Circulating Factors as Potential Biomarkers of Cardiovascular Damage Progression Associated with Type 2 Diabetes
"> Figure 1
<p>Box plots showing the distribution of the Normalized Protein eXpression (NPX) Units for proteins which significantly differ among groups. See <a href="#proteomes-12-00029-t001" class="html-table">Table 1</a> also for specifications and paired comparisons. Each box extends from the first quartile to the third quartile (interquartile range, IQR), while the horizontal line within each box represents the median. Whiskers extend to 1.5 × IQR. Yellow lozenge represents the mean.</p> "> Figure 2
<p>Biplot from PCA analysis on the six identified significant proteins. When vectors show a small angle, then the corresponding variables are positively correlated, while when the vectors are at 90°, they are not likely correlated. The biplot illustrates in a bidimensional space the multivariate distribution of the proteins, represented as vectors, together the points relative to the subjects investigated. Red dots: DC group; green: DN group; blue: NC group. The left and bottom axes show principal component scores; the top and right axes indicate the loadings. Further details about the structure of the PCA biplot can be found in [<a href="#B13-proteomes-12-00029" class="html-bibr">13</a>].</p> "> Figure 3
<p>Linear correlation between the six identified significant proteins. Axes represent NPX units. The scatterplot shows all the pairwise comparisons, with the corresponding correlation coefficient <span class="html-italic">r</span>, represented also with a colored circle proportional to the degree of correlation. Red dots: DC group; green: DN group; blue: NC group.</p> "> Figure 4
<p>ROC analysis of the performance of the six identified proteins to distinguish between the three groups of patients. The black line is the ROC curve plot while the yellow line represents the tangent to the threshold point that maximizes the sum of sensitivity and specificity.</p> "> Figure 5
<p>Schematic representation of how the identified proteins can act as pathophysiological factors leading to cardiovascular complications of diabetes. The color assigned to the proteins indicates similar behavior of the plasma profile in our subjects.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Recruitment
2.2. Sample Preparation
2.3. Circulating Proteome Profiling and Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aronson, D.; Edelman, E.R. Coronary artery disease and diabetes mellitus. Cardiol. Clin. 2014, 32, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Donahoe, S.M.; Stewart, G.C.; McCabe, C.H.; Mohanavelu, S.; Murphy, S.A.; Cannon, C.P.; Antman, E.M. Diabetes and mortality following acute coronary syndromes. JAMA 2007, 298, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Zareini, B.; Blanche, P.; D’Souza, M.; Elmegaard Malik, M.; Nørgaard, C.H.; Selmer, C.; Gislason, G.; Kristensen, S.L.; Køber, L.; Torp-Pedersen, C.; et al. Type 2 Diabetes Mellitus and Impact of Heart Failure on Prognosis Compared to Other Cardiovascular Diseases: A Nationwide Study. Circ. Cardiovasc. Qual. Outcomes 2020, 13, e006260. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.D.; Langenberg, C.; Rapsomaniki, E.; Denaxas, S.; Pujades-Rodriguez, M.; Gale, C.P.; Deanfield, J.; Smeeth, L.; Timmis, A.; Hemingway, H. Type 2 diabetes and incidence of cardiovascular diseases: A cohort study in 1·9 million people. Lancet Diabetes Endocrinol. 2015, 3, 105–113. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Shaper, A.G.; Lennon, L. Cardiovascular disease incidence and mortality in older men with diabetes and in men with coronary heart disease. Heart 2004, 90, 1398–1403. [Google Scholar] [CrossRef]
- Taqui, S.; Daniels, L.B. Putting it into perspective: Multimarker panels for cardiovascular disease risk assessment. Biomark. Med. 2013, 7, 317–327. [Google Scholar] [CrossRef]
- Ho, J.E.; Lyass, A.; Courchesne, P.; Chen, G.; Liu, C.; Yin, X.; Hwang, S.J.; Massaro, J.M.; Larson, M.G.; Levy, D. Protein Biomarkers of Cardiovascular Disease and Mortality in the Community. J. Am. Heart Assoc. 2018, 7, e008108. [Google Scholar] [CrossRef]
- Núñez, E.; Fuster, V.; Gómez-Serrano, M.; Valdivielso, J.M.; Fernández-Alvira, J.M.; Martínez-López, D.; Rodríguez, J.M.; Bonzon-Kulichenko, E.; Calvo, E.; Alfayate, A.; et al. Unbiased plasma proteomics discovery of biomarkers for improved detection of subclinical atherosclerosis. eBioMedicine 2022, 76, 103874. [Google Scholar] [CrossRef]
- Piarulli, F.; Banfi, C.; Ragazzi, E.; Gianazza, E.; Munno, M.; Carollo, M.; Traldi, P.; Lapolla, A.; Sartore, G. Multiplexed MRM-based proteomics for identification of circulating proteins as biomarkers of cardiovascular damage progression associated with diabetes mellitus. Cardiovasc. Diabetol. 2024, 23, 36. [Google Scholar] [CrossRef]
- Petrera, A.; von Toerne, C.; Behler, J.; Huth, C.; Thorand, B.; Hilgendorff, A.; Hauck, S.M. Multiplatform Approach for Plasma Proteomics: Complementarity of Olink Proximity Extension Assay Technology to Mass Spectrometry-Based Protein Profiling. J. Proteome Res. 2021, 20, 751–762. [Google Scholar] [CrossRef]
- Piarulli, F.; Banfi, C.; Brioschi, M.; Altomare, A.; Ragazzi, E.; Cosma, C.; Sartore, G.; Lapolla, A. The Burden of Impaired Serum Albumin Antioxidant Properties and Glyco-Oxidation in Coronary Heart Disease Patients with and without Type 2 Diabetes Mellitus. Antioxidants 2022, 11, 1501. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Zhou, G.; Ewald, J.; Chang, L.; Hacariz, O.; Basu, N.; Xia, J. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 2022, 17, 1735–1761. [Google Scholar] [CrossRef] [PubMed]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; Iodice D’Enza, A.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Primers 2022, 2, 100. [Google Scholar] [CrossRef]
- Graham, T.H. Prolylcarboxypeptidase (PrCP) inhibitors and the therapeutic uses thereof: A patent review. Expert Opin. Ther. Pat. 2017, 27, 1077–1088. [Google Scholar] [CrossRef]
- Dielis, A.W.; Smid, M.; Spronk, H.M.; Hamulyak, K.; Kroon, A.A.; ten Cate, H.; de Leeuw, P.W. The prothrombotic paradox of hypertension: Role of the renin-angiotensin and kallikrein-kinin systems. Hypertension 2005, 46, 1236–1242. [Google Scholar] [CrossRef]
- De Hert, E.; Verboven, K.; Wouters, K.; Jocken, J.W.E.; De Meester, I. Prolyl Carboxypeptidase Activity Is Present in Human Adipose Tissue and Is Elevated in Serum of Obese Men with Type 2 Diabetes. Int. J. Mol. Sci. 2022, 23, 13529. [Google Scholar] [CrossRef]
- Tabrizian, T.; Hataway, F.; Murray, D.; Shariat-Madar, Z. Prolylcarboxypeptidase gene expression in the heart and kidney: Effects of obesity and diabetes. Cardiovasc. Hematol. Agents Med. Chem. 2015, 13, 113–123. [Google Scholar] [CrossRef]
- Xu, J.; Yin, L.; Xu, Y.; Li, Y.; Zalzala, M.; Cheng, G.; Zhang, Y. Hepatic carboxylesterase 1 is induced by glucose and regulates postprandial glucose levels. PLoS ONE 2014, 9, e109663. [Google Scholar] [CrossRef]
- Chen, R.; Wang, Y.; Ning, R.; Hu, J.; Liu, W.; Xiong, J.; Wu, L.; Liu, J.; Hu, G.; Yang, J. Decreased carboxylesterases expression and hydrolytic activity in type 2 diabetic mice through Akt/mTOR/HIF-1α/Stra13 pathway. Xenobiotica 2015, 45, 782–793. [Google Scholar] [CrossRef]
- Gudmundsdottir, V.; Zaghlool, S.B.; Emilsson, V.; Aspelund, T.; Ilkov, M.; Gudmundsson, E.F.; Jonsson, S.M.; Zilhão, N.R.; Lamb, J.R.; Suhre, K.; et al. Circulating Protein Signatures and Causal Candidates for Type 2 Diabetes. Diabetes 2020, 69, 1843–1853. [Google Scholar] [CrossRef]
- Steffen, B.T.; Tang, W.; Lutsey, P.L.; Demmer, R.T.; Selvin, E.; Matsushita, K.; Morrison, A.C.; Guan, W.; Rooney, M.R.; Norby, F.L.; et al. Proteomic analysis of diabetes genetic risk scores identifies complement C2 and neuropilin-2 as predictors of type 2 diabetes: The Atherosclerosis Risk in Communities (ARIC) Study. Diabetologia 2023, 66, 105–115. [Google Scholar] [CrossRef]
- Shim, K.; Begum, R.; Yang, C.; Wang, H. Complement activation in obesity, insulin resistance, and type 2 diabetes mellitus. World J. Diabetes 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Montoya, M.C.; Sancho, D.; Bonello, G.; Collette, Y.; Langlet, C.; He, H.T.; Aparicio, P.; Alcover, A.; Olive, D.; Sánchez-Madrid, F. Role of ICAM-3 in the initial interaction of T lymphocytes and APCs. Nat Immunol. 2002, 3, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Acquatella-Tran Van Ba, I.; Marchal, S.; François, F.; Silhol, M.; Lleres, C.; Michel, B.; Benyamin, Y.; Verdier, J.M.; Trousse, F.; Marcilhac, A. Regenerating islet-derived 1α (Reg-1α) protein is new neuronal secreted factor that stimulates neurite outgrowth via exostosin Tumor-like 3 (EXTL3) receptor. J. Biol. Chem. 2012, 287, 4726–4739. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, H.; Yang, G.; Xiang, J.; Xiong, L.; Zhao, L.; Liao, T.; Zhao, X.; Kang, L.; Yang, S.; et al. REG1A and RUNX3 Are Potential Biomarkers for Predicting the Risk of Diabetic Kidney Disease. Front. Endocrinol. 2022, 13, 935796. [Google Scholar] [CrossRef]
- IGLC2 Immunoglobulin Lambda Constant 2 [Homo sapiens (Human)] Gene ID: 3538. Available online: https://www.ncbi.nlm.nih.gov/gene/3538 (accessed on 30 September 2024).
- Osuna-Martinez, U.; Aviña-Padilla, K.; Olimon-Andalon, V.; Angulo-Rojo, C.; Guadron-Llanos, A.; Rivas-Ferreira, J.C.; Urrea, F.; Calderon-Zamora, L. In Silico Prediction of Hub Genes Involved in Diabetic Kidney and COVID-19 Related Disease by Differential Gene Expression and Interactome Analysis. Genes 2022, 13, 2412. [Google Scholar] [CrossRef]
- Devaraj, S.; Dasu, M.R.; Jialal, I. Diabetes is a proinflammatory state: A translational perspective. Expert Rev. Endocrinol. Metab. 2010, 5, 19–28. [Google Scholar] [CrossRef]
- Beckman, J.A.; Creager, M.A.; Libby, P. Diabetes and atherosclerosis: Epidemiology, pathophysiology, and management. JAMA 2002, 287, 2570–2581. [Google Scholar] [CrossRef]
- Janka, H.U. Metabolisches Syndrom und Typ-II-Diabetes. Beziehungen zur Makroangiopathie [Metabolic syndrome and type-II diabetes. Relations to macroangiopathy]. Fortschr. Med. 1992, 110, 637–641. [Google Scholar]
Protein UNIPROT Code | Protein Name (and Abbreviation) | ANOVA F Value | ANOVA p | −log10(p) | FDR | Fisher’s LSD Paired Comparisons | Tukey’s HSD Paired Comparisons |
---|---|---|---|---|---|---|---|
P05451 | Lithostathine-1-alpha (REG1A) | 12.229 | 2.12 × 10−5 | 4.6741 | 0.002 | DC-DN; DC-NC; DN-NC | NC-DC; NC-DN |
P23141 | Liver carboxylesterase 1 (CES1) | 10.625 | 7.52 × 10−5 | 4.1236 | 0.003 | DN-DC; DN-NC | DN-DC; NC-DN |
P0DOY2 | Immunoglobulin lambda constant 2 (IGLC2) | 7.7751 | 0.000787 | 3.1038 | 0.020 | DC-DN; DC-NC | NC-DC |
P42785 | Lysosomal Pro-X carboxypeptidase (PRCP) | 7.6633 | 0.000866 | 3.0627 | 0.020 | DN-DC; DN-NC | DN-DC; NC-DN |
P06681 | Complement (C2) | 7.2305 | 0.001252 | 2.9025 | 0.023 | DC-NC; DN-NC | NC-DC; NC-DN |
P32942 | Intercellular adhesion molecule 3 (ICAM3) | 6.9678 | 0.001568 | 2.8045 | 0.024 | DN-DC; DN-NC | DN-DC; NC-DN |
Parameter | NC vs. DN | DC vs. DN | DC vs. NC |
---|---|---|---|
AUC | 0.829 | 0.840 | 0.876 |
p † | 0.0015 | 0.0033 | <0.0001 |
Sensitivity, % | 90 | 77 | 79 |
Specificity, % | 70 | 90 | 87 |
PPV, % | 74 | 88 | 85 |
NPV, % | 88 | 79 | 81 |
FDR, % | 26 | 12 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sartore, G.; Piarulli, F.; Ragazzi, E.; Mallia, A.; Ghilardi, S.; Carollo, M.; Lapolla, A.; Banfi, C. Circulating Factors as Potential Biomarkers of Cardiovascular Damage Progression Associated with Type 2 Diabetes. Proteomes 2024, 12, 29. https://doi.org/10.3390/proteomes12040029
Sartore G, Piarulli F, Ragazzi E, Mallia A, Ghilardi S, Carollo M, Lapolla A, Banfi C. Circulating Factors as Potential Biomarkers of Cardiovascular Damage Progression Associated with Type 2 Diabetes. Proteomes. 2024; 12(4):29. https://doi.org/10.3390/proteomes12040029
Chicago/Turabian StyleSartore, Giovanni, Francesco Piarulli, Eugenio Ragazzi, Alice Mallia, Stefania Ghilardi, Massimo Carollo, Annunziata Lapolla, and Cristina Banfi. 2024. "Circulating Factors as Potential Biomarkers of Cardiovascular Damage Progression Associated with Type 2 Diabetes" Proteomes 12, no. 4: 29. https://doi.org/10.3390/proteomes12040029
APA StyleSartore, G., Piarulli, F., Ragazzi, E., Mallia, A., Ghilardi, S., Carollo, M., Lapolla, A., & Banfi, C. (2024). Circulating Factors as Potential Biomarkers of Cardiovascular Damage Progression Associated with Type 2 Diabetes. Proteomes, 12(4), 29. https://doi.org/10.3390/proteomes12040029