Truncated Cauchy Power Weibull-G Class of Distributions: Bayesian and Non-Bayesian Inference Modelling for COVID-19 and Carbon Fiber Data
<p>Plots of PDF and the hazard function of TCPWL distribution.</p> "> Figure 2
<p>Plots of PDF and the hazard function of TCPWE distribution.</p> "> Figure 3
<p>Plots of PDF and the hazard function of TCPWR distribution.</p> "> Figure 4
<p>Skewness plot for TCPWE distribution with different values of parameters when <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Kurtosis plot for TCPWE distribution with different values of parameters when <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Plot A2 of <span class="html-italic">θ</span> by results in <a href="#mathematics-10-01565-t001" class="html-table">Table 1</a>.</p> "> Figure 7
<p>Plot A2 of <span class="html-italic">λ</span> by results in <a href="#mathematics-10-01565-t001" class="html-table">Table 1</a>.</p> "> Figure 8
<p>Plot A2 of <span class="html-italic">μ</span> by results in <a href="#mathematics-10-01565-t001" class="html-table">Table 1</a>.</p> "> Figure 9
<p>The estimated CDF, fitted PDF, PP-plot, and QQ-plot of the <span class="html-italic">TCPWE</span> and <span class="html-italic">TCPWL</span> and <span class="html-italic">TCPWR</span> distributions for strength data.</p> "> Figure 10
<p>The estimated CDF, fitted PDF, PP-plot, and QQ-plot of the <span class="html-italic">TCPWE</span> and <span class="html-italic">TCPWL</span> and <span class="html-italic">TCPWR</span> distributions for fatigue times.</p> "> Figure 11
<p>The estimated CDF, fitted PDF, PP-plot, and QQ-plot of the TCPWE, TCPWL, and TCPWR distributions for COVID-19 data.</p> "> Figure 12
<p>Likelihood profile for parameters of TCPWE distribution for strength data.</p> "> Figure 13
<p>Likelihood profile for parameters of TCPWE distribution for fatigue times.</p> "> Figure 14
<p>Likelihood profile for parameters of TCPWE distribution for COVID-19 data.</p> "> Figure 15
<p>Contour plot for log-likelihood of the TCPWE distribution for strength data.</p> "> Figure 16
<p>Contour plot for log-likelihood of the TCPWE distribution for fatigue times.</p> "> Figure 17
<p>Contour plot for log-likelihood of the TCPWE distribution for COVID-19 data.</p> "> Figure 18
<p>Likelihood profile for parameters of TCPWL distribution for COVID-19 data.</p> ">
Abstract
:1. Introduction
- To present a new, wider, and flexible, family of distributions based on the W–G family and TCP family.
- The PDF of submodels of the suggested family can be decreasing, unimodal, right skewness, and symmetrically shaped. Additionally, the hazard function can be unimodal, U-shaped, J-shaped, increasing, decreasing, and constant.
- To investigate some of its statistical features, such as the quantile function, moments, incomplete moments and Rényi entropy.
- To discuss the statistical inference of the TCPW-G family by using the ML and Bayesian approaches.
- To conduct a simulation study to demonstrate the behavior of the parameters model.
- To provide better fits than some known models with favorable results for the TCPWE, TCPWR, and TCPWL models.
2. Expansion and Sub-Models
2.1. Some Special Models of the TCPW-G Family
2.1.1. Truncated Cauchy Power Weibull Lomax (TCPWL) Distribution
2.1.2. Truncated Cauchy Power Weibull Exponential (TCPWE) Distribution
2.1.3. Truncated Cauchy Power Weibull Rayleigh (TCPWR) Distribution
3. Statistical Features
3.1. Quantile Function
3.2. Moments
3.2.1. Ordinary Moments
3.2.2. Conditional Moments
3.3. Rényi Entropy
4. Bayesian and Non-Bayesian Estimation Methods
4.1. Maximum Likelihood Estimation
4.2. Bayesian Estimation
5. Censored Scheme
6. Numerical Outcomes
- As the sample size increases, the A1 and A2 of the parameters under consideration decrease.
- As the ratio of censored sample of failures increase, the value of the A1 and A2 are also decrease.
- For most TCPWE distribution parameters, Bayesian estimates are more efficient than MLE.
- Bayesian estimates based on linex (1.5) loss function have more relative efficiency than other loss functions for most parameters of TCPWE distribution.
- when actual value of μ increases the A1 and A2 of the considered parameters decreases for θ, λ.
- when actual value of λ increases the A1 and A2 of the considered parameters decreases for θ, μ and increase for λ.
- when actual value of θ increases the A1 and A2 of the considered parameters decreases for μ and increases for θ, λ.
7. Applications
7.1. The First Data Set
7.2. The Second Data Set
7.3. The Third Data Set
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Eugene, N.; Lee, C.; Famoye, F. Beta-normal distribution and its applications. Commun. Stat. Theory Methods 2002, 31, 497–512. [Google Scholar] [CrossRef]
- Zografos, K.; Balakrishnan, N. On the families of beta-and gamma-generated generalized distribution and associated inference. Stat. Methodol. 2009, 6, 344–362. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; de Castro, M. A new family of generalized distributions. J. Stat. Comput. Simul. 2012, 81, 883–893. [Google Scholar] [CrossRef]
- Nassar, M.; Kumar, D.; Dey, S.; Cordeiro, G.M.; Afify, A.Z. The Marshall–Olkin alpha power family of distributions with applications. J. Comput. Appl. Math. 2019, 351, 41–53. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; Afify, A.Z.; Ortega, E.M.; Suzuki, A.K.; Mead, M.E. The odd Lomax generator of distributions: Properties, estimation and applications. J. Comput. Appl. Math. 2019, 347, 222–237. [Google Scholar] [CrossRef]
- Hassan, S.A.; Elgarhy, M. Type II half logistic family of distributions with Applications. Pak. J. Stat. Oper. Res. 2017, 13, 245–264. [Google Scholar]
- Badr, M.M.; Elbatal, I.; Jamal, F.; Chesneau, C.; Elgarhy, M. The transmuted odd Fréchet-G family of distributions: Theory and applications. Mathematics 2020, 8, 958. [Google Scholar] [CrossRef]
- Al-Mofleh, H.; Elgarhy, M.; Afify, A.Z.; Zannon, M.S. Type II exponentiated half logistic generated family of distributions with applications. Electron. J. Appl. Stat. Anal. 2020, 13, 536–561. [Google Scholar]
- Bantan, R.A.; Chesneau, C.; Jamal, F.; Elgarhy, M. On the analysis of new COVID-19 cases in Pakistan using an exponentiated version of the M family of distributions. Mathematics 2020, 8, 953. [Google Scholar] [CrossRef]
- Almarashi, A.M.; Jamal, F.; Chesneau, C.; Elgarhy, M. The Exponentiated truncated inverse Weibull-generated Ffamily of distributions with applications. Symmetry 2020, 12, 650. [Google Scholar] [CrossRef] [Green Version]
- Bourguignon, M.; Silva, R.B.; Cordeiro, G.M. The Weibull-G family of probability distributions. J. Data Sci. 2014, 12, 1253–1268. [Google Scholar] [CrossRef]
- Nadarajah, S.; Kotz, S. A truncated Cauchy distribution. Int. J. Math. Educ. Sci. Technol. 2006, 37, 605–608. [Google Scholar] [CrossRef]
- Hamedani, G.; Ghosh, I. Kumaraswamy-Half-Cauchy Distribution: Characterizations and Related Results. Int. J. Stat. Probab. 2015, 4, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Zubair, M.; Tahir, M.; Cordeiro, M.; Alzaatreh, A.; Ortega, M. The power-Cauchy negative-binomial: Properties and regression. J. Stat. Distrib. Appl. 2018, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Aldahlan, M.A.; Jamal, F.; Chesneau, C.; Elgarhy, M.; Elbatal, I. The truncated Cauchy power family of distributions with inference and applications. Entropy 2020, 22, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almetwally, E.M.; Almongy, H.M.; Mubarak, A. Bayesian and maximum likelihood estimation for the Weibull generalized exponential distribution parameters using progressive censoring schemes. Pak. J. Stat. Oper. Res. 2018, 14, 853–868. [Google Scholar] [CrossRef]
- Ahmad, H.H.; Almetwally, E. Marshall-Olkin generalized Pareto distribution: Bayesian and non Bayesian estimation. Pak. J. Stat. Oper. Res. 2020, 16, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Nassar, M.; Abo-Kasem, O.; Zhang, C.; Dey, S. Analysis of Weibull Distribution Under Adaptive Type-II Progressive Hybrid Censoring Scheme. J. Indian Soc. Probab. Stat. 2018, 19, 25–65. [Google Scholar] [CrossRef]
- Dey, S.; Singh, S.; Tripathi, Y.M.; Asgharzadeh, A. Estimation and prediction for a progressively censored generalized inverted exponential distribution. Stat. Methodol. 2016, 32, 185–202. [Google Scholar] [CrossRef]
- Kundu, D.; Pradhan, B. Estimating the parameters of the generalized exponential distribution in presence of hybrid censoring. Commun. Stat.-Theory Methods 2009, 38, 2030–2041. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods, and Applications; Springer Science Business Media: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- El-Morshedy, M.; Eliwa, M.S.; El-Gohary, A.; Almetwally, E.M.; L-Desokey, R.E. Exponentiated generalized inverse flexible Weibull distribution: Bayesian and non-Bayesian estimation under complete and type II censored samples with applications. Commun. Math. Stat. 2021, 4, 1–22. [Google Scholar] [CrossRef]
- Almongy, H.M.; Almetwally, E.M.; Alharbi, R.; Alnagar, D.; Hafez, E.H.; El-Din, M.M.M. The Weibull generalized exponential distribution with censored sample: Estimation and application on real data. Complexity 2021, 2021, 6653534. [Google Scholar] [CrossRef]
- El-Raheem, A.M.A.; Almetwally, E.M.; Mohamed, M.S.; Hafez, E.H. Accelerated life tests for modified Kies exponential lifetime distribution: Binomial removal, transformers turn insulation application and numerical results. AIMS Math. 2021, 6, 5222–5255. [Google Scholar] [CrossRef]
- Bantan, R.; Hassan, A.S.; Almetwally, E.; Elgarhy, M.; Jamal, F.; Chesneau, C.; Elsehetry, M. Bayesian analysis in partially accelerated life tests for weighted Lomax distribution. Comput. Mater. Contin. 2021, 68, 2859–2875. [Google Scholar] [CrossRef]
- Shams, T.M. The Kumaraswamy-generalized Lomax distribution. Middle-East J. Sci. Res. 2013, 17, 641–646. [Google Scholar]
- Tahir, M.H.; Cordeiro, G.M.; Mansoor, M.; Zubair, M. The Weibull-Lomax distribution: Properties and applications. Hacet. J. Math. Stat. 2015, 44, 461–480. [Google Scholar] [CrossRef]
- Afify, A.Z.; Mohamed, O.A. A new three-parameter exponential distribution with variable shapes for the hazard rate: Estimation and applications. Mathematics 2020, 8, 135. [Google Scholar] [CrossRef] [Green Version]
- El-Bassiouny, A.H.; Abdo, N.F.; Shahen, H.S. Exponential Lomax distribution. Int. J. Comput. Appl. 2015, 121, 24–29. [Google Scholar]
- Merovci, F.; Elbatal, I. Weibull-Rayleigh distribution: Theory and applications. Appl. Math. Inf. Sci. 2015, 9, 1–11. [Google Scholar]
- Birnbaum, Z.W.; Saunders, S.C. Estimation for a family of life distributions with applications to fatigue. J. Appl. Probab. 1969, 6, 328–347. [Google Scholar] [CrossRef]
Actual Values | MLE | SE | Linex (1.5) | Linex (−1.5) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
θ | λ | μ | n | A1 | A2 | A1 | A2 | A1 | A2 | A1 | A2 | |
0.75 | 0.75 | 1.5 | 25 | θ | 0.2634 | 0.3649 | 0.0642 | 0.0408 | 0.0004 | 0.0234 | 0.1447 | 0.0846 |
λ | −0.0103 | 0.1392 | 0.0442 | 0.0346 | −0.0282 | 0.0243 | 0.1342 | 0.0689 | ||||
μ | 0.1267 | 0.3550 | 0.0584 | 0.0314 | −0.0763 | 0.0264 | 0.2313 | 0.1010 | ||||
50 | θ | 0.1749 | 0.1860 | 0.0484 | 0.0245 | −0.0014 | 0.0147 | 0.1104 | 0.0481 | |||
λ | −0.0227 | 0.0964 | 0.0351 | 0.0237 | −0.0237 | 0.0180 | 0.1049 | 0.0423 | ||||
μ | 0.0357 | 0.2134 | 0.0521 | 0.0300 | −0.0684 | 0.0252 | 0.2063 | 0.0866 | ||||
100 | θ | 0.1437 | 0.0917 | 0.0469 | 0.0167 | 0.0072 | 0.0111 | 0.0946 | 0.0292 | |||
λ | −0.0758 | 0.0484 | 0.0148 | 0.0179 | −0.0320 | 0.0156 | 0.0688 | 0.0275 | ||||
μ | −0.0855 | 0.0905 | 0.0352 | 0.0300 | −0.0698 | 0.0269 | 0.1690 | 0.0734 | ||||
3 | 25 | θ | 0.2437 | 0.2848 | 0.0617 | 0.0321 | 0.0091 | 0.0203 | 0.1244 | 0.0576 | ||
λ | −0.0405 | 0.1037 | 0.0364 | 0.0306 | −0.0230 | 0.0233 | 0.1091 | 0.0528 | ||||
μ | 0.0421 | 0.6458 | 0.0274 | 0.0128 | −0.1557 | 0.0350 | 0.2462 | 0.0789 | ||||
50 | θ | 0.1636 | 0.1340 | 0.0359 | 0.0188 | 0.0078 | 0.0134 | 0.0779 | 0.0302 | |||
λ | −0.0581 | 0.0757 | 0.0153 | 0.0185 | −0.0264 | 0.0163 | 0.0632 | 0.0261 | ||||
μ | −0.0756 | 0.5164 | 0.0119 | 0.0133 | −0.1647 | 0.0391 | 0.2233 | 0.0689 | ||||
100 | θ | 0.0955 | 0.0514 | 0.0284 | 0.0101 | 0.0026 | 0.0075 | 0.0582 | 0.0154 | |||
λ | −0.0709 | 0.0308 | −0.0028 | 0.0114 | −0.0325 | 0.0112 | 0.0299 | 0.0139 | ||||
μ | −0.1650 | 0.1571 | −0.0030 | 0.0171 | −0.1733 | 0.0458 | 0.2016 | 0.0650 | ||||
2.5 | 0.75 | 1.5 | 25 | θ | 0.3285 | 1.0860 | −0.0223 | 0.0381 | −0.1846 | 0.0667 | 0.2340 | 0.0902 |
λ | 0.1800 | 0.4623 | 0.0867 | 0.0379 | 0.0198 | 0.0215 | 0.1677 | 0.0749 | ||||
μ | 0.1029 | 0.1230 | 0.0259 | 0.0130 | −0.0078 | 0.0116 | 0.0604 | 0.0170 | ||||
50 | θ | 0.0839 | 0.6585 | −0.0198 | 0.0299 | −0.2001 | 0.0649 | 0.2146 | 0.0942 | |||
λ | 0.2092 | 0.4576 | 0.0750 | 0.0290 | 0.0205 | 0.0160 | 0.1405 | 0.0574 | ||||
μ | 0.1146 | 0.1243 | 0.0280 | 0.0095 | 0.0054 | 0.0081 | 0.0518 | 0.0123 | ||||
100 | θ | 0.1166 | 0.3330 | −0.0084 | 0.0230 | −0.1999 | 0.0595 | 0.1824 | 0.0898 | |||
λ | 0.0350 | 0.0761 | 0.0654 | 0.0193 | 0.0235 | 0.0120 | 0.1145 | 0.0344 | ||||
μ | 0.0209 | 0.0230 | 0.0262 | 0.0061 | 0.0107 | 0.0051 | 0.0427 | 0.0078 | ||||
3 | 25 | θ | 0.3260 | 1.5594 | 0.0153 | 0.0258 | −0.1726 | 0.0501 | 0.2506 | 0.1050 | ||
λ | 0.2785 | 0.7704 | 0.0735 | 0.0310 | 0.0137 | 0.0185 | 0.1457 | 0.0592 | ||||
μ | 0.3194 | 0.7088 | 0.0525 | 0.0285 | −0.0384 | 0.0244 | 0.1478 | 0.0515 | ||||
50 | θ | 0.1755 | 0.9002 | −0.0102 | 0.0288 | −0.1794 | 0.0557 | 0.2061 | 0.0890 | |||
λ | 0.1671 | 0.3524 | 0.0605 | 0.0205 | 0.0141 | 0.0125 | 0.1155 | 0.0384 | ||||
μ | 0.1850 | 0.3463 | 0.0420 | 0.0202 | −0.0253 | 0.0173 | 0.1148 | 0.0347 | ||||
100 | θ | 0.0466 | 0.4050 | 0.0080 | 0.0305 | −0.1438 | 0.0456 | 0.1954 | 0.0852 | |||
λ | 0.1014 | 0.1475 | 0.0457 | 0.0126 | 0.0110 | 0.0085 | 0.0859 | 0.0214 | ||||
μ | 0.1064 | 0.1529 | 0.0303 | 0.0143 | −0.0168 | 0.0124 | 0.0819 | 0.0222 | ||||
2.5 | 3 | 1.5 | 25 | θ | 0.1500 | 0.1839 | 0.0214 | 0.0349 | −0.1289 | 0.0440 | 0.1931 | 0.0851 |
λ | 0.0805 | 0.2222 | 0.0583 | 0.0413 | −0.2192 | 0.0717 | 0.4319 | 0.2470 | ||||
μ | 0.0020 | 0.0063 | 0.0096 | 0.0030 | −0.0003 | 0.0028 | 0.0200 | 0.0035 | ||||
50 | θ | 0.0937 | 0.1529 | 0.0052 | 0.0300 | −0.1103 | 0.0377 | 0.1358 | 0.0569 | |||
λ | 0.0596 | 0.4844 | 0.0608 | 0.0346 | −0.2113 | 0.0696 | 0.4016 | 0.2232 | ||||
μ | 0.0018 | 0.0075 | 0.0082 | 0.0018 | 0.0012 | 0.0017 | 0.0154 | 0.0021 | ||||
100 | θ | 0.0406 | 0.0541 | 0.0079 | 0.0242 | −0.0795 | 0.0279 | 0.1052 | 0.0402 | |||
λ | 0.0195 | 0.1577 | 0.0673 | 0.0342 | −0.1924 | 0.0679 | 0.3660 | 0.2040 | ||||
μ | 0.0011 | 0.0031 | 0.0072 | 0.0012 | 0.0020 | 0.0011 | 0.0126 | 0.0014 | ||||
3 | 25 | θ | 0.2451 | 0.4695 | 0.0152 | 0.0327 | −0.1301 | 0.0428 | 0.1812 | 0.0785 | ||
λ | 0.0543 | 0.9592 | 0.0592 | 0.0334 | −0.2194 | 0.0713 | 0.4094 | 0.2260 | ||||
μ | −0.0077 | 0.0499 | 0.0168 | 0.0094 | −0.0173 | 0.0089 | 0.0534 | 0.0126 | ||||
50 | θ | 0.2033 | 0.3596 | 0.0225 | 0.0294 | −0.0906 | 0.0328 | 0.1514 | 0.0599 | |||
λ | 0.0280 | 0.9253 | 0.0548 | 0.0329 | −0.2066 | 0.0665 | 0.3807 | 0.2055 | ||||
μ | −0.0091 | 0.0611 | 0.0099 | 0.0055 | −0.0144 | 0.0053 | 0.0357 | 0.0071 | ||||
100 | θ | 0.0426 | 0.0532 | 0.0104 | 0.0228 | −0.0730 | 0.0255 | 0.1028 | 0.0376 | |||
λ | 0.0161 | 0.1266 | 0.0505 | 0.0381 | −0.1873 | 0.0632 | 0.3413 | 0.1835 | ||||
μ | 0.0037 | 0.0109 | 0.0143 | 0.0040 | −0.0046 | 0.0037 | 0.0343 | 0.0053 |
Actual Values | 72% | MLE | SE | Linex (1.5) | Linex (−1.5) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
θ | λ | μ | r | A1 | A2 | A1 | A2 | A1 | A2 | A1 | A2 | |
0.75 | 0.75 | 1.5 | 18 | θ | 0.3435 | 0.6565 | 0.0623 | 0.0370 | −0.0056 | 0.0225 | 0.1484 | 0.0749 |
λ | 0.1595 | 0.3615 | 0.0721 | 0.0512 | −0.0126 | 0.0303 | 0.1780 | 0.1062 | ||||
μ | −0.0359 | 0.3718 | 0.0612 | 0.0332 | −0.0781 | 0.0275 | 0.2363 | 0.1046 | ||||
36 | θ | 0.2651 | 0.4046 | 0.0538 | 0.0258 | −0.0018 | 0.0153 | 0.1238 | 0.0531 | |||
λ | 0.1145 | 0.2634 | 0.0474 | 0.0284 | −0.0186 | 0.0201 | 0.1272 | 0.0544 | ||||
μ | −0.1816 | 0.2767 | 0.0580 | 0.0311 | −0.0702 | 0.0264 | 0.2246 | 0.0954 | ||||
72 | θ | 0.1941 | 0.2596 | 0.0474 | 0.0198 | 0.0030 | 0.0128 | 0.1022 | 0.0365 | |||
λ | 0.0601 | 0.1498 | 0.0306 | 0.0227 | −0.0227 | 0.0179 | 0.0928 | 0.0377 | ||||
μ | −0.2679 | 0.2167 | 0.0507 | 0.0327 | −0.0640 | 0.0261 | 0.1971 | 0.0891 | ||||
3 | 18 | θ | 0.2024 | 0.4441 | 0.0678 | 0.0436 | 0.0038 | 0.0254 | 0.1464 | 0.0887 | ||
λ | 0.2204 | 0.3283 | 0.0539 | 0.0447 | −0.0179 | 0.0314 | 0.1427 | 0.0803 | ||||
μ | −0.2610 | 0.6854 | 0.0058 | 0.0154 | −0.1667 | 0.0422 | 0.2563 | 0.0832 | ||||
36 | θ | 0.1458 | 0.2744 | 0.0479 | 0.0253 | 0.0041 | 0.0169 | 0.0998 | 0.0429 | |||
λ | 0.1969 | 0.2860 | 0.0245 | 0.0230 | −0.0252 | 0.0186 | 0.0834 | 0.0373 | ||||
μ | −0.2259 | 0.6352 | 0.0264 | 0.0151 | −0.1537 | 0.0365 | 0.2413 | 0.0796 | ||||
72 | θ | 0.0114 | 0.1041 | 0.0311 | 0.0130 | 0.0012 | 0.0095 | 0.0660 | 0.0205 | |||
λ | 0.2102 | 0.1987 | 0.0027 | 0.0137 | −0.0319 | 0.0129 | 0.0418 | 0.0179 | ||||
μ | −0.0702 | 0.3057 | 0.0352 | 0.0129 | −0.1511 | 0.0330 | 0.2132 | 0.0669 | ||||
2.5 | 0.75 | 1.5 | 18 | θ | 0.4821 | 1.2111 | −0.0117 | 0.0327 | −0.1814 | 0.0617 | 0.2544 | 0.1037 |
λ | 0.1584 | 0.4019 | 0.0993 | 0.0472 | 0.0192 | 0.0243 | 0.1988 | 0.1019 | ||||
μ | −0.0455 | 0.1055 | 0.0245 | 0.0166 | −0.0173 | 0.0149 | 0.0672 | 0.0223 | ||||
36 | θ | 0.3880 | 0.9428 | −0.0237 | 0.0268 | −0.2097 | 0.0661 | 0.2144 | 0.0884 | |||
λ | 0.1195 | 0.3061 | 0.0818 | 0.0301 | 0.0214 | 0.0167 | 0.1553 | 0.0605 | ||||
μ | −0.0671 | 0.0819 | 0.0270 | 0.0109 | −0.0005 | 0.0094 | 0.0556 | 0.0142 | ||||
72 | θ | 0.2072 | 0.3669 | −0.0040 | 0.0217 | −0.2046 | 0.0599 | 0.2007 | 0.0877 | |||
λ | 0.0663 | 0.1081 | 0.0700 | 0.0228 | 0.0237 | 0.0136 | 0.1250 | 0.0422 | ||||
μ | −0.0992 | 0.0523 | 0.0291 | 0.0076 | 0.0111 | 0.0064 | 0.0483 | 0.0098 | ||||
3 | 18 | θ | 0.5092 | 1.9221 | 0.0080 | 0.0305 | −0.1726 | 0.0501 | 0.2506 | 0.1050 | ||
λ | 0.3326 | 0.9606 | 0.0735 | 0.0310 | 0.0137 | 0.0185 | 0.1457 | 0.0592 | ||||
μ | 0.0824 | 0.6279 | 0.0525 | 0.0285 | −0.0384 | 0.0244 | 0.1478 | 0.0515 | ||||
36 | θ | 0.5078 | 1.6119 | −0.0102 | 0.0288 | −0.1794 | 0.0557 | 0.2061 | 0.0890 | |||
λ | 0.1616 | 0.4712 | 0.0605 | 0.0205 | 0.0141 | 0.0125 | 0.1155 | 0.0384 | ||||
μ | −0.1025 | 0.3953 | 0.0420 | 0.0202 | −0.0253 | 0.0173 | 0.1148 | 0.0347 | ||||
72 | θ | 0.2890 | 0.8601 | 0.0153 | 0.0258 | −0.1438 | 0.0456 | 0.1954 | 0.0852 | |||
λ | 0.1577 | 0.3365 | 0.0457 | 0.0126 | 0.0110 | 0.0085 | 0.0859 | 0.0214 | ||||
μ | −0.1191 | 0.2653 | 0.0303 | 0.0143 | −0.0168 | 0.0124 | 0.0819 | 0.0222 | ||||
2.5 | 3 | 1.5 | 25 | θ | 0.1673 | 0.2920 | 0.0214 | 0.0349 | −0.1289 | 0.0440 | 0.1931 | 0.0851 |
λ | 0.0655 | 0.2715 | 0.0583 | 0.0413 | −0.2192 | 0.0717 | 0.4319 | 0.2470 | ||||
μ | −0.0706 | 0.0130 | 0.0096 | 0.0030 | −0.0003 | 0.0028 | 0.0200 | 0.0035 | ||||
50 | θ | 0.1272 | 0.2929 | 0.0052 | 0.0300 | −0.1103 | 0.0377 | 0.1358 | 0.0569 | |||
λ | −0.0082 | 0.3873 | 0.0608 | 0.0346 | −0.2113 | 0.0696 | 0.4016 | 0.2232 | ||||
μ | −0.0750 | 0.0140 | 0.0082 | 0.0018 | 0.0012 | 0.0017 | 0.0154 | 0.0021 | ||||
100 | θ | 0.0594 | 0.1784 | 0.0079 | 0.0242 | −0.0795 | 0.0279 | 0.1052 | 0.0402 | |||
λ | −0.0328 | 0.1994 | 0.0673 | 0.0342 | −0.1924 | 0.0679 | 0.3660 | 0.2040 | ||||
μ | −0.0757 | 0.0104 | 0.0072 | 0.0012 | 0.0020 | 0.0011 | 0.0126 | 0.0014 | ||||
3 | 25 | θ | 0.2481 | 0.6593 | 0.0152 | 0.0327 | −0.1301 | 0.0428 | 0.1812 | 0.0785 | ||
λ | 0.1061 | 1.0079 | 0.0592 | 0.0334 | −0.2194 | 0.0713 | 0.4094 | 0.2260 | ||||
μ | −0.1249 | 0.0834 | 0.0168 | 0.0094 | −0.0173 | 0.0089 | 0.0534 | 0.0126 | ||||
50 | θ | 0.2706 | 0.6202 | 0.0225 | 0.0294 | −0.0906 | 0.0328 | 0.1514 | 0.0599 | |||
λ | 0.0260 | 1.4909 | 0.0548 | 0.0329 | −0.2066 | 0.0665 | 0.3807 | 0.2055 | ||||
μ | −0.1487 | 0.1049 | 0.0099 | 0.0055 | −0.0144 | 0.0053 | 0.0357 | 0.0071 | ||||
100 | θ | 0.0456 | 0.2253 | 0.0104 | 0.0228 | −0.0730 | 0.0255 | 0.1028 | 0.0376 | |||
λ | 0.0900 | 0.4967 | 0.0505 | 0.0381 | −0.1873 | 0.0632 | 0.3413 | 0.1835 | ||||
μ | −0.1160 | 0.0491 | 0.0143 | 0.0040 | −0.0046 | 0.0037 | 0.0343 | 0.0053 |
Actual Values | 92% | MLE | SE | Linex (1.5) | Linex (−1.5) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
θ | λ | μ | r | A1 | A2 | A1 | A2 | A1 | A2 | A1 | A2 | |
0.75 | 0.75 | 1.5 | 23 | θ | 0.2771 | 0.4090 | 0.0642 | 0.0408 | 0.0004 | 0.0234 | 0.1447 | 0.0846 |
λ | 0.0188 | 0.1595 | 0.0442 | 0.0346 | −0.0282 | 0.0243 | 0.1342 | 0.0689 | ||||
μ | 0.0560 | 0.3329 | 0.0584 | 0.0314 | −0.0763 | 0.0264 | 0.2313 | 0.1010 | ||||
46 | θ | 0.1828 | 0.2053 | 0.0484 | 0.0245 | −0.0014 | 0.0147 | 0.1104 | 0.0481 | |||
λ | 0.0098 | 0.1275 | 0.0351 | 0.0237 | −0.0237 | 0.0180 | 0.1049 | 0.0423 | ||||
μ | −0.0211 | 0.2417 | 0.0521 | 0.0300 | −0.0698 | 0.0269 | 0.2063 | 0.0866 | ||||
92 | θ | 0.1419 | 0.1008 | 0.0469 | 0.0167 | 0.0072 | 0.0111 | 0.0946 | 0.0292 | |||
λ | −0.0483 | 0.0519 | 0.0148 | 0.0179 | −0.0320 | 0.0156 | 0.0688 | 0.0275 | ||||
μ | −0.1428 | 0.1024 | 0.0352 | 0.0299 | −0.0684 | 0.0252 | 0.1690 | 0.0734 | ||||
3 | 23 | θ | 0.2151 | 0.2894 | 0.0617 | 0.0321 | 0.0091 | 0.0203 | 0.1244 | 0.0576 | ||
λ | 0.0205 | 0.1263 | 0.0364 | 0.0306 | −0.0230 | 0.0233 | 0.1091 | 0.0528 | ||||
μ | 0.0013 | 0.6325 | −0.0030 | 0.0171 | −0.1733 | 0.0458 | 0.2462 | 0.0789 | ||||
46 | θ | 0.1585 | 0.1523 | 0.0359 | 0.0188 | 0.0000 | 0.0134 | 0.0779 | 0.0302 | |||
λ | −0.0173 | 0.0947 | 0.0153 | 0.0185 | −0.0264 | 0.0163 | 0.0632 | 0.0261 | ||||
μ | −0.1693 | 0.5722 | 0.0119 | 0.0133 | −0.1647 | 0.0391 | 0.2233 | 0.0689 | ||||
92 | θ | 0.0582 | 0.0486 | 0.0284 | 0.0101 | 0.0026 | 0.0075 | 0.0582 | 0.0154 | |||
λ | −0.0092 | 0.0325 | −0.0028 | 0.0114 | −0.0325 | 0.0112 | 0.0299 | 0.0139 | ||||
μ | −0.2088 | 0.1677 | 0.0274 | 0.0128 | −0.1557 | 0.0350 | 0.2016 | 0.0650 | ||||
2.5 | 0.75 | 1.5 | 23 | θ | 0.3981 | 1.1567 | −0.0084 | 0.0230 | −0.1999 | 0.0595 | 0.2340 | 0.0902 |
λ | 0.1605 | 0.4489 | 0.0867 | 0.0379 | 0.0198 | 0.0215 | 0.1677 | 0.0749 | ||||
μ | 0.0548 | 0.1127 | 0.0259 | 0.0130 | −0.0078 | 0.0116 | 0.0604 | 0.0170 | ||||
46 | θ | 0.1605 | 0.7225 | −0.0198 | 0.0299 | −0.2001 | 0.0649 | 0.2146 | 0.0942 | |||
λ | 0.1843 | 0.4394 | 0.0750 | 0.0290 | 0.0205 | 0.0160 | 0.1405 | 0.0574 | ||||
μ | 0.0575 | 0.0981 | 0.0280 | 0.0095 | 0.0054 | 0.0081 | 0.0518 | 0.0123 | ||||
92 | θ | 0.1464 | 0.3643 | −0.0223 | 0.0381 | −0.1846 | 0.0667 | 0.1824 | 0.0898 | |||
λ | 0.0385 | 0.0881 | 0.0654 | 0.0193 | 0.0235 | 0.0120 | 0.1145 | 0.0344 | ||||
μ | −0.0184 | 0.0246 | 0.0262 | 0.0061 | 0.0107 | 0.0051 | 0.0427 | 0.0078 | ||||
3 | 23 | θ | 0.3736 | 1.6311 | 0.0153 | 0.0258 | −0.1726 | 0.0501 | 0.2506 | 0.1050 | ||
λ | 0.2779 | 0.7124 | 0.0735 | 0.0310 | 0.0137 | 0.0185 | 0.1457 | 0.0592 | ||||
μ | 0.2332 | 0.6100 | 0.0525 | 0.0285 | −0.0384 | 0.0244 | 0.1478 | 0.0515 | ||||
46 | θ | 0.2855 | 1.1413 | −0.0102 | 0.0288 | −0.1794 | 0.0557 | 0.2061 | 0.0890 | |||
λ | 0.1626 | 0.4043 | 0.0605 | 0.0205 | 0.0141 | 0.0125 | 0.1155 | 0.0384 | ||||
μ | 0.1001 | 0.3464 | 0.0420 | 0.0202 | −0.0253 | 0.0173 | 0.1148 | 0.0347 | ||||
92 | θ | 0.0883 | 0.4866 | 0.0080 | 0.0305 | −0.1438 | 0.0456 | 0.1954 | 0.0852 | |||
λ | 0.1158 | 0.1885 | 0.0457 | 0.0126 | 0.0110 | 0.0085 | 0.0859 | 0.0214 | ||||
μ | 0.0375 | 0.1599 | 0.0303 | 0.0143 | −0.0168 | 0.0124 | 0.0819 | 0.0222 | ||||
2.5 | 3 | 1.5 | 23 | θ | 0.1444 | 0.1977 | 0.0214 | 0.0349 | −0.1289 | 0.0440 | 0.1931 | 0.0851 |
λ | 0.0864 | 0.2265 | 0.0583 | 0.0413 | −0.2192 | 0.0717 | 0.4319 | 0.2470 | ||||
μ | −0.0160 | 0.0064 | 0.0096 | 0.0030 | −0.0003 | 0.0028 | 0.0200 | 0.0035 | ||||
46 | θ | 0.0869 | 0.1790 | 0.0052 | 0.0300 | −0.1103 | 0.0377 | 0.1358 | 0.0569 | |||
λ | 0.0498 | 0.7040 | 0.0608 | 0.0346 | −0.2113 | 0.0696 | 0.4016 | 0.2232 | ||||
μ | −0.0191 | 0.0087 | 0.0082 | 0.0018 | 0.0012 | 0.0017 | 0.0154 | 0.0021 | ||||
92 | θ | 0.0357 | 0.0747 | 0.0079 | 0.0242 | −0.0795 | 0.0279 | 0.1052 | 0.0402 | |||
λ | 0.0123 | 0.1919 | 0.0673 | 0.0342 | −0.1924 | 0.0679 | 0.3660 | 0.2040 | ||||
μ | −0.0185 | 0.0042 | 0.0072 | 0.0012 | 0.0020 | 0.0011 | 0.0126 | 0.0014 | ||||
3 | 23 | θ | 0.2582 | 0.5492 | 0.0152 | 0.0327 | −0.1301 | 0.0428 | 0.1812 | 0.0785 | ||
λ | 0.0180 | 0.8181 | 0.0592 | 0.0334 | −0.2194 | 0.0713 | 0.4094 | 0.2260 | ||||
μ | −0.0433 | 0.0570 | 0.0168 | 0.0094 | −0.0173 | 0.0089 | 0.0534 | 0.0126 | ||||
46 | θ | 0.1864 | 0.4169 | 0.0225 | 0.0294 | −0.0906 | 0.0328 | 0.1514 | 0.0599 | |||
λ | 0.0838 | 1.2650 | 0.0548 | 0.0329 | −0.2066 | 0.0665 | 0.3807 | 0.2055 | ||||
μ | −0.0306 | 0.0774 | 0.0099 | 0.0055 | −0.0144 | 0.0053 | 0.0357 | 0.0071 | ||||
92 | θ | 0.0200 | 0.0984 | 0.0104 | 0.0228 | −0.0730 | 0.0255 | 0.1028 | 0.0376 | |||
λ | 0.0634 | 0.3010 | 0.0505 | 0.0381 | −0.1873 | 0.0632 | 0.3413 | 0.1835 | ||||
μ | −0.0210 | 0.0232 | 0.0143 | 0.0040 | −0.0046 | 0.0037 | 0.0343 | 0.0053 |
Models | Estimate | SE | KS | p-Value | AIC | BIC | CAIC | HQIC | |
---|---|---|---|---|---|---|---|---|---|
TCPWE | θ | 2.3783 | 0.9892 | 0.0412 | 0.9998 | 103.4639 | 110.1662 | 103.8331 | 106.1229 |
λ | 1.4261 | 0.9180 | |||||||
μ | 0.3761 | 0.0641 | |||||||
EOWE | θ | 3.2203 | 0.5172 | 0.0373 | 1.0000 | 103.5728 | 110.2751 | 103.9420 | 106.2319 |
λ | 0.2541 | 0.2718 | |||||||
μ | 0.3813 | 0.0199 | |||||||
MOAPE | θ | 55.9197 | 293.2785 | 0.0459 | 0.9987 | 104.2778 | 110.9801 | 104.6470 | 106.9368 |
λ | 3.5152 | 0.3813 | |||||||
μ | 96.3132 | 144.3345 | |||||||
TCPWL | θ | 2.8377 | 5.6730 | 0.0413 | 0.9998 | 105.4653 | 114.4017 | 106.0903 | 109.0107 |
λ | 1.2225 | 2.1030 | |||||||
α | 4.0945 | 50.6975 | |||||||
β | 10.3516 | 135.6950 | |||||||
WL | θ | 0.9256 | 0.7027 | 0.0468 | 0.9981 | 105.7308 | 114.6672 | 106.3558 | 109.2761 |
λ | 0.5624 | 0.6318 | |||||||
α | 0.0143 | 0.0158 | |||||||
β | 3.9952 | 1.6194 | |||||||
KGL | θ | 6.2960 | 0.8903 | 0.0560 | 0.9819 | 106.7560 | 115.6924 | 107.3810 | 110.3013 |
λ | 2.1020 | 0.3498 | |||||||
α | 75.7266 | 2.5650 | |||||||
β | 4.6674 | 2.0705 | |||||||
EL | θ | 17.6259 | 4.8090 | 0.1050 | 0.4326 | 117.6830 | 124.3853 | 118.0522 | 120.3420 |
λ | 92.8774 | 115.6929 | |||||||
α | 45.3783 | 58.0310 | |||||||
TCPWR | θ | 0.7266 | 0.8309 | 0.0494 | 0.9960 | 103.6717 | 110.3740 | 104.0409 | 106.3307 |
λ | 2.7926 | 4.0763 | |||||||
α | 1.2808 | 0.7316 | |||||||
WR | θ | 19.2484 | 27.7688 | 0.0541 | 0.9876 | 104.1163 | 110.8186 | 104.4855 | 106.7753 |
λ | 1.7616 | 0.1786 | |||||||
α | 0.0955 | 0.0636 |
Models | ESstimate | SE | KS | p-Value | AIC | BIC | CAIC | HQIC | |
---|---|---|---|---|---|---|---|---|---|
TCPWE | θ | 1.7095 | 0.7385 | 0.0678 | 0.7420 | 918.0491 | 925.8945 | 918.2965 | 921.2252 |
λ | 7.5045 | 7.5800 | |||||||
μ | 0.0071 | 0.0021 | |||||||
EOWE | θ | 3.0236 | 5.0160 | 0.4987 | 0.0000 | 1200.104 | 1207.949 | 1200.351 | 1203.280 |
λ | 405.1360 | 298.4960 | |||||||
μ | 0.9993 | 1.6577 | |||||||
MOAPE | θ | 225.6350 | 202.8139 | 0.1048 | 0.2171 | 928.8386 | 936.6840 | 929.0860 | 932.0146 |
λ | 0.0603 | 0.0030 | |||||||
μ | 503.0672 | 191.5924 | |||||||
TCPWL | θ | 0.2180 | 0.0061 | 0.0754 | 0.6134 | 920.1862 | 930.6466 | 920.6028 | 924.4209 |
λ | 60.2052 | 10.7849 | |||||||
α | 51,571.90 | 15.8489 | |||||||
β | 1,033,343.00 | 220.2400 | |||||||
WL | θ | 0.3111 | 0.2568 | 0.0879 | 0.4165 | 930.5195 | 940.9800 | 930.9362 | 934.7542 |
λ | 7.2225 | 14.3614 | |||||||
α | 0.0041 | 0.0012 | |||||||
β | 12.2378 | 8.1955 | |||||||
KGL | θ | 64.5972 | 124.9319 | 0.0686 | 0.7294 | 920.2581 | 930.7186 | 920.6747 | 924.4928 |
λ | 2.6755 | 5.7419 | |||||||
α | 29.6256 | 97.4609 | |||||||
β | 69.1492 | 275.2303 | |||||||
EL | θ | 393.2583 | 149.6097 | 0.1080 | 0.1895 | 936.2868 | 944.1322 | 936.5343 | 939.4629 |
λ | 23.7057 | 8.4717 | |||||||
α | 427.2967 | 182.3217 | |||||||
TCPWR | θ | 0.7207 | 0.3161 | 0.0825 | 0.4978 | 921.6639 | 929.5092 | 921.9113 | 924.8399 |
λ | 7.1800 | 4.1117 | |||||||
α | 81.5052 | 17.9941 | |||||||
WR | θ | 0.0700 | 0.0151 | 0.1744 | 0.0043 | 984.5768 | 992.4222 | 984.8242 | 987.7529 |
λ | 0.0091 | NA | |||||||
α | 0.0268 | NA |
Models | Estimate | SE | KS | p-value | W* | A* | |
---|---|---|---|---|---|---|---|
TCPWL | θ | 0.6209 | 1.0231 | 0.0603 | 0.9721 | 0.0366 | 0.2655 |
λ | 2.8853 | 6.2750 | |||||
α | 1.1977 | 1.8145 | |||||
β | 0.0595 | 0.0699 | |||||
TCPWE | θ | 0.6793 | 0.2268 | 0.1275 | 0.2439 | 0.1711 | 1.0671 |
λ | 1.3876 | 0.5961 | |||||
μ | 5.7589 | 2.0393 | |||||
EOWE | θ | 1.5284 | 0.3312 | 0.0644 | 0.9449 | 0.0350 | 0.2606 |
λ | 2.2339 | 1.1390 | |||||
μ | 12.2319 | 3.1705 | |||||
MOAPE | θ | 0.0281 | 0.0448 | 0.0688 | 0.9108 | 0.0614 | 0.4070 |
λ | 8.1985 | 3.2236 | |||||
μ | 4.7871 | 3.1396 | |||||
WL | θ | 0.4588 | 0.3544 | 0.0692 | 0.9074 | 0.0506 | 0.3384 |
λ | 0.0152 | 0.0136 | |||||
α | 0.4747 | 0.9199 | |||||
β | 1.6473 | 0.5565 | |||||
KGL | θ | 1.8595 | 0.8224 | 0.0618 | 0.9603 | 0.0369 | 0.2684 |
λ | 14.5270 | 17.2031 | |||||
α | 0.3996 | 0.3684 | |||||
β | 0.4219 | 0.5482 | |||||
EL | θ | 1.6154 | 0.4811 | 0.0617 | 0.9605 | 0.0381 | 0.2748 |
λ | 5.0903 | 4.9801 | |||||
α | 0.3175 | 0.4248 | |||||
TCPWR | θ | 0.5488 | 0.1654 | 0.1671 | 0.0556 | 0.2212 | 1.3786 |
λ | 0.7289 | 0.2669 | |||||
α | −0.1795 | 0.0316 | |||||
WR | θ | 9.7459 | 21.8817 | 0.0899 | 0.6651 | 0.0994 | 0.6295 |
λ | 0.5423 | 0.0617 | |||||
α | 2.4385 | 9.1924 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, N.; Elbatal, I.; Almetwally, E.M.; Alyami, S.A.; Al-Moisheer, A.S.; Elgarhy, M. Truncated Cauchy Power Weibull-G Class of Distributions: Bayesian and Non-Bayesian Inference Modelling for COVID-19 and Carbon Fiber Data. Mathematics 2022, 10, 1565. https://doi.org/10.3390/math10091565
Alotaibi N, Elbatal I, Almetwally EM, Alyami SA, Al-Moisheer AS, Elgarhy M. Truncated Cauchy Power Weibull-G Class of Distributions: Bayesian and Non-Bayesian Inference Modelling for COVID-19 and Carbon Fiber Data. Mathematics. 2022; 10(9):1565. https://doi.org/10.3390/math10091565
Chicago/Turabian StyleAlotaibi, Naif, Ibrahim Elbatal, Ehab M. Almetwally, Salem A. Alyami, A. S. Al-Moisheer, and Mohammed Elgarhy. 2022. "Truncated Cauchy Power Weibull-G Class of Distributions: Bayesian and Non-Bayesian Inference Modelling for COVID-19 and Carbon Fiber Data" Mathematics 10, no. 9: 1565. https://doi.org/10.3390/math10091565
APA StyleAlotaibi, N., Elbatal, I., Almetwally, E. M., Alyami, S. A., Al-Moisheer, A. S., & Elgarhy, M. (2022). Truncated Cauchy Power Weibull-G Class of Distributions: Bayesian and Non-Bayesian Inference Modelling for COVID-19 and Carbon Fiber Data. Mathematics, 10(9), 1565. https://doi.org/10.3390/math10091565