Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization
<p>The sum of the error of five-fold cross-validation between the proposed estimation and the population covariance matrix under the different <math display="inline"><semantics> <mi>θ</mi> </semantics></math> and <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Thesum of the error of the five-fold cross-validation between the proposed estimation and the population covariance matrix under the different <math display="inline"><semantics> <mi>θ</mi> </semantics></math> and <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>The sum of the error of the five-fold cross-validation between the proposed estimation and the population covariance matrix under the different <math display="inline"><semantics> <mi>θ</mi> </semantics></math> and <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>The mean return of the out-of-sample data for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>The mean return of the out-of-sample data range from the 101st asset to the 200th asset.</p> "> Figure 6
<p>The mean return of the out-of-sample data range from the 201st asset to the 400th asset.</p> "> Figure 7
<p>The assets’ weights of each estimation under the out-of-sample data <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>The assets’ weights of each estimation under the out-of-sample data for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>The assets’ weights of the identity matrix under the out-of-sample data <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>400</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
- A new large covariance matrix estimator is proposed by constructing a convex combination of the linear shrinkage estimation and the rotation-invariant estimator under the Frobenius norm.
- Our new covariance matrix estimator improves the impact of the sample noise on the covariance matrix by adjusting the parameters of the convex combination in financial data.
- The proposed estimator has better performance and lower out- of-sample risk in portfolio optimization.
2. Preliminaries
2.1. The Rotation-Invariant Estimator
- Step 1: Calculate the Stieltjes transform of the empirical spectral measure of fromThe function (4) contains all the information about the eigenvalues of the matrix , which has the same nonzero eigenvalues as .
- Step 2: Update (4) based on the nonzero eigenvalues of and , i.e.,
- Step 3: Calculate the function of the ith eigenvalue of S from
- Step 4: Output the resulting covariance matrix estimator fromis an orthogonal matrix, whose columns are the corresponding eigenvectors, with the eigenvalue of the rotation-invariant estimator defined by
2.2. Improved Covariance Estimator Based on Eigenvalue Clipping
3. Proposed Estimator and Application in Portfolio Optimization
3.1. Proposed Estimator
- Step 0: Input the sample data , and set .
- Step 2: Calculate from (20), and denote for , where M and P are the numbers of and taken between 0 and 1, respectively.
- Step 3: Calculate the error:
- Step 4: Repeat Steps 1–3 in the cross-validation until the folds .
- Step 5: Find the optimal parameters and in the convex combination from the corresponding smallest error sum given by
- Step 6: Output the proposed estimation from (21).
3.2. Minimum Variance Portfolio Optimization
- Step 0: Input the returns of the current in-sample and out-of-sample data , the expected return , and the estimation of the covariance matrix .
- Step 1: Set , and solve the optimal weight vector from Model (22) by the quadratic optimizer called quadprog in Matlab.
- Step 2: Calculate the out-of-sample from (21), and obtain the out-of-sample standard deviation:
4. Numerical Simulation and Empirical Research
4.1. Numerical Simulation
4.2. Empirical Research
- Step 0: Input the sample data; divide the data into in-sample data and out-of-sample data .
- Step 1: Calculate , , and based on the in-sample data.
- Step 2: Set five-fold cross-validation; calculate the from (20) for parameters between 0 and 1; implement the minimum variance portfolio (22), where takes a value from the minimum to maximum mean return; solve the corresponding weight vector x by multiple times of iteration over the values of both and in the convex optimization.
- Step 3: Calculate the standard deviation based on the out-of-sample data, and record the out-of-sample risk in each iteration.
- Step 4: Calculate the optimal parameters , when the sum of of the five-fold cross-validation achieves the minimum.
- Step 5: Implement the minimum variance portfolio (22) to obtain the assets’ weights, the average return , and the out-of-sample risk when satisfying the minimum 0.002 return constraints under the and .
- Step 6: Calculate the Sharpe ratio, where the risk-free interest is set as .
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, J.; Bai, Z.D. A review of 20 years of naive tests of significance for high-dimensional mean vectors and covariance matrices. Sci. China Math. 2016, 59, 2281–2300. [Google Scholar] [CrossRef] [Green Version]
- Tong, T.; Wang, C.; Wang, T. Estimation of variances and covariances for high-dimensional data: A selective review. Wiley Interdiscip. Rev. Comput. Stat. 2014, 6, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Engel, J.; Buydens, L.; Blanchet, L. An overview of large-dimensional covariance and precision matrix estimators with applications in chemometrics. J. Chemom. 2017, 31, e2880. [Google Scholar] [CrossRef]
- Sun, R.; Ma, T.; Liu, S.; Sathye, M. Improved covariance matrix estimation for portfolio risk measurement: A review. J. Risk Financ. Manag. 2019, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Liao, Y.; Liu, H. An overview of the estimation of large covariance and precision matrices. Econom. J. 2016, 19, C1–C32. [Google Scholar] [CrossRef]
- Rachev, S.T. Handbook of Heavy Tailed Distributions in Finance; Elsevier: North Holland, The Netherlands, 2003. [Google Scholar]
- Yuan, X.; Yu, W.Q.; Yin, Z.X.; Wang, G.Q. Improved large dynamic covariance matrix estimation with graphical lasso and its application in portfolio selection. IEEE Access 2020, 8, 189179–189188. [Google Scholar] [CrossRef]
- Ledoit, O.; Wolf, M. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J. Empir. Financ. 2003, 10, 603–621. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Fan, Y.; Lv, J. High dimensional covariance matrix estimation using a factor model. J. Econ. 2008, 147, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.F.; Huang, J.C.; Wen, Z.W. High dimensional covariance matrix estimation using multi-factor models from incomplete information. Sci. China Math. 2015, 58, 829–844. [Google Scholar] [CrossRef]
- Liu, H.; Han, F.; Yuan, M.; Lafferty, J.; Wasserman, L. High-dimensional semiparametric Gaussian copula graphical models. Ann. Stat. 2012, 40, 2293–2326. [Google Scholar] [CrossRef]
- Stein, C. Lectures on the theory of estimation of many parameters. J. Sov. Math. 1986, 34, 1373–1403. [Google Scholar] [CrossRef]
- Ledoit, O.; Wolf, M. Honey, I shrunk the sample covariance matrix. J. Portfolio Manag. 2004, 30, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Ledoit, O.; Wolf, M. A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 2004, 88, 365–411. [Google Scholar] [CrossRef] [Green Version]
- Ledoit, O.; Wolf, M. Nonlinear shrinkage estimation of large-dimensional covariance matrices. Ann. Stat. 2012, 40, 1024–1060. [Google Scholar] [CrossRef]
- Ledoit, O.; Wolf, M. Optimal estimation of a large-dimensional covariance matrix under stein’s loss. Bernoulli 2018, 24, 3791–3832. [Google Scholar] [CrossRef] [Green Version]
- Ledoit, O.; Wolf, M. The power of (non-) linear shrinking: A review and guide to covariance matrix estimation. J. Financ. Econ. 2022, 20, 187–218. [Google Scholar] [CrossRef]
- Ledoit, O.; Wolf, M. Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz meets Goldilocks. Rev. Financ. Stud. 2017, 30, 4349–4388. [Google Scholar] [CrossRef] [Green Version]
- Bickel, P.J.; Levina, E. Covariance regularization by thresholding. Ann. Stat. 2008, 36, 2577–2604. [Google Scholar] [CrossRef]
- Rothman, A.; Levina, E.; Zhu, J. Generalized thresholding of large covariance matrices. J. Am. Stat. Assoc. 2009, 104, 177–186. [Google Scholar] [CrossRef]
- Rothman, A.J. Positive definite estimators of large covariance matrices. Biometrika 2012, 99, 733–740. [Google Scholar] [CrossRef]
- Zhou, S.L.; Xiu, N.H.; Luo, Z.Y.; Kong, L.C. Sparse and low-rank covariance matrix estimation. J. Oper. Res. Soc. China 2015, 3, 231–250. [Google Scholar] [CrossRef]
- Xue, L.Z.; Ma, S.Q.; Zou, H. Positive-definite l1-penalized estimation of large covariance matrices. J. Am. Stat. Assoc. 2012, 107, 1480–1491. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, L.; Zhao, T. Sparse covariance matrix estimation with eigenvalue constraints. Comput. Graph. Stat. 2014, 23, 439–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, F.; Yang, Y.; Liu, P.; Qiu, R.C. Positive definite estimation of large covariance matrix using generalized non-convex penalties. IEEE Access 2016, 4, 4168–4182. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008, 9, 432–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finegold, M.; Drton, M. Robust graphical modeling of gene networks using classical and alternative t-distributions. Ann. Appl. Stat. 2011, 5, 1057–1080. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.M. Alternating direction method for covariance selection model. J. Sci. Comput. 2012, 51, 261–273. [Google Scholar] [CrossRef]
- Li, P.L.; Xiao, Y.H. An efficient algorithm for sparse inverse covariance matrix estimation based on dual formulation. Comput. Stat. Data Anal. 2018, 128, 292–307. [Google Scholar] [CrossRef]
- Yuan, M.; Lin, Y. Model selection and estimation in the Gaussian graphical model. Biometrika 2007, 94, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.F.; Sun, D.F.; Toh, K.C. A proximal point algorithm for log-determinant optimization with group lasso regularization. SIAM J. Optim. 2013, 23, 857–893. [Google Scholar] [CrossRef]
- Bun, J.; Bouchaud, J.-P.; Potters, M. Cleaning large correlation matrices: Tools from random matrix theory. Phys. Rep. 2017, 666, 1–9. [Google Scholar] [CrossRef]
- Deshmukh, S.; Dubey, A. Improved covariance matrix estimation with an application in portfolio optimization. IEEE Signal Process. Lett. 2020, 27, 985–989. [Google Scholar] [CrossRef]
- Ledoit, O.; Wolf, M. Quadratic shrinkage for large covariance matrices. Bernoulli 2022, 28, 1519–1547. [Google Scholar] [CrossRef]
- Donoho, D.; Gavish, M.; Johnstone, I. Optimal shrinkage of eigenvalues in the spiked covariance model. Ann. Stat. 2018, 46, 1742–1778. [Google Scholar] [CrossRef]
- Bu, J.; Allez, R.; Bouchaud, J.P.; Potters, M. Rotational invariant estimator for general noisy matri-ces. IEEE Trans. Inf. Theory 2016, 62, 7475–7490. [Google Scholar]
- Paul, D.; Aue, A. Random matrix theory in statistics: A review. J. Stat. Plan. Inference 2014, 150, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Haff, L.R. Empirical Bayes estimation of the multivariate normal covariance matrix. Ann. Stat. 1980, 8, 586–597. [Google Scholar] [CrossRef]
- Markowitz, H. Portfolio Selection. J. Finance 1952, 7, 77–91. [Google Scholar]
- DeMiguel, V.; Garlappi, L.; Nogales, F.J.; Uppal, R. A generalized approach to portfolio optimization: Improving performance by constraining portfolion norms. Manag. Sci. 2009, 55, 798–812. [Google Scholar] [CrossRef] [Green Version]
- Engle, R.F.; Ledoit, O.; Wolf, M. Large dynamic covariance matrices. J. Bus. Econom. Stat. 2019, 37, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Bollerslev, T.R.; Engle, R.; Nelson, D. A captial asset pricing model with time varying covariances. J. Polit. Econ. 1988, 96, 116–131. [Google Scholar] [CrossRef]
- Ledoit, O.; Peche, S. Eigenvectors of some large sample covariance matrix ensembles. Probab. Theory Relat. Fields 2011, 151, 233–264. [Google Scholar] [CrossRef]
- Ledoit, O.; Wolf, M. Robust performances hypothesis testing with the variance. Wilmott 2011, 2011, 86–89. [Google Scholar] [CrossRef]
Author | Brief Introduction | Ref. |
---|---|---|
Ledoit, O., Wolf, M. | Under the assumption of the large dimension asymptotic, Ledoit and Wolf kept the eigenvectors of the sample covariance matrix and shrunk the inverse sample eigenvalues to construct a rotation-invariant estimator of the large covariance matrix. | [34] |
Donoho et al. | Based on spiked covariance and the rotation-invariant estimator, Donoho et al. demonstrated that the optimal estimation of the population covariance matrix is related to the best shrinker, which acts as an element of the sample eigenvalues. | [35] |
J. Bun et al. | J. Bun et al. established the asymptotic global law estimate model for three general classes of noisy matrices using the replica method and introduced how to “clean” the noisy eigenvalues of the noisy observation matrix. | [36] |
Debashis Paul, Alexander Aue | Debashis Paul and Alexander Aue summarized the random matrix theory (RMT) and described how the development of high-dimensional statistical inference theory and practice is affected by the corresponding development in the RMT field. | [37] |
N | Error | ||
---|---|---|---|
100 | 0.3333 | 0.3636 | 0.0273 |
200 | 0.3434 | 0.3939 | 0.0515 |
400 | 0.3939 | 0.4040 | 0.1080 |
N | ||||||
---|---|---|---|---|---|---|
100 | 0.0132 | 9.9927 | 0.0121 | 0.0128 | 0.0117 | 0.0055 |
200 | 0.0291 | 14.1313 | 0.0261 | 0.0282 | 0.0256 | 0.0103 |
400 | 0.0580 | 19.9842 | 0.0508 | 0.0560 | 0.0498 | 0.0216 |
N | ||||||
---|---|---|---|---|---|---|
100 | 0.0011 | 0.9694 | 0.0011 | 0.0010 | 8.0298 * | 7.0942 * |
200 | 7.8576 * | 0.3956 | 7.9096 * | 7.7615 * | 6.7529 * | 5.9007 * |
400 | 3.8828 * | 0.1077 | 4.2676 * | 3.8435 * | 3.7395 * | 3.1368 * |
Index | Average Return * | Standard Deviation * | Sharpe Ratio |
---|---|---|---|
50.40 | 27.98 | 1.7390 | |
50.40 | 27.53 | 1.7399 | |
50.40 | 28.00 | 1.7375 | |
50.40 | 27.95 | 1.7400 | |
50.40 | 27.96 | 2.7399 | |
50.40 | 27.97 | 1.7391 |
Index | Average Return * | Standard Deviation * | Sharpe Ratio |
---|---|---|---|
50.40 | 18.69 | 2.6031 | |
50.40 | 20.28 | 2.3990 | |
50.40 | 18.70 | 2.6017 | |
50.40 | 17.79 | 2.7340 | |
50.40 | 17.81 | 2.7314 | |
50.40 | 18.68 | 2.6044 |
Index | Average Return * | Standard Deviation * | Sharpe Ratio |
---|---|---|---|
50.40 | 21.25 | 2.2899 | |
50.40 | 23.04 | 2.1115 | |
50.40 | 21.24 | 2.2909 | |
50.40 | 21.22 | 2.2927 | |
50.40 | 21.18 | 2.2970 | |
50.40 | 20.87 | 2.3315 |
Number of Assets | |||||
---|---|---|---|---|---|
41 | −0.0001 | 0.0350 | −0.0019 | 0.0011 | 0.0010 |
218 | −0.0000 | −0.1607 | −0.0010 | 0.0986 | 0.0966 |
426 | −0.0363 | −0.1979 | −0.0350 | −0.0342 | −0.0303 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Tao, J.; Yin, Z.; Wang, G. Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization. Mathematics 2022, 10, 4282. https://doi.org/10.3390/math10224282
Zhang Y, Tao J, Yin Z, Wang G. Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization. Mathematics. 2022; 10(22):4282. https://doi.org/10.3390/math10224282
Chicago/Turabian StyleZhang, Yan, Jiyuan Tao, Zhixiang Yin, and Guoqiang Wang. 2022. "Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization" Mathematics 10, no. 22: 4282. https://doi.org/10.3390/math10224282
APA StyleZhang, Y., Tao, J., Yin, Z., & Wang, G. (2022). Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization. Mathematics, 10(22), 4282. https://doi.org/10.3390/math10224282