Estimating the Risk of Contracting COVID-19 in Different Settings Using a Multiscale Transmission Dynamics Model
<p>Schematic representation of the model parameters defining the interactions between two pedestrians described as blue disks. Each individual has a center <math display="inline"><semantics> <msub> <mi>x</mi> <mi>i</mi> </msub> </semantics></math> and a radius <math display="inline"><semantics> <msub> <mi>r</mi> <mi>i</mi> </msub> </semantics></math>. The distancing separating the two individuals <span class="html-italic">i</span> and <span class="html-italic">j</span> is described <math display="inline"><semantics> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </semantics></math>, while we denote the distance separating an individual from a wall <span class="html-italic">w</span> by <math display="inline"><semantics> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mi>w</mi> </mrow> </msub> </semantics></math>. The desired velocity of each individual is <math display="inline"><semantics> <msub> <mi>v</mi> <mrow> <mi>d</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </semantics></math> is the angle between the direction of the desired velocity of <span class="html-italic">i</span> and the distance between the individual <span class="html-italic">i</span> and <span class="html-italic">j</span>.</p> "> Figure 2
<p>A screenshot of a numerical simulation showing the location of pedestrians and the concentration of the virus in the air. White circles describe susceptible individuals. Pink and green ones represent infectious and infected individuals, respectively. The size of each individual correlates with its weight. The green to yellow gradient describes the concentration of the virus in the air.</p> "> Figure 3
<p>The average SARS-CoV-2 inoculum in different activity areas. (<b>A</b>) The mean <math display="inline"><semantics> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>c</mi> <mi>c</mi> </mrow> </msub> </semantics></math> in each place of activity, the black ribbons describe the 95% confidence intervals. (<b>B</b>) The distribution of the inhaled virus concentration among individuals in different locations.</p> "> Figure 4
<p>Average number of inhaled virus particles per age group in different locations of activity. (<b>A</b>–<b>E</b>) The average inhaled concentration (<math display="inline"><semantics> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>c</mi> <mi>c</mi> </mrow> </msub> </semantics></math>) by age group in shopping centers, residential areas, schools, public spaces, and workplaces. (<b>F</b>–<b>J</b>) Scatterplot of the inhaled concentration <math display="inline"><semantics> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>c</mi> <mi>c</mi> </mrow> </msub> </semantics></math> and the weight in shopping centers, residential areas, schools, public spaces and workplaces.</p> "> Figure 5
<p>The inhaled concentration of SARS-CoV-2 following exposure to three infectious individuals who emit different concentrations of the virus. The risk of infection is estimated in three scenarios where desired interpersonal distances and desired velocities are homogeneous <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mn>1.22</mn> </mrow> </semantics></math> m, <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mrow> <mi>d</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>1.34</mn> </mrow> </semantics></math> m/s. The considered scenarios are: (a) typical emitters breathing and making two series of coughs at minutes 3 and 6 of the simulation time. When breathing, they release <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>4.9</mn> </mrow> </semantics></math> copies/m<sup>3</sup> and when they cough they produce the concentration <span class="html-italic">w</span> = 277,000 copies/m<sup>3</sup>, (b) high emitters of SARS-COV-2 who only breathe while moving <span class="html-italic">w</span> = 637,000 copies/m<sup>3</sup>, (c) high emitters breathing and making two series of coughs at different moments. When breathing, they release 637,000 copies/m<sup>3</sup> and when they cough, they emit <span class="html-italic">w</span> = 36,030 × 10<sup>6</sup> copies/m<sup>3</sup>. The average <math display="inline"><semantics> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>c</mi> <mi>c</mi> </mrow> </msub> </semantics></math> is estimated for each scenario. 95% confidence intervals are represented as error bars.</p> "> Figure 6
<p>The estimated reduction in the average risk of infection as a function of compliance to mask wearing and the type of used masks. The average reduction in the infection probability was estimated for several simulations where proportions of individuals wear masks with different filtering efficacy.</p> "> Figure 7
<p>Impact of social distancing on the individual chances of infection. The average inhaled concentration of the virus infection as a function of the interpersonal distance (<math display="inline"><semantics> <msub> <mi>d</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>c</mi> </mrow> </msub> </semantics></math>). Intervals indicate 95% confidence intervals.</p> "> Figure 8
<p>Comparison of our age groups that are most likely to be infected with the data reported by the Moroccan Ministry of health on 2020. (<b>A</b>) The estimated average inhaled virus concentration (<math display="inline"><semantics> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>c</mi> <mi>c</mi> </mrow> </msub> </semantics></math>) in all places of activity per age group, calculated using our model. (<b>B</b>) The probability of infection per age group according to the Ministry of health report [<a href="#B71-mathematics-11-00254" class="html-bibr">71</a>].</p> "> Figure A1
<p>The impact of the virus inhalation and virus clearance rates. (<b>A</b>) The average <math display="inline"><semantics> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>c</mi> <mi>c</mi> </mrow> </msub> </semantics></math> for three values of the inhalation rate <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.3</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> <mo>,</mo> <mspace width="0.277778em"/> <mn>1.3</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> <mo>,</mo> <mspace width="0.277778em"/> <mn>2</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> <mspace width="0.277778em"/> <msup> <mi>m</mi> <mn>3</mn> </msup> <mo>/</mo> <mi>s</mi> </mrow> </semantics></math>. (<b>B</b>) The average <math display="inline"><semantics> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>c</mi> <mi>c</mi> </mrow> </msub> </semantics></math> for three values of the virus clearance rate <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>1.9</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> <mo>,</mo> <mspace width="0.277778em"/> <mn>1.9</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> <mo>,</mo> <mspace width="0.277778em"/> <mn>3</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math> s <sup>−1</sup>.</p> "> Figure A2
<p>The impact of diffusion coefficient on the accumulation of the virus. Other parameters are fixed and the considered population is homogeneous.</p> "> Figure A3
<p>Impact of the walking velocity on the risk of infection in a homogeneous population <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mn>1.22</mn> </mrow> </semantics></math> m; with three infectious persons who continuously release a viral load <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>=</mo> <mn>277</mn> </mrow> </semantics></math> copies/m<sup>3</sup>. The coefficient of diffusion moderates the relationship between velocity and risk of infection. We represent the impact of the velocity on <math display="inline"><semantics> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>c</mi> <mi>c</mi> </mrow> </msub> </semantics></math> for a diffusion coefficient <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> m<sup>2</sup>/s (<b>A</b>). and the impact of the velocity on <math display="inline"><semantics> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>c</mi> <mi>c</mi> </mrow> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math> m<sup>2</sup>/s (<b>B</b>).</p> ">
Abstract
:1. Introduction
2. Multiscale Modeling of Disease Transmission
2.1. Social Force Model of Pedestrian Movement
2.2. Parameterization of Population Movement Using Real Data
2.3. Modeling Virus Diffusion and Disease Transmission
2.3.1. Virus Transport and Diffusion
2.3.2. Infection Probability
2.4. Settings of Numerical Simulations
2.5. Computer Implementation
3. Results
3.1. Risk of Contracting SARS-CoV-2 Depending on the Age and the Location
3.1.1. Average Infection Risk in Different Areas of Activity
3.1.2. Age-Specific Risk of Infection in Each Location
3.2. Exposure to Individuals with Peak Viral Load Significantly Upregulates the Risk of Getting Infected
3.3. Impact of Non-Pharmaceutical Interventions on the Individual Risk of Infection
3.3.1. Mask Wearing Protects against SARS-CoV-2 Infection Depending on the Compliance Level and the Type of the Used Masks
3.3.2. Physical Distancing Has Limited Effect on Reducing the Risk of Airborne Transmission
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Sensitivity Analysis
Appendix A.1. Effects of the Inhalation and Degradation Rates
Appendix A.2. Impact of the Coefficient of Diffusion, Velocity and Interpersonal Distances on the Risk of Infection
Appendix A.3. Impact of the Walking Velocity on Virus Contraction
References
- Feehan, D.; Mahmud, A. Quantifying population contact patterns in the United States during the COVID-19 pandemic. Nat. Commun. 2021, 12, 893. [Google Scholar] [CrossRef]
- Hall, E.T. The Hidden Dimension; Doubleday: Garden City, NY, USA; New York, NY, USA, 1966. [Google Scholar]
- Kermack, W.O.; McKendrick, A.G.; Walker, G.T. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 1927, 115, 700–721. [Google Scholar] [CrossRef] [Green Version]
- Hethcote, H.W. Three Basic Epidemiological Models. In Applied Mathematical Ecology; Levin, S., Hallam, T., Gross, L., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1989; pp. 119–144. [Google Scholar]
- Carsten, K.; Tariq, H.; Maya, G.; Nils, T.; Kaare, G. Methods for estimating disease transmission rates: Evaluating the precision of Poisson regression and two novel methods. Sci. Rep. 2017, 7, 9496. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Volpert, V.; Banerjee, M. An epidemic model with time-distributed recovery and death rates. Bull. Math. Biol. 2022, 84, 78. [Google Scholar] [CrossRef]
- Mossong, J.; Hens, N.; Jit, M.; Beutels, P.; Auranen, K.; Mikolajczyk, R.; Massari, M.; Salmaso, S.; Tomba, G.S.; Wallinga, J.; et al. Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases. PLoS Med. 2008, 5, e74. [Google Scholar] [CrossRef] [PubMed]
- Prem, K.; Zandvoort, K.V.; Klepac, P.; Eggo, R.M.; Davies, N.G.; Center for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group; Cook, A.R.; Jit, M. Projecting contact matrices in 177 geographical regions: An update and comparison with empirical data for the COVID-19 era. PLoS Comput. Biol. 2021, 17, e1009098. [Google Scholar] [CrossRef]
- Prem, K.; Cook, A.R.; Jit, M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS Comput. Biol. 2017, 13, e1005697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Cai, X.; Zhang, B.; Zhu, G.; Liu, T.; Guo, P.; Xiao, J.; Li, X.; Zeng, W.; Hu, J.; et al. Spatiotemporal heterogeneity of social contact patterns related to infectious diseases in the Guangdong Province, China. Sci. Rep. 2020, 10, 6119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorélien, A.; Ramen, A.; Swanson, I.; Hill, R. Analyzing the demographic, spatial, and temporal factors influencing social contact patterns in U.S. and implications for infectious disease spread. BMC Infect. Dis. 2019, 21, 1009. [Google Scholar] [CrossRef]
- Eames, K.T.D.; Tilston, N.L.; Brooks-Pollock, E.; Edmunds, W.J. Measured Dynamic Social Contact Patterns Explain the Spread of H1N1v Influenza. PLoS Comput. Biol. 2012, 8, e1002425. [Google Scholar] [CrossRef]
- Iozzi, F.; Trusiano, F.; Chinazzi, M.; Billari, F.C.; Zagheni, E.; Merler, S.; Ajelli, M.; Del Fava, E.; Manfredi, P. Little Italy: An Agent-Based Approach to the Estimation of Contact Patterns- Fitting Predicted Matrices to Serological Data. PLoS Comput. Biol. 2010, 6, e1001021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fumanelli, L.; Ajelli, M.; Manfredi, P.; Vespignani, A.; Merler, S. Inferring the Structure of Social Contacts from Demographic Data in the Analysis of Infectious Diseases Spread. PLoS Comput. Biol. 2012, 8, e1002673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helbing, D.; Molnár, P. Social force model for pedestrian dynamics. Ann. Solid Struct. Mech. 1995, 51, 4282–4286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helbing, D.; Farkas, I.; Vicsek, T. Simulating dynamical features of escape panic. Nature 2000, 407, 487–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helbing, D.; Farkas, I.; Molnar, P.; Vicsek, T. Simulation of pedestrian crowds in normal and evacuation situations. In Pedestrian and Evacuation Dynamics; Schreckenberg, M., Sharma, S.D., Eds.; Springer: Berlin, Germany, 2002; pp. 21–58. [Google Scholar]
- Xiao, Y.; Yang, M.; Zhu, Z.; Yang, H.; Zhang, L.; Ghader, S. Modeling indoor-level non-pharmaceutical interventions during the COVID-19 pandemic: A pedestrian dynamics-based microscopic simulation approach. Transp. Policy 2021, 109, 12–23. [Google Scholar] [CrossRef]
- Bouchnita, A.; Jebrane, A. A hybrid multi-scale model of COVID-19 transmission dynamics to assess the potential of non-pharmaceutical interventions. Chaos Solitons Fractals 2020, 138, 109941. [Google Scholar] [CrossRef]
- Bouchnita, A.; Jebrane, A. A multi-scale model quantifies the impact of limited movement of the population and mandatory wearing of face masks in containing the COVID-19 epidemic in Morocco. Math. Model. Nat. Phenom. 2020, 15, 31. [Google Scholar] [CrossRef]
- Bouchnita, A.; Chekroun, A.; Jebrane, A. Mathematical Modeling Predicts That Strict Social Distancing Measures Would Be Needed to Shorten the Duration of Waves of COVID-19 Infections in Vietnam. Front. Public Health 2021, 8, 559693. [Google Scholar] [CrossRef]
- Sorokowska, A.; Sorokowski, P.; Hilpert, P.; Cantarero, K.; Frackowiak, T.; Ahmadi, K.; Alghraibeh, A.M.; Aryeetey, R.; Bertoni, A.; Bettache, K.; et al. Preferred Interpersonal Distances: A Global Comparison. J. Cross Cult. Psychol. 2017, 48, 577–592. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.H.; Drew, D.A.; Graham, M.S.; Joshi, A.D.; Guo, C.G.; Ma, W.; Mehta, R.S.; Warner, E.T.; Sikavi, D.R.; Lo, C.-H.; et al. Risk of COVID-19 among front-line health-care workers and the general community: A prospective cohort study. Lancet Public Health 2020, 5, e475–e483. [Google Scholar] [CrossRef]
- Klompas, M.; Baker, M.; Rhee, C.; Tucker, R.; Fiumara, K.; Griesbach, D.; Bennett-Rizzo, C.; Salmasian, H.; Wang, R.; Wheeler, N.; et al. A SARS-CoV-2 Cluster in an Acute Care Hospital. Ann. Intern. Med. 2021, 174, 794–802. [Google Scholar] [CrossRef]
- Goldberg, L.; Levinsky, Y.; Marcus, N.; Hoffer, V.; Gafner, M.; Hadas, S.; Kraus, S.; Mor, M.; Scheuerman, O. SARS-CoV-2 Infection Among Health Care Workers Despite the Use of Surgical Masks and Physical Distancing—the Role of Airborne Transmission. Open Forum Infect. Dis. 2021, 8, ofab036. [Google Scholar] [CrossRef]
- Wells, W.F. Airborne Contagion and Air Hygiene. An Ecological Study of Droplet Infections; Harvard University Press: Cambridge, MA, USA, 1955. [Google Scholar]
- Riley, E.; Murphy, G.; Riley, R. Airborne spread of measles in a suburban elementary school. Am. J. Epidemiol. 1978, 107, 421–432. [Google Scholar] [CrossRef]
- Riley, R.L. Airborne infection. Am. J. Med. 1974, 57, 466–475. [Google Scholar] [CrossRef]
- Gammaitoni, L.; Nucci, M.C. Using a mathematical model to evaluate the efficacy of TB control measures. Emerg. Infect. Dis. 1997, 3, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Buonanno, G.; Stabile, L.; Morawska, L. Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environ. Int. 2020, 141, 105794. [Google Scholar] [CrossRef]
- Dai, H.; Zhao, B. Association of infected probability of COVID-19 with ventilation rates in confined spaces. Build. Simul. 2020, 13, 1321–1327. [Google Scholar] [CrossRef]
- Lau, Z.; Griffiths, I.M.; English, A.; Kaouri, K. Predicting the Spatially Varying Infection Risk in Indoor Spaces Using an Efficient Airborne Transmission Model. Proc. R. Soc. A 2022, 478, 20210383. [Google Scholar] [CrossRef]
- Kabalan, B.; Argoul, P.; Jebrane, A.; Cumunel, G.; Erlicher, S. A crowd movement model for pedestrian flow through bottlenecks. Ann. Solid Struct. Mech. 2016, 8, 1–15. [Google Scholar] [CrossRef]
- Jebrane, A.; Argoul, P.; Hakim, A.; El Rhabi, M. Estimating contact forces and pressure in a dense crowd: Microscopic and macroscopic models. Appl. Math. Model. 2019, 74, 409–421. [Google Scholar] [CrossRef]
- Wang, P. Understanding Social-Force Model in P sychological Principles of Collective Behavior. arXiv 2017, arXiv:1605.05146v11. [Google Scholar]
- Bosina, E.; Weidmann, U. Estimating pedestrian speed using aggregated literature data. Phys. A Stat. Mech. Appl. 2017, 468, 1–29. [Google Scholar] [CrossRef]
- Willis, A.; Gjersoe, N.; Havard, C.; Kerridge, J.; Kukla, R. Human Movement Behaviour in Urban Spaces: Implications for the Design and Modelling of Effective Pedestrian Environments. Environ. Plann. B Plann. Des. 2004, 31, 805–828. [Google Scholar] [CrossRef] [Green Version]
- Moussaïd, M.; Helbing, D.; Garnier, S.; Johansson, A.; Combe, M.; Theraulaz, G. Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proc. R. Soc. B 2009, 276, 2755–2762. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Song, W.G.; Fang, Z.M.; Lo, S.M.; Liao, G.X. Experimental study on microscopic moving characteristics of pedestrians in built corridor based on digital image processing. Build. Environ. 2010, 45, 2160–2169. [Google Scholar] [CrossRef]
- Seer, S.; Rudloff, C.; Matyus, T.; Brändle, N. Validating Social Force based Models with Comprehensive Real World Motion Data. Transp. Res. Proc. 2014, 2, 724–732. [Google Scholar] [CrossRef] [Green Version]
- Bassoli, E.; Vincenzi, L. Parameter Calibration of a Social Force Model for the Crowd-Induced Vibrations of Footbridges. Front. Built Environ. 2021, 7, 75. [Google Scholar] [CrossRef]
- Kretz, T.; Lohmiller, J.; Sukennik, P. Some Indications on How to Calibrate the Social Force Model of Pedestrian Dynamics. Transp. Res. Rec. 2018, 2672, 228–238. [Google Scholar] [CrossRef] [Green Version]
- Taherifar, N.; Hamedmoghadam, H.; Sree, S.; Saberi, M. A macroscopic approach for calibration and validation of a modified social force model for bidirectional pedestrian streams. Transp. A Transp. Sci. 2018, 15, 1637–1661. [Google Scholar] [CrossRef]
- Haut Commissariat du Plan. Available online: https://www.hcp.ma/Les-Cahiers-du-Plan-N-43-Mars-Avril-2013_a1248.html (accessed on 15 November 2022).
- Montero, P.; Loukid, M. Croissance des enfants de la ville de Marrakech (Maroc): Analyse comparative avec des enfants espagnols. Bull. Mem. Soc. Anthropol. Paris 1991, 3, 211–224. [Google Scholar] [CrossRef]
- Mellouki, N. Vieillissement et Mode Alimentaire: étude Anthropologique à Marrakech. Ph.D. Thesis, Universite Cadi Ayyad, Marrakesh, Morocco, 2007. [Google Scholar]
- Ministère de la Santé. Available online: https://www.sante.gov.ma/Documents/2019/05/Rapport%20de%20l%20enqu%C3%AAte%20Stepwise.pdf (accessed on 15 November 2022).
- Rastogi, R.; Thaniarasu, I.; Chandra, S. Design Implications of Walking Speed for Pedestrian Facilities. J. Transp. Eng. 2011, 137, 687–696. [Google Scholar] [CrossRef]
- Shaw, G.; Williams, A.M. Tourism and Tourism Spaces; SAGE Publications: Thousand Oaks, CA, USA, 2004. [Google Scholar]
- United Nations. Available online: https://www.un.org/development/desa/pd/content/household-size-and-composition-around-world-2017-data-booklet (accessed on 15 February 2022).
- Trading Economics. Available online: https://tradingeconomics.com/morocco/employment-rate (accessed on 15 February 2022).
- The World Bank. Available online: https://data.worldbank.org/indicator/SE.SEC.ENRL.TC.ZS?locations=MA (accessed on 1 March 2022).
- Ministère de l’éducation Nationale. Available online: https://www.men.gov.ma/Ar/Documents/Recueil2012-13_v25032013.pdf (accessed on 5 December 2022).
- World Health Organization. Available online: http://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-how-is-it-transmitted (accessed on 2 March 2022).
- Tang, J.W.; Marr, L.C.; Li, Y.; Dancer, S.J. COVID-19 has redefined airborne transmission. BMJ 2021, 373. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Bahnfleth, W.; Bluyssen, P.; Buonanno, G.; Jimenez, J.; Kurnitski, J.; Li, Y.; Miller, S.; Sekhar, C.; Morawska, L.; et al. Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Hosp. Infect. 2021, 110, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Gorbunov, B. Aerosol Particles Generated by Coughing and Sneezing of a SARS-CoV-2 (COVID-19) Host Travel over 30 m Distance. Aerosol. Air Qual. Res. 2021, 21, 200468. [Google Scholar] [CrossRef]
- To, K.K.W.; Tsang, O.T.Y.; Yip, C.C.Y.; Chan, K.H.; Wu, T.C.; Chan, J.M.C.; Leung, W.S.; Chik, T.S.H.; Choi, C.Y.C.; Kandamby, D.H.; et al. Consistent Detection of 2019 Novel Coronavirus in Saliva. Clin. Infect. Dis. 2020, 71, 841–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, S. Computational characterization of inhaled droplet transport in the upper airway leading to SARS-CoV-2 infection. MedRxiv 2020. [Google Scholar] [CrossRef]
- Riediker, M.; Tsai, D.H. Estimation of Viral Aerosol Emissions From Simulated Individuals with Asymptomatic to Moderate Coronavirus Disease 2019. JAMA Netw. Open 2020, 3, e2013807. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, G.; Huang, Y.W. Modeling the load of SARS-CoV-2 virus in human expelled particles during coughing and speaking. PLoS ONE 2020, 15, e0241539. [Google Scholar] [CrossRef]
- van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Hallett, S.; Toro, F.; Ashurst, J. Physiology, Tidal Volume; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Sadria, M.; Layton, A.T. Modeling within-Host SARS-CoV-2 Infection Dynamics and Potential Treatments. Viruses 2021, 13, 1141. [Google Scholar] [CrossRef]
- Noh, J.; Danuser, G. Estimation of the fraction of COVID-19 infected people in U.S. states and countries worldwide. PLOS ONE 2021, 16, e0246772. [Google Scholar] [CrossRef]
- The World Health Organization. Available online: https://covid19.who.int/region/emro/country/ma (accessed on 1 December 2022).
- Sankhyan, S.; Heinselman, K.N.; Ciesielski, P.N.; Barnes, T.; Himmel, M.E.; Teed, H.; Patel, S.; Vance, M.E. Filtration Performance of Layering Masks and Face Coverings and the Reusability of Cotton Masks after Repeated Washing and Drying. Aerosol Air Qual. Res. 2021, 21, 210117. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Q. Crowd Hybrid Model for Pedestrian Dynamic Prediction in a Corridor. IEEE Access 2019, 7, 95264–95273. [Google Scholar] [CrossRef]
- Campanella, M.; Hoogendoorn, S.P.; Daamen, W. Effects of Heterogeneity on Self-Organized Pedestrian Flows. Transp. Res. Rec. 2009, 2124, 148–156. [Google Scholar] [CrossRef]
- Centre for Disease Control and Prevention. Available online: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html (accessed on 15 March 2022).
- Moroccan Ministry of Health. Available online: https://www.sante.gov.ma/Publications/Pages/Bullten_épidémiologique.aspx (accessed on 3 June 2022).
- Magdy Beshbishy, A.; Hetta, H.F.; Hussein, D.E.; Saati, A.A.; Uba, C.C.; Rivero-Perez, N.; Zaragoza-Bastida, A.; Shah, M.A.; Behl, T.; Batiha, G.E.S. Factors associated with increased morbidity and mortality of obese and overweight COVID-19 patients. Biology 2020, 9, 280. [Google Scholar] [CrossRef]
- Malik, V.S.; Ravindra, K.; Attri, S.V.; Bhadada, S.K.; Singh, M. Higher body mass index is an important risk factor in COVID-19 patients: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2020, 27, 42115–42123. [Google Scholar] [CrossRef]
- Goyal, A.; Reeves, D.B.; Cardozo-Ojeda, E.F.; Schiffer, J.T.; Mayer, B.T. Viral load and contact heterogeneity predict SARS-CoV-2 transmission and super-spreading events. Elife 2021, 10, e63537. [Google Scholar] [CrossRef]
- Tcharkhtchi, A.; Abbasnezhad, N.; Zarbini Seydani, M.; Zirak, N.; Farzaneh, S.; Shirinbayan, M. An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration. Bioact. Mater. 2021, 6, 106–122. [Google Scholar] [CrossRef]
- Ou, C.; Hu, S.; Luo, K.; Yang, H.; Hang, J.; Cheng, P.; Hai, Z.; Xiao, S.; Qian, H.; Xiao, S.; et al. Insufficient ventilation led to a probable long-range airborne transmission of SARS-CoV-2 on two buses. Build. Environ. 2022, 207, 108414. [Google Scholar] [CrossRef]
- Moreno, J.C.; Puzzo, M.L.R.; Paul, W. Collective dynamics of pedestrians in a corridor: An approach combining social force and Vicsek models. Phys. Rev. E 2020, 102, 022307. [Google Scholar] [CrossRef]
- Pecol, P.; Argoul, P.; Dal Pont, S.; Erlicher, S. A new crowd movement modeling for pedestrians who hold hands. In Proceedings of the XVIIIth Symposium Vibrations, Chocs et Bruit & ASTELAB, Clamart, France, 3–7 July 2012; EDF: Clamart, France, 2012. 9p. [Google Scholar]
- Hanna, S.R.; Briggs, G.A.; Hosker, R.P., Jr. Handbook on Atmospheric Diffusion; National Oceanic and Atmospheric Administration: Oak Ridge, TN, USA, 1982; p. 103. [CrossRef]
Parameter | Age-Dependent | Activity Area-Dependent | Source |
---|---|---|---|
yes | yes | adapted to the demographic structure [36,37] | |
yes | no | [38,39] | |
yes | yes | adapted to the demographic structure [22] | |
no | no | [35] | |
no | no | [33,35,40,41,42,43] | |
no | no | [33,35,40,41,42,43] | |
no | no | [33,35,40,41,42,43] | |
no | no | [33,35,40,41,42,43] | |
no | no | [33] | |
yes | no | Moroccan population weight [44,45,46,47] |
Place | Shopping Center | Residential Area | School | Public Space | Workplace |
---|---|---|---|---|---|
average | 6257 | 9286 | 6573 | 6260 | 7281 |
SD | 97.6 | 386 | 190 | 128 | 109 |
(m) | 2.18 | 0.46 | 1.35 | 2.18 | 1.42 |
(m/s) | 1.37 | 1.42 | 1.25 | 1.28 | 1.40 |
Percent of Individuals Wearing Mask | N95 | Surgical Mask | Cloth Mask |
---|---|---|---|
75 | 68 | 49 | 13 |
50 | 45 | 32 | 8 |
25 | 23 | 15 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanté, D.S.I.; Jebrane, A.; Bouchnita, A.; Hakim, A. Estimating the Risk of Contracting COVID-19 in Different Settings Using a Multiscale Transmission Dynamics Model. Mathematics 2023, 11, 254. https://doi.org/10.3390/math11010254
Kanté DSI, Jebrane A, Bouchnita A, Hakim A. Estimating the Risk of Contracting COVID-19 in Different Settings Using a Multiscale Transmission Dynamics Model. Mathematics. 2023; 11(1):254. https://doi.org/10.3390/math11010254
Chicago/Turabian StyleKanté, Dramane Sam Idris, Aissam Jebrane, Anass Bouchnita, and Abdelilah Hakim. 2023. "Estimating the Risk of Contracting COVID-19 in Different Settings Using a Multiscale Transmission Dynamics Model" Mathematics 11, no. 1: 254. https://doi.org/10.3390/math11010254
APA StyleKanté, D. S. I., Jebrane, A., Bouchnita, A., & Hakim, A. (2023). Estimating the Risk of Contracting COVID-19 in Different Settings Using a Multiscale Transmission Dynamics Model. Mathematics, 11(1), 254. https://doi.org/10.3390/math11010254