mass diffusivity | Dynamic viscosity | |
Diffusivity of microorganisms | Kinematic viscosity | ||
K | Dimensionless Eyring–Powell parameter | Dimensionless boundary layer coordinate | |
Dimensionless chemical reaction parameter | Stream function | ||
Dimensional chemical reaction parameter | Density | ||
Bio-convection Lewis number | Bio-convection constant | ||
M | Dimensionless magnetic parameter | Volume fraction of nanofluid | |
N | Density of microorganisms | Dimensionless function of concentration | |
Non-Newtonian fluid parameter | Dimensionless function of | ||
microorganism density | |||
Buoyancy ratio parameter | |||
Prandtl number | Subscripts | ||
Bio-convection Peclet number | |||
Dimensional thermal radiation | f | Condition of base fluid | |
Bio-convection Rayleigh number | Condition of hybrid nanofluid | ||
Dimensionless thermal radiation parameter | Condition of nanofluid | ||
Schmidt number | s | Condition of nanoparticle | |
T | Temperature | w | Condition of wall |
Velocity component | ∞ | Condition of ambient | |
The maximum cell swimming speed | |||
Coordinate |
References
- Barth, W.L.; Carey, G.F. On a natural-convection benchmark problem in non-Newtonian fluids. Numer. Heat Transf. Part B Fundam. 2006, 50, 193–216. [Google Scholar] [CrossRef]
- Patel, M.; Timol, M. Numerical treatment of Powell–Eyring fluid flow using method of satisfaction of asymptotic boundary conditions (MSABC). Appl. Numer. Math. 2009, 59, 2584–2592. [Google Scholar] [CrossRef]
- Hanafi, H.; Shafie, S.; Ullah, I. Unsteady Free Convection Flow of Nanofluid with Dissipation Effect over a Non-Isothermal Vertical Cone. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 75, 1–11. [Google Scholar] [CrossRef]
- Ragulkumar, E.; Sambath, P.; Chamkha, A.J. Free convection nanofluid flow past a vertical isothermal cone surface in the presence of viscous dissipation and MHD with heat flux. Eur. Phys. J. Plus 2022, 137, 894. [Google Scholar] [CrossRef]
- Hering, R.; Grosh, R. Laminar free convection from a non-isothermal cone. Int. J. Heat Mass Transf. 1962, 5, 1059–1068. [Google Scholar] [CrossRef]
- Lin, F. Laminar free convection from a vertical cone with uniform surface heat flux. Lett. Heat Mass Transf. 1976, 3, 49–58. [Google Scholar] [CrossRef]
- Pop, I.; Watanabe, T. Free convection with uniform suction or injection from a vertical cone for constant wall heat flux. Int. Commun. Heat Mass Transf. 1992, 19, 275–283. [Google Scholar] [CrossRef]
- Tripathi, R.; Sau, A.; Nath, G. Laminar free convection flow over a cone embedded in a stratified medium. Mech. Res. Commun. 1994, 21, 289–296. [Google Scholar] [CrossRef]
- Hossain, M.; Paul, S. Free convection from a vertical permeable circular cone with non-uniform surface temperature. Acta Mech. 2001, 151, 103–114. [Google Scholar] [CrossRef]
- Pullepu, B.; Ekambavanan, E.; Chamkha, A. Unsteady laminar natural convection from a non-isothermal vertical cone. Nonlinear Anal. Model. Control 2007, 12, 525–540. [Google Scholar] [CrossRef]
- Sambath, P.; Kannan, R.; Pullepu, B. Free Convection Flow Past from Horizontally Inclined Plate in Thermally Stratified Medium. Int. J. Pure Appl. Math. 2017, 114, 313–322. [Google Scholar]
- Pullepu, B.; Ekambavanan, K.; Chamkha, A. Unsteady laminar free convection from a vertical cone with uniform surface heat flux. Nonlinear Anal. Model. Control 2008, 13, 47–60. [Google Scholar] [CrossRef]
- Hasan, M.; Mujumdar, A. Coupled heat and mass transfer in natural convection under flux condition along a vertical cone. Int. Commun. Heat Mass Transf. 1984, 11, 157–172. [Google Scholar] [CrossRef]
- Sambath, P.; Sankar, D.; Viswanathan, K. A numerical study of dissipative chemically reactive radiative MHD flow past a vertical cone with nonuniform mass flux. Int. J. Appl. Mech. Eng. 2020, 25, 159–176. [Google Scholar] [CrossRef]
- Atashafrooz, M.; Sajjadi, H.; Amiri Delouei, A. Simulation of combined convective-radiative heat transfer of hybrid nanofluid flow inside an open trapezoidal enclosure considering the magnetic force impacts. J. Magn. Magn. Mater. 2023, 567, 170354. [Google Scholar] [CrossRef]
- Ragulkumar, E.; Palani, G.; Sambath, P.; Chamkha, A.J. Dissipative MHD free convective nanofluid flow past a vertical cone under radiative chemical reaction with mass flux. Sci. Rep. 2023, 13, 2878. [Google Scholar] [CrossRef] [PubMed]
- Prabhavathi, B.; Sudarsanareddy, P.; Bhuvanavijaya, R. Three-Dimensional Heat and Mass Transfer Flow over a Stretching Sheet Filled with Al2O3-Water Based Nanofluid with Heat Generation/Absorption. J. Nanofluids 2019, 8, 1355–1361. [Google Scholar] [CrossRef]
- Raju, C.; Jayachandrababu, M.; Sandeep, N.; Mohankrishna, P. Influence of non-uniform heat source/sink on MHD nanofluid flow over a moving vertical plate in porous medium. Int. J. Sci. Eng. Res 2015, 6, 31–42. [Google Scholar]
- Kairi, R.; Murthy, P. Effect of viscous dissipation on natural convection heat and mass transfer from vertical cone in a non-Newtonian fluid saturated non-Darcy porous medium. Appl. Math. Comput. 2011, 217, 8100–8114. [Google Scholar] [CrossRef]
- Jayachandra Babu, M.; Sandeep, N.; Raju, C.S. Heat and mass transfer in MHD Eyring-Powell nanofluid flow due to cone in porous medium. Int. J. Eng. Res. Afr. 2015, 19, 57–74. [Google Scholar] [CrossRef]
- Rauf, A.; Abbas, Z.; Shehzad, S.; Alsaedi, A.; Hayat, T. Numerical simulation of chemically reactive Powell-Eyring liquid flow with double diffusive Cattaneo-Christov heat and mass flux theories. Appl. Math. Mech. 2018, 39, 467–476. [Google Scholar] [CrossRef]
- Khan, M.; Irfan, M.; Khan, W.; Ahmad, L. Modeling and simulation for 3D magneto Eyring–Powell nanomaterial subject to nonlinear thermal radiation and convective heating. Results Phys. 2017, 7, 1899–1906. [Google Scholar] [CrossRef]
- Kumar, B.; Srinivas, S. Unsteady hydromagnetic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet with joule heating and thermal radiation. J. Appl. Comput. Mech. 2020, 6, 259–270. [Google Scholar] [CrossRef]
- Reddy, S.; Reddy, P.B.A.; Bhattacharyya, K. Effect of nonlinear thermal radiation on 3D magneto slip flow of Eyring-Powell nanofluid flow over a slendering sheet with binary chemical reaction and Arrhenius activation energy. Adv. Powder Technol. 2019, 30, 3203–3213. [Google Scholar] [CrossRef]
- Manvi, B.; Tawade, J.; Biradar, M.; Noeiaghdam, S.; Fernandez-Gamiz, U.; Govindan, V. The effects of MHD radiating and non-uniform heat source/sink with heating on the momentum and heat transfer of Eyring-Powell fluid over a stretching. Results Eng. 2022, 14, 100435. [Google Scholar] [CrossRef]
- Khan, Z.; Usman, M.; Zubair, T.; Hamid, M.; Haq, R. Brownian motion and thermophoresis effects on unsteady stagnation point flow of Eyring–Powell nanofluid: A Galerkin approach. Commun. Theor. Phys. 2020, 72, 125005. [Google Scholar] [CrossRef]
- Thumma, T.; PV, S.N. Innovations in Eyring–Powell radiative nanofluid flow due to nonlinear stretching sheet with convective heat and mass conditions: Numerical study. Aust. J. Mech. Eng. 2020, 21, 221–233. [Google Scholar] [CrossRef]
- Imran, M.; Abbas, Z.; Naveed, M. Flow of Eyring-Powell liquid due to oscillatory stretchable curved sheet with modified Fourier and Fick’s model. Appl. Math. Mech. 2021, 42, 1461–1478. [Google Scholar] [CrossRef]
- Lawal, M.O.; Kasali, K.B.; Ogunseye, H.A.; Oni, M.O.; Tijani, Y.O.; Lawal, Y.T. On the mathematical model of Eyring–Powell nanofluid flow with non-linear radiation, variable thermal conductivity and viscosity. Partial Differ. Equ. Appl. Math. 2022, 5, 100318. [Google Scholar] [CrossRef]
- Tian, Q.; Yang, X.; Zhang, H.; Xu, D. An implicit robust numerical scheme with graded meshes for the modified Burgers model with nonlocal dynamic properties. Comput. Appl. Math. 2023, 42, 246. [Google Scholar] [CrossRef]
- Chen, H.; Stynes, M. Blow-up of error estimates in time-fractional initial-boundary value problems. IMA J. Numer. Anal. 2021, 41, 974–997. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, J.; Wang, W.; Zhang, H. A Predictor–Corrector Compact Difference Scheme for a Nonlinear Fractional Differential Equation. Fractal Fract. 2023, 7, 521. [Google Scholar] [CrossRef]
- Yang, X.; Wu, L.; Zhang, H. A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity. Appl. Math. Comput. 2023, 457, 128192. [Google Scholar] [CrossRef]
- Pal, D.; Mondal, S.K. Unsteady magneto-bioconvection flow of chemically reactive powell eyring nanofluid having gyrotactic microorganisms over an inclined stretching sheet with non-uniform heat source/sink and thermal radiation. J. Nanofluids 2019, 8, 703–713. [Google Scholar] [CrossRef]
- Alwatban, A.M.; Khan, S.U.; Waqas, H.; Tlili, I. Interaction of Wu’s slip features in bioconvection of Eyring Powell nanoparticles with activation energy. Processes 2019, 7, 859. [Google Scholar] [CrossRef]
- Sreenivasulu, P.; Poornima, T.; Malleswari, B.; Reddy, N.B.; Souayeh, B. Internal energy activation stimulus on magneto-bioconvective Powell-Eyring nanofluid containing gyrotactic microorganisms under active/passive nanoparticles flux. Phys. Scr. 2021, 96, 055221. [Google Scholar] [CrossRef]
- Mahdy, A. Unsteady Mixed Bioconvection Flow of Eyring–Powell Nanofluid with Motile Gyrotactic Microorganisms Past Stretching Surface. BioNanoScience 2021, 11, 295–305. [Google Scholar] [CrossRef]
- Naz, R.; Mabood, F.; Sohail, M.; Tlili, I. Thermal and species transportation of Eyring-Powell material over a rotating disk with swimming microorganisms: Applications to metallurgy. J. Mater. Res. Technol. 2020, 9, 5577–5590. [Google Scholar] [CrossRef]
Fluid | ||||
---|---|---|---|---|
997.1 | 4179 | 0.613 | 21 | |
8933 | 385 | 401 | 1.67 | |
4250 | 686.2 | 8.9538 | 0.9 |
Hasan et al. [13] | Present | ||||||
---|---|---|---|---|---|---|---|
0.22 | 0.5 | 1.37711 | 0.80133 | 0.50138 | 1.38831 | 0.82104 | 0.50148 |
0.22 | 1 | 1.76577 | 0.88024 | 0.4839 | 1.76891 | 0.89099 | 0.49861 |
0.22 | 2 | 2.40849 | 0.98391 | 0.47367 | 2.44961 | 0.99801 | 0.49763 |
Lin [6] | Present | |||
---|---|---|---|---|
0.72 | 0.889301 | 1.52278 | 0.937134 | 1.570613 |
1 | 0.784465 | 1.391746 | 0.832299 | 1.439581 |
2 | 0.652528 | 1.162097 | 0.700363 | 1.209932 |
4 | 0.463073 | 0.980958 | 0.510909 | 1.028794 |
6 | 0.396883 | 0.891957 | 0.444721 | 0.939794 |
8 | 0.355639 | 0.834979 | 0.403477 | 0.882817 |
10 | 0.326555 | 0.793885 | 0.374394 | 0.841724 |
100 | 0.133715 | 0.483722 | 0.181555 | 0.531562 |
Plate | Cone | Plate | Cone | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.01 | 0.02 | 0.3 | 1 | 0.5 | 0.6 | 0.5 | 1 | 1.131153 | 0.88863 | 0.690365 | 0.618286 |
0.02 | 1.1364 | 0.889511 | 0.682759 | 0.611744 | |||||||
0.03 | 1.141152 | 0.890263 | 0.675301 | 0.605313 | |||||||
0.01 | 1.123452 | 0.886061 | 0.689833 | 0.617696 | |||||||
0.02 | 1.131153 | 0.88863 | 0.690365 | 0.618286 | |||||||
0.03 | 1.138383 | 0.891065 | 0.690956 | 0.618927 | |||||||
0 | 1.150313 | 0.859845 | 0.710972 | 0.637339 | |||||||
0.4 | 1.139797 | 0.903332 | 0.684057 | 0.612581 | |||||||
0.8 | 1.209694 | 0.970576 | 0.661418 | 0.592399 | |||||||
1 | 1.131153 | 0.88863 | 0.690365 | 0.618286 | |||||||
2 | 1.02103 | 0.780998 | 0.623575 | 0.551223 | |||||||
3 | 0.935983 | 0.704455 | 0.572327 | 0.501712 | |||||||
0.5 | 1.131153 | 0.88863 | 0.690365 | 0.618286 | |||||||
1 | 1.265612 | 1.021415 | 0.726624 | 0.650527 | |||||||
1.5 | 1.357137 | 1.137834 | 0.759688 | 0.679905 | |||||||
0.5 | 1.098349 | 0.858541 | 0.681443 | 0.610087 | |||||||
1 | 1.245755 | 1.001416 | 0.723507 | 0.648682 | |||||||
1.5 | 1.347483 | 1.12517 | 0.760398 | 0.682358 | |||||||
0 | 1.098573 | 0.860133 | 0.522744 | 0.468647 | |||||||
0.5 | 1.131153 | 0.88863 | 0.690365 | 0.618286 | |||||||
1 | 1.151615 | 0.906624 | 0.828881 | 0.742202 | |||||||
0.5 | 1.172796 | 0.92529 | 0.508209 | 0.455492 | |||||||
1 | 1.131153 | 0.88863 | 0.690365 | 0.618286 | |||||||
1.5 | 1.104223 | 0.865059 | 0.822411 | 0.737154 |
Plate | Cone | Plate | Cone | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.01 | 0.02 | 0.3 | 1 | 0.5 | 1 | 0.7 | 0.5 | 0.738834 | 0.702393 | 0.675461 | 0.622874 |
0.02 | 0.735543 | 0.699755 | 0.670701 | 0.618936 | |||||||
0.03 | 0.732311 | 0.697156 | 0.666022 | 0.615053 | |||||||
0.01 | 0.741197 | 0.704326 | 0.678756 | 0.625622 | |||||||
0.02 | 0.738834 | 0.702393 | 0.675461 | 0.622874 | |||||||
0.03 | 0.73648 | 0.700463 | 0.672178 | 0.620129 | |||||||
0 | 0.752952 | 0.714813 | 0.694793 | 0.640129 | |||||||
0.4 | 0.734631 | 0.69879 | 0.669685 | 0.617839 | |||||||
0.8 | 0.719995 | 0.686462 | 0.649478 | 0.600492 | |||||||
1 | 0.738834 | 0.702393 | 0.675461 | 0.622874 | |||||||
2 | 0.709718 | 0.675568 | 0.632289 | 0.581244 | |||||||
3 | 0.688489 | 0.656867 | 0.599717 | 0.550899 | |||||||
0 | 0.53856 | 0.484494 | 0.556124 | 0.497874 | |||||||
0.5 | 0.852076 | 0.822183 | 0.752014 | 0.701389 | |||||||
1 | 1.092013 | 1.071379 | 0.941386 | 0.892903 | |||||||
0.5 | 0.533732 | 0.506574 | 0.5859 | 0.536361 | |||||||
1 | 0.738834 | 0.702393 | 0.675461 | 0.622874 | |||||||
1.5 | 0.888363 | 0.846174 | 0.760501 | 0.703905 | |||||||
0.5 | 0.742074 | 0.705006 | 0.62595 | 0.578825 | |||||||
1 | 0.735416 | 0.699588 | 0.737577 | 0.678324 | |||||||
1.5 | 0.731674 | 0.696475 | 0.821288 | 0.753207 | |||||||
0.3 | 0.741308 | 0.704506 | 0.58893 | 0.538636 | |||||||
0.6 | 0.737661 | 0.701392 | 0.717649 | 0.663927 | |||||||
0.9 | 0.734372 | 0.69859 | 0.840359 | 0.783281 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peter, F.; Sambath, P.; Dhanasekaran, S. Numerical Investigation of Radiative Hybrid Nanofluid Flows over a Plumb Cone/Plate. Mathematics 2023, 11, 4331. https://doi.org/10.3390/math11204331
Peter F, Sambath P, Dhanasekaran S. Numerical Investigation of Radiative Hybrid Nanofluid Flows over a Plumb Cone/Plate. Mathematics. 2023; 11(20):4331. https://doi.org/10.3390/math11204331
Chicago/Turabian StylePeter, Francis, Paulsamy Sambath, and Seshathiri Dhanasekaran. 2023. "Numerical Investigation of Radiative Hybrid Nanofluid Flows over a Plumb Cone/Plate" Mathematics 11, no. 20: 4331. https://doi.org/10.3390/math11204331
APA StylePeter, F., Sambath, P., & Dhanasekaran, S. (2023). Numerical Investigation of Radiative Hybrid Nanofluid Flows over a Plumb Cone/Plate. Mathematics, 11(20), 4331. https://doi.org/10.3390/math11204331