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Abstract: Understanding the density of possible prices in one-minute intervals provides traders,
investors, and financial institutions with the data necessary for making informed decisions, managing
risk, optimizing trading strategies, and enhancing the overall efficiency of the cryptocurrency market.
While high accuracy is critical for researchers and investors, market nonlinearity and hidden depen-
dencies pose challenges. In this study, the filtered historical simulation is used to generate pathways
for the next hour on the one-minute step for Bitcoin and Ethereum quotes. The innovations in the
simulation are standardized historical returns resampled with the method of block bootstrapping,
which helps to capture any hidden dependencies in the residuals of a conditional parameterization
in the mean and variance. Ordinary bootstrapping requires the feed innovations to be free of any
dependencies. To deal with complex data structures and dependencies found in ultra-high-frequency
data, this study employs block bootstrap to resample contiguous segments, thereby preserving
the sequential dependencies and sectoral clustering within the market. These techniques enhance
decision-making and risk measures in investment strategies despite the complexities inherent in
financial data. This offers a new dimension in measuring the market risk of cryptocurrency prices
and can help market participants price these assets, as well as improve the timing of their entry and
exit trades.

Keywords: filtered historical simulation; risk management; high-frequency cryptocurrency markets;
block bootstrapping; forecasting; tail risks

JEL Classification: C15; C53; G17; G32

1. Introduction

Knowing the density of possible cryptocurrency prices over one-minute intervals can
be highly valuable for several reasons, particularly in the context of trading, risk manage-
ment, and market analysis. It can be valuable in building predictive models for future
price movements. A probability density function (PDF) provides insight into how likely
it is that prices will fall within certain ranges, which is crucial for short-term forecasting.
High volatility means that prices fluctuate widely within a short period, making trading
strategy design more critical. Traders can optimize their entry and exit points by under-
standing the distribution of prices. If a price is near the lower end of its expected range,
it might be a good buying opportunity, while prices near the upper end could be a signal
to sell. High-frequency trading firms, which execute a large number of trades in very
short periods, rely heavily on understanding the very short-term distribution of prices.
The density of one-minute intervals is crucial for these firms to detect profitable trading
opportunities and minimize execution risks. Many trading algorithms, especially those re-
lying on statistical models (e.g., mean-reversion strategies or momentum-based strategies),
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need an understanding of the distribution of price changes over time to optimize their
decision-making processes. By understanding the density of possible price movements,
traders can assess the likelihood of extreme events (e.g., significant price drops) and plan
their risk exposure accordingly. Furthermore, analyzing the density of price changes over
short intervals provides insights into the microstructure of the cryptocurrency market. For
instance, it can reveal the impact of liquidity, the presence of large traders, or the effects
of news and external events. A detailed understanding of price density allows for the
detection of anomalies or unusual patterns in the market. If prices deviate significantly
from the expected density, it might indicate manipulation, market inefficiency, or impend-
ing significant market events. The shape of the price distribution can also reflect market
sentiment. For example, a skewed distribution might indicate that the market is more
bullish or bearish during a particular period. Understanding this can help traders position
themselves correctly relative to prevailing sentiment. Traders can optimize their entry and
exit points by understanding the distribution of prices.

Like conventional financial assets, digital currencies’ time series are generally char-
acterized by heteroscedasticity, serial correlation, leptokurtosis, and fat tails (Shahzad
et al. 2019). This combination of factors makes cryptocurrencies a fascinating field of
exploration, attracting both investors seeking innovative opportunities and academics and
professionals focused on analyzing their distributional characteristics and market behavior.
Unlike traditional assets, cryptocurrencies display distinct behaviors that are impacted
by several factors, including technological advancements, regulatory modifications, and
market sentiment (Chowdhury et al. 2023). Also, traders and researchers interested in risk
management and price prediction are frequently drawn to the extreme volatility of cryp-
tocurrency markets (Liu et al. 2023). Furthermore, investors and engineers are interested
in the underlying blockchain technology because it presents novel approaches and fresh
financial paradigms (Kristjanpoller et al. 2024). Finally, according to Nekhili et al. (2023),
cryptocurrencies offer chances for diversification and, possibly, large returns. While these
stylized facts impose the correct modeling of both the return and volatility, financial risk
management focuses on the tail of the distribution. For instance, the regulatory frameworks
for banking and insurance sectors require tail-based risk measures. The standard metrics
models, such as the value-at-risk (VaR) and the expected shortfall (ES) models, rely on an ad
hoc distributional assumption, often normal distribution, and leave any serial correlation
present in the financial data untreated (Nekhili and Sultan 2022).

Simulation methods are essential tools in financial modeling, enabling traders, in-
vestors, and risk managers to create realistic scenarios for asset prices. By using different
methods, such as Monte Carlo simulations, stochastic volatility models, or mean-reverting
processes, practitioners can model a wide range of market conditions and behaviors, leading
to better-informed decisions and more robust risk management strategies. Each simulation
method used in market risk management has its strengths and weaknesses, depending
on the characteristics of the asset being modeled, the market conditions, and the specific
risk management objectives. Monte Carlo simulation can be applied to a wide range of
asset types, models, and complex derivatives. It provides a detailed and accurate view
of risk by generating a large number of potential future scenarios and can incorporate
various stochastic processes, jump-diffusion models, and volatility structures. However,
the simulation requires significant computational power, especially for large trading books
or highly complex instruments, and can take a long time to run, making real-time trading
or risk management challenging. This is because it relies on modeling all the pairwise
dependencies of the assets. The number of pairwise dependencies increases at a quadratic
rate with the number of assets in the trading book. In addition, the Monte Carlo simulation
requires the correct specification of the joint distribution that describes the changes in all
the assets.

Filtered historical simulation (FHS), introduced by Barone-Adesi et al. (1998, 1999),
was motivated by the relaxing of distributional assumptions and the need to address some
of the computational challenges faced by Monte Carlo simulation, particularly in the con-
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text of market risk management. FHS is a multistep price density prediction technique to
primarily estimate the potential losses that a portfolio or financial institution may face due
to adverse market movements. It enhances the traditional historical simulation method by
filtering the data to account for time-varying volatility. Rather than generating synthetic
data through complex simulations, filtered historical simulation reuses the daily volatility-
adjusted historical residual returns, thereby avoiding the need to simulate from scratch. In
the multi-asset portfolio context, filtered historical simulation is much less computationally
intensive than Monte Carlo simulation, as the latter requires maintaining and simulating
the correlations between multiple assets, which adds considerable computational overhead,
especially when the covariance matrix becomes large. In the filtered historical simula-
tion, correlations are implicitly embedded in the historical data. The historical returns
already reflect the co-movements between assets, so filtered historical simulation does
not require explicitly recalculating correlations, which saves computational effort and
possibly considerably reduces the model risk. Overall, the filtered historical simulation
naturally incorporates historical tail events and volatility patterns, making it more efficient
at capturing realistic market behavior with fewer computations.

Filtered historical simulation offers a powerful, adaptable, and data-driven approach
for forecasting the density of ultra-high-frequency cryptocurrency prices, especially in
markets characterized by non-stationarity, high volatility, and complex distributional
properties. Its ability to incorporate recent data and volatility patterns makes it an excellent
choice for the nuanced forecasting needs of cryptocurrency markets.

Several studies have tested the filtered historical simulation method in various market
contexts, focusing on its ability to predict value-at-risk (VaR) and handle volatility cluster-
ing. Barone-Adesi et al. (2002) conducted one of the pioneering studies on backtesting the
filtered historical simulation. They tested the method on derivative portfolios and found
that the filtered historical simulation provided more accurate risk estimates than traditional
historical simulation. Their study highlighted filtered historical simulation’s robustness
in dealing with portfolios containing options and other nonlinear instruments. The main
finding was that filtered historical simulation is better equipped to adapt to changing
market conditions, particularly in capturing volatility dynamics that standard models fail
to account for. Kuester et al. (2006) compared various VaR forecasting models, including
filtered historical simulation. Their study found that filtered historical simulation outper-
formed simpler models like traditional historical simulation and GARCH-based models in
forecasting risk under volatile market conditions. The main advantage of filtered historical
simulation, as highlighted by the study, was its ability to incorporate time-varying volatility
directly from historical data, leading to more reliable risk predictions. Christoffersen’s
(2009) work on value-at-risk (VaR) models included an evaluation of filtered historical
simulation. The study demonstrated that filtered historical simulation, by incorporating
models like GARCH to filter historical data, was better at capturing the conditional nature
of market risks. It showed improved performance in backtesting exercises, particularly
in scenarios with high volatility or market stress. The findings suggested that filtered
historical simulation outperformed standard historical simulation in both the accuracy and
reliability of VaR estimates. These studies demonstrate that filtered historical simulation is
a robust method for market risk management, particularly in environments with significant
volatility and nonlinear price behaviors.

Although these non-parametric filtering techniques prove valuable for assessing non-
normal risks and tail events, their limitations and potential biases need further exploration
to ensure effectiveness in real-world scenarios. For example, when the original sample is
biased or not representative of the population, ordinary bootstrapping will not correct for
that bias and will leave the same underlying issues in the generated resamples. Filtered
historical simulation, while powerful, can be subject to several biases that could affect its
accuracy in estimating risk. These biases primarily stem from the method’s reliance on
historical data, model assumptions, and the filtering process. Filtered historical simulation
relies on conditional volatility models to mimic current market conditions. In turn, the



Int. J. Financial Stud. 2024, 12, 99 4 of 14

conditional volatility models look backward and will not predict shocks in market prices,
which will undermine their ability to predict future risks accurately. This limitation will
be of limited concern in high-frequency trading, as many shocks will require several
minutes or hours to manifest fully. Shortly after the jumps in realized volatility, the
GARCH model will “digest” the shocks and adjust its volatility forecast. Yet, filtered
historical simulation, like any model-based approach, is susceptible to model risk—the
risk that the chosen model does not accurately represent the underlying dynamics of the
market. For example, if the GARCH model used in filtered historical simulation does not
appropriately capture the real volatility dynamics, the risk estimates will be biased. The
biases in the filtered historical simulation are primarily related to its reliance on historical
data, assumptions about volatility, and the models used for filtering. These biases can lead
to the underestimation of tail risks, misestimation of volatility dynamics, and overfitting of
past data, potentially resulting in inaccurate risk assessments. Proper calibration, model
selection, and the use of robust backtesting methods are crucial to mitigate these biases
(Christoffersen 2009).

Against these drawbacks, this study deals with hidden dependencies and non-linearities
by applying the filtered historical simulation and the block bootstrap method as an alterna-
tive to the ordinary bootstrap method. Block bootstrap breaks up the dependency while
carrying out the bootstrap simulation. It offers several improvements in the accuracy of
the standard bootstrap, as it can better simulate the nonlinear dependency properties of
the data. In the block bootstrap, we implicitly assume that even though there might be no
further dependency on the residual returns, it cannot produce worse estimates than the
standard bootstrap (Cogneau and Zakamouline 2013).

Instead of resampling individual data points (as in the standard bootstrap), the block
bootstrap resamples entire blocks of sequential observations. Block bootstrap is used in
time series or spatial data to account for dependencies within the data by resampling blocks
of consecutive observations rather than individual observations. This involves selecting
blocks with replacements to construct a new bootstrap sample. In the filtered historical
simulation, instead of individual standardized residual returns, a large number of random
blocks of sequential standardized returns is resampled.

To put this in an empirical setting, a risk analysis is carried out on the cryptocurrency
market using high-frequency data for Bitcoin and Ethereum. Several researchers have
relied on the bootstrap method, which was introduced by Hall (1985) and Kunsch (1989),
to capture the dependence structure in the return series while estimating the parameter
of interest of the return distribution. Shahzad et al. (2019) treated inherent serial depen-
dence using a random block bootstrapping technique for a predictability analysis of the
safe heaven role of Bitcoin, gold, and commodities. Grobys and Junttila (2021) employ
block bootstrap to cryptocurrency time series to overcome issues regarding non-normality,
proneness to outliers, extreme events evidence, and regime switching in the first moment
of the time series.

The present study identifies several gaps in the current understanding and applica-
tion of market risk in high-frequency cryptocurrency markets. Firstly, while the filtered
historical simulation approach proves valuable for assessing market risk and tail events,
its limitations and potential biases need further exploration to ensure its effectiveness in
real-world scenarios. The study reveals discrepancies in confidence bands generated by
block bootstrap methods compared to ordinary bootstrap methods, suggesting a need for a
deeper understanding of the factors influencing these differences and their implications for
risk management strategies. Furthermore, by emphasizing the need for rigorous out-of-
sample back testing, especially during turbulent market conditions, this study promotes
more robust and reliable risk analysis practices in high-frequency cryptocurrency markets.
Overall, the findings offer valuable insights that can inform decision-making processes
and enhance trading and risk management strategies in the rapidly evolving landscape of
cryptocurrency markets.
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The rest of this study is structured as follows. Section 2 describes the methods, Section 3
addresses the empirical results of the high-frequency (one-minute) returns of Bitcoin and
Ethereum, and Section 4 presents the discussion and conclusions, as well as the limitations,
of this study and recommendations for future research.

2. Methods
2.1. Filtered Historical Simulation Approach

Barone-Adesi et al. (1998, 1999), introduced the filtered historical simulation to forecast
the density distribution of future asset prices. This is a resampling method of filtered
historical residual returns adjusted with current market conditions. At each step in the
forecasting horizon, the set of the random, historical standardized residuals is multiplied
by the simulated volatility to reflect the predicted market conditions. The generated density
of price and volatility predictions provided market risk estimates of investor portfolios.
The general ARMA(l, m)-GARCH(p, q) model specification is as follows:

yt = ∑l
i=1 δi yt−1 + ∑m

i=1 θiεt−1 + εt εt ∼ D(0, σt) (1)

σ2
t =ω+ ∑p

i=1 αiε
2
t−i +∑q

j=1 β jσ
2
t−j (2)

In Equation (1) the AR term, δ, accounts for the correlation between an observation and
several lagged observations, and the term θ captures the influence of past forecast errors
on the current observation. The error term, εt, could follow any conditional distribution,
denoted by D. Although, in line with the stylized facts observed in the cryptocurrency
market (see for example, Zhang et al. 2021), distributions other than the normal will be used.
The variance Equation (2) is specified as a GARCH(p, q). The use of such a general model is
appealing for modeling asset returns with the efficient estimation of parameters, leading
to reliable inferences about the underlying processes. Ultimately the right specification in
the models in Equations (1) and (2) will lead to the removal of dependencies in the return
series, leaving residuals to be random. For each of the two cryptocurrency return series,
several specifications of the ARMA and volatility, including asymmetric GARCH, IGARCH,
TARCH, and GJR-GARCH, will be estimated. The criteria that will be used to select the right
specification will be mainly the residual diagnostics and volatility forecasting performance,
as measured by the proportion of variance in the realized volatility that is explained by
the forecasted volatility, i.e., the adjusted R-squared from the regression of the squared
residuals against the conditional variance.1

Nevertheless, removing all dependencies can be challenging, but it is of paramount
importance in the simulation to ensure that the generated values accurately reflect the real-
world relationships between variables. In addition, when the best possible parameterization
of conditional mean and variance fails to capture all hidden dependencies in the series, the
block bootstrap can be considered an alternative to the standard bootstrap.

2.2. Block Bootstrapping Method

As pointed out by Cogneau and Zakamouline (2013), the bootstrap methods implicitly
assume that the data are generated by a stationary process. This means that the statistical
properties of the residuals obtained from Equations (1) and (2) do not change over time.
They argue that when bootstrapping non-stationary data, the resampled data (bootstrap
samples) may not be representative of the true distribution of the underlying process. This
is because the bootstrap procedure tends to replicate the distribution of the data at the time
of resampling, which might not hold over time in a non-stationary environment.

Block bootstrap, on the other hand, resamples contiguous blocks of data, preserving
the local dependencies within those blocks. By treating each block as a unit, the method
captures any hidden dependencies present within each block. There are different types of
block bootstrap methods, using either overlapping or non-overlapping blocks and constant
or dynamic block length. The block bootstrap method generally requires the specification
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of the block length. The block length determines how much of the dependence structure
is preserved during resampling. If the block length is too short, the dependence structure
might not be adequately captured. If it is too long, the blocks might overlap too much,
reducing the variability of the resampled data.

The most popular methods of choosing the block size are Hall et al. (1995) and Politis
and White (2004). This study will follow the method of Hall et al. (1995) in choosing an
optimal block length, which relies on a cross-validation process using a type of subsampling
to estimate the mean squared error (MSE) incurred by the bootstrap at various block lengths.
The optimal block length will be determined using the bootstrap mean squared error (BMSE)
criterion. The BMSE requires dividing the data into blocks of different lengths from 2 to
50 consecutive observations. The key steps involve resampling the data, estimating the
parameter of interest for each resampled dataset, calculating the squared errors, and then
averaging them over all resamples. This process is repeated for different block lengths,
and the results are plotted to analyze the behavior of the estimator with changing block
lengths. Consider the time series yi, i = 1, . . . , N, with observations Y = (y1, y2, . . . , yN),
and assume an integer s ranging between 1 and n, the non-overlapping block bootstrapping
method considers a constant block length s and divides the series in disjoint blocks, where
the i-th block is given by Bi = (yi, . . . , yi+s−1) for 1 ≤ i ≤ N, with N = n − s + 1 is the
number of blocks within the bootstrap sample. In the moving block bootstrap method,
a certain number of blocks, b, is chosen randomly from the set {B1, . . . , BN}, with the
same number of observations. Let us denote the randomly resampled block from the
blocks B1, . . . , BN using B*

i =
(
y*

i1, y*
i2, . . . , y*

is
)
, and then we obtain a bootstrap version of Y,

as follows:

Y* =
(

B*
1, B*

2, . . . , B*
b

)
=

(
y*

11, y*
12, . . . , y*

1s, y*
21, y*

22, . . . , y*
2s, . . . , y*

b1, y*
b2, . . . , y*

bs

)
3. Results
3.1. Preliminary Analysis and Block Bootstrapping

The dataset consists of intraday, one-minute intervals for two cryptocurrencies, Bitcoin
versus the U.S. dollar (Bloomberg ticker: BTCUSD) and Ethereum versus the U.S. dollar
(Bloomberg ticker: ETHUSD). Both cryptocurrencies are known for their large market
capitalizations compared to other cryptocurrencies and are the most commonly traded
in monetary transactions (Theiri et al. 2023). In addition, as opposed to conventional
currencies, cryptocurrency markets are 24-h trading markets that are open seven days a
week and characterized by high liquidity comparable to that of foreign exchange markets
(Nekhili et al. 2023). The dataset covers the period between 7 September and 14 October
2022, for a total of 39,192 observations. Table 1 reports the summary statistics of the 1-min
log-return series, including the mean, standard deviation, minimum, maximum, skewness,
and kurtosis for each cryptocurrency. Ethereum has the highest standard deviation, and
the two cryptocurrencies display excess kurtosis.

Table 1. Descriptive statistics of 1-min log-returns of Bitcoin and Ethereum.

Mean (%) StDev (%) Min (%) Max (%) Skewness Kurtosis

Bitcoin −2.44 × 10−5 0.079 −4.901 1.695 −7.806 472.100

Ethereum −1.88 × 10−5 0.098 −4.784 1.908 −5.238 249.833

Cryptocurrency returns are known for their complexity and non-standard behavior,
Baur et al. (2018). They can exhibit extreme volatility, abrupt changes in market senti-
ment, and sudden price spikes, which are not always well-captured by traditional financial
models. Various orders in the ARMA(l) in the mean and conditional variance equations
were estimated with the quasi-maximum likelihood (QML) method.2 Three different prob-
ability distributions for the conditional error, εt, in the likelihood function were used, the
normal distribution, the Student-t distribution, and the generalized extreme value (GEV)
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distribution. The degrees of freedom in the last two were estimated jointly with the param-
eters in Equation (2). The coefficient estimates and their standard errors are reported in
Tables 2 and 3, respectively, for Bitcoin and Ethereum returns.

Table 2 reports the estimation results for Bitcoin returns. The one-minute price changes
are filtered using conditional mean and variance equations from the ARMA(0,0)-GARCH(1,2)
model, with the Student-t distribution identified as the most appropriate for the error term,
εt, in the log-likelihood function. The parameter d represents the degrees of freedom of the
Student-t distribution. A value of 4.32 reveals fat tails in the conditional distribution of ε.
The small number of degrees of freedom reveals fat tails in the Bitcoin return data, which is
much heavier than what a normal distribution would predict. The return series follows
a random walk, but its volatility is heteroskedastic with GARCH effects, considering the
aggregate value of the first and second order of the ARCH terms.

Table 2. Estimation of the conditional mean and variance model for the Bitcoin returns.

Parameter Coeff. Std Error t-Stat

ω 0.002 0.0003 7.7524

α 0.121 0.0057 21.29635

β1 0.431 0.0027 161.8794

β2 0.448 0.0030 148.3395

d 4.320 0.0702 61.50796
Note: The Bitcoin return series are scaled by a factor of 1000. The estimation is carried out using the BFGS
algorithm with inequalities and heteroscedasticity/misspecification adjusted standard errors. The maximum
likelihood function value is −29,589.9.

Likewise, the parameters in Equation (1), with various orders in the ARMA and the
conditional variance of the Ethereum return series, were estimated with each of the three
probability distributions of the error term in the likelihood function. The most appro-
priate model for the conditional variance was found to be ARMA(0,0)-GJR-GARCH(1,2).
Equation (2) considers an additional term, γ, that captures the leverage effect of bad and
good news and is written as follows:

σ2
t =ω+ (α1 + γIt−1)ε

2
t−1 + β1σ2

t−1 + β2σ2
t−2, (3)

where It−1 can take a value of 1 for εt−1 < 0; otherwise, it takes a value of 0. The coefficient
estimates with the corresponding standard errors are shown in Table 3. The minute interval
of the rate of return for Ethereum also follows a random walk, but its variance, in addition
to the heteroskedastic long memory, has parts that represent asymmetric properties. The
asymmetric effects are captured by the γ coefficient, which is statistically significant and
has a negative sign, revealing that negative shocks (bad news) increase volatility more
than positive shocks (good news) of the same magnitude. The degrees of freedom in the
t-distribution of the returns are reported to be quite low, suggesting a high probability of
extreme returns far from the central tendency. This supports the presence of fat tails in
the distribution.

This research proceeds further with testing for dependency in the standardized and
squared standardized residuals. The different tests are carried out on the GARCH residual
and standardized residual returns to investigate the hypothesis of i.i.d. Five tests are chosen,
as in Brockwell and Davis (2016), and the results are reported in Table 4 for the statistics
and their significance.
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Table 3. Estimation of the conditional mean and variance model for the Ethereum returns.

Parameter Coeff. Std Error t-Stat

ω 0.004312 0.000545 7.90959

α1 0.121709 0.006042 20.1443

β1 0.412874 0.002848 144.9464

β2 0.465416 0.003193 145.7393

γ −0.0234 0.010677 −2.19119

d 3.973018 0.058291 68.15881
Note: The Ethereum return series are scaled by a factor of 1000. The estimation is carried out using the BFGS
algorithm, with inequalities and heteroscedasticity/misspecification adjusted standard errors. The maximum
likelihood function value is −38,129.7.

Table 4. Diagnostic tests on standardized residuals and squared standardized residual returns.

Bitcoin Standardized Residuals Squared Standardized Residuals

Test Statistic p-Value Statistic p-Value

Ljung-Box Q(10) 95.03616 0 36.9155 0
McLeod-Li(10) 41.42964 0 0.074297 1
Turning Points −3.0867 0.002 −0.2282 0.8195
Difference Sign −0.0614 0.951 −2.27167 0.0231

Rank Test −0.76377 0.445 −7.42921 0

Ethereum Standardized Residuals Squared Standardized Residuals

Test Statistic p-Value Statistic p-Value

Ljung-Box Q(10) 79.68727 0 29.73031 0
McLeod-Li(10) 34.36361 0.0002 0.435655 0.9985
Turning Points −0.72063 0.4711 −0.70862 0.4786
Difference Sign −0.30698 0.7589 0.114022 0.9092

Rank Test −0.53427 0.5932 −10.3314 0

The tests for various statistics, such as the Ljung-Box, turning points, difference sign,
and rank tests, have low p-values in many cases, indicating the presence of unexplained
patterns or dependencies in the standardized residuals and squared standardized residuals.
This indicates that there are still correlations and patterns in the data that the model did
not account for, even though returns were filtered using every feasible ARMA-GARCH
specification before conducting the tests on the residual returns.

The analysis follows by performing the block bootstrapping method. Table 5 presents
the results for the optimal block length and the corresponding minimum squared error
(MSE) values, which are calculated using the block bootstrap method from Hall et al. (1995).

Table 5. Determining the optimal block length.

Optimal Block Length Minimum Squared Error

Bitcoin 5 0.1756
Ethereum 2 0.1384

To better visualize the choice of the optimal block length, Figure 1 plots the criterion
of optimality for the selection of the block length, namely, the minimum squared error in
the function of the block length.
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3.2. Simulation and Price Forecast

Following Barone-Adesi et al. (1999), multistep forecasts for the price and variance
equations were generated by plugging in innovations randomly selected from the historical
set of standardized residuals. The simulation methodology stands as follows: Firstly, with
a block of five and two, respectively, consecutive standardized residual returns, which are
denoted by e∗i , i = 1, . . . , 60 min, are drawn to form a set of innovations εt in the simulation
of the pathways for Bitcoin and Ethereum.

These estimated residuals are divided by the corresponding volatility estimates, which

are denoted by h∗t =
√

σ̂2
t , to form the set of innovations, which are denoted by z∗t . Secondly,

to generate one step ahead, t + 1, of the simulated value for the innovation, a random
standardized residual return from the dataset is drawn and then scaled with the volatility

of the period t + 1. We denote this by z∗t+1 = e∗1
√

h∗t+1, with
√

h∗t+1 =
√

ω̂ + α̂ z∗t + β̂h∗t ,

where the coefficients (ω̂, α̂ , β̂) are estimated using Equation (2). Finally, a simula-
tion of the asset return at time t + 1, which is denoted by y∗t+1, is obtained as follows:
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y∗t+1 = δ̂yt + θ̂z∗t + z∗t+1, where the coefficients (δ̂, θ̂) are estimated using Equation (2). With
these simulated returns, we can derive the corresponding simulated asset price.

For other simulation pathways, t + i, i = 2, 3, . . ., the volatility is unknown and must be

simulated from the randomly selected re-scaled residuals as
√

h∗t+i =
√

ω̂ + α̂ z∗t+i−1 + β̂h∗t+i−1

and the simulated returns as y∗t+i = δ̂yt+i−1 + θ̂z∗t+i−1 + z∗t+i.
With the optimal block length identified earlier, the sequence of standardized residuals

is then used in multistep forecasting. A total of 1,000,000 pathways for 60 one-minute
intervals were generated for each of the two cryptocurrencies.

The confidence bands at 0.1% and 99.9% are reported in Figure 2 panel (a) for the
Bitcoin series and panel (b) for the Ethereum series.
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Figure 2. Forecast confidence bands: block vs. regular bootstrap. For both panels (a,b), the forecasted
bands are at 99.9% and 0.1% confidence levels.

In the graphs above, the red lines denote the confidence bands, also known as pre-
diction intervals, for block bootstrap, while the blue lines depict the confidence bands for
ordinary bootstrap. These prediction intervals provide insights into potential price move-
ments over 60 one-minute time intervals. To facilitate comparisons of forecast intervals, the
initial prices for each cryptocurrency are standardized to USD 100. The results show that in
both series, the predictions by the block bootstrap follow wider price movement intervals
when compared to the ordinary bootstrap.
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Tables 6 and 7 display the projected prediction confidence intervals for additional
percentiles, utilizing both the block bootstrap, which is denoted with the letter “B”, and the
ordinary bootstrap, which is denoted with “NB”.

Table 6. Bitcoin projected confidence intervals for selected percentiles for 10-, . . ., 60-min horizons.

Min BT_NB
0.1%

BT_B
0.1%

BT_NB
99.9%

BT_B
99.9%

BT_NB
0.5%

BT_B
0.5%

BT_NB
99.5%

BT_B
99.5%

BT_NB
1%

BT_NB
99%

10 98.55 97.99 101.12 101.28 99.15 98.93 100.75 100.85 99.32 100.63

20 97.82 96.97 101.66 101.89 98.73 98.41 101.1 101.24 98.99 100.91

30 97.14 96.01 102.22 102.5 98.36 97.93 101.41 101.58 98.7 101.16

40 96.48 95.03 102.72 103.14 98.01 97.47 101.71 101.91 98.44 101.39

50 95.82 94.05 103.22 103.77 97.65 97.02 101.98 102.23 98.19 101.6

60 95.12 93.02 103.83 104.45 97.31 96.55 102.26 102.55 97.95 101.8

Note: B and NB denote the block and ordinary bootstrap methods, respectively.

Table 7. Ethereum projected confidence intervals for selected percentiles for 10-, . . ., 60-min horizons.

Min BT_NB
0.1%

BT_B
0.1%

BT_NB
99.9%

BT_B
99.9%

BT_NB
0.5%

BT_B
0.5%

BT_NB
99.5%

BT_B
99.5%

BT_NB
1%

BT_NB
99%

10 98.59 98.02 101.1 101.32 99.19 98.99 100.72 100.79 99.36 100.6

20 97.9 97.2 101.65 101.87 98.79 98.47 101.07 101.2 99.05 100.88

30 97.23 96.41 102.18 102.44 98.43 98.04 101.38 101.51 98.78 101.12

40 96.58 95.6 102.7 103.08 98.09 97.62 101.67 101.84 98.53 101.35

50 96.01 94.69 103.2 103.71 97.76 97.23 101.95 102.14 98.29 101.55

60 95.36 93.85 103.77 104.41 97.44 96.8 102.23 102.45 98.05 101.76

Note: B and NB denote the block and ordinary bootstrap methods, respectively.

Tables 6 and 7 offer insights into the confidence intervals for selected percentiles of
Bitcoin and Ethereum returns across various time horizons, spanning from 10 to 60 min,
employing two distinct methods, as follows: block (BT_B) and ordinary bootstrap (BT_NB).
It delineates percentiles from 0.1% to 99.9%, including the 1% and 99% thresholds, sig-
nifying different positions within the Bitcoin return distribution, from extremely low to
exceptionally high returns. The table facilitates a comparison between the two bootstrap
methods in estimating confidence intervals across different percentiles and time horizons,
enabling the observation of any discernible trends, such as the widening or narrowing of
intervals as the time horizon increases.

In summary, the filtered historical simulation based on block bootstrap consistently
provides slightly wider prediction intervals than the ordinary bootstrap method. The
variation in intervals between the two methods is more pronounced at extreme percentiles
(0.1%, 99.9%) compared to the closer range percentiles (1%, 99%). Understanding these
confidence intervals is crucial for assessing the uncertainty and potential variability in the
forecasted prices, helping in risk management and decision-making processes.

4. Discussion and Conclusions

Knowing the density of possible cryptocurrency prices over short intervals, such as
one-minute intervals, is crucial for a wide range of applications, including price prediction,
risk management, market behavior analysis, and strategy optimization. Cryptocurrencies
are highly volatile and often subject to extreme price movements, making a deep under-
standing of price density especially important for traders and analysts operating in this
space. Traders can optimize their entry and exit points by understanding the distribution
of prices. If a price is near the lower end of its expected range, it might be a good buying
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opportunity, while prices near the upper end could be a signal to sell. By knowing the
density of prices, traders can estimate the likelihood of tail events (large price swings) and
employ strategies like stop-loss orders or options to hedge against these risks.

The filtered historical simulation can be a valuable tool in risk analysis, particularly
for assessing non-normal risks and tail events in financial markets. It allows for a more
realistic and data-driven approach to risk assessment. This study introduced a variant
of the filtered historical simulation to deal with the hidden dependencies in ultra-high-
frequency Bitcoin and Ethereum returns. As the ARMA-GARCH parameterizations failed
to remove all complex dependencies in the two cryptocurrencies, the innovations were
drawn as a sequential block of constant length, but different for each cryptocurrency, to
produce price and volatility pathways for the Bitcoin and Ethereum prices. Many simulated
price pathways were generated to produce the density at each of the sixty-one-minute
forward price nods for each of the two cryptocurrencies and each of the two variants of the
filtered historical simulation. The simulated confidence bands for the price pathways in the
block bootstrap variant are found to be wider across the entire sixty-minute horizon. This
divergence between the two filtered historical simulation variants is particularly apparent
at the extreme percentiles (0.1%, 99.9%) compared to the less extreme percentiles (1%,
99%). Profound backtesting is necessary to assess the accuracy of each filtered historical
simulation variant in estimating the risk of ultra-high-frequency price series.

Furthermore, this analysis highlights trends in confidence intervals across different
percentiles and time horizons, shedding light on how intervals may widen or narrow as the
time horizon increases. Overall, these findings enhance our understanding of uncertainty
assessment in high-frequency cryptocurrency markets and provide valuable insights for
both researchers and practitioners in the field, thereby enhancing the effectiveness of risk
management and decision-making processes.

These findings may serve as a tool for portfolio risk management, allowing for the
prediction of cryptocurrency tail risk. More accurate forecasts of cryptocurrency volatility
can serve as a gauge of short-term risk, helping to assess the appeal of these assets relative
to less risky alternatives. In addition, high-frequency traders and prospective investors may
be interested in a more precise model for predicting cryptocurrency return and volatility.
Block bootstrapping can help to assess the probability of tail events.

The results of this study align closely with findings from previous studies conducted
recently. Similar research has emphasized the importance of adopting innovative risk
analysis techniques to address the complexities of high-frequency cryptocurrency markets.
For instance, studies by Zhang et al. (2021) and Ahelegbey et al. (2021) have highlighted the
significance of volatility modeling and tail risk assessment in understanding the dynamics
of cryptocurrency markets. Furthermore, research by Bouri et al. (2019) has underscored
the need to consider behavioral aspects and market efficiency when analyzing risk in
cryptocurrency trading. The proposed filtered historical simulation approach builds upon
these findings by offering a comprehensive and data-driven framework for risk analysis,
contributing to the ongoing discourse on effective risk management strategies in high-
frequency cryptocurrency markets.

As much as this research sheds light on the intraday price patterns of cryptocurrencies,
a number of limitations need to be accepted, and recommendations for further studies
must be made. While this study illustrates the effectiveness of the block bootstrap method
for constructing confidence bands and tail risk estimation, more comprehensive out-of-
sample backtesting is still needed in terms of the robustness and predictive accuracy of
such methods over different market conditions and eventual extraordinary turbulence or
volatility in the markets.

Further research should be directed to very intense backtesting across several market
conditions to test the reliability of the forecasts generated by combining block bootstrapping
and filtered historical simulation.
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Notes
1 This study aims to introduce a variant of the filtered historical simulation that suits the ultra-high-frequency data. Therefore, in

the next session, the results will only report the coefficient estimates of the most appropriate ARMA-GARCH model of all the
different parameterizations that were estimated.

2 We have checked the autocorrelation and partial autocorrelation functions to identify the AR and MA orders. The inclusion of
these terms comes from a preliminary analysis conducted as a guide to following the right model. All possible combinations
were taken into consideration, and the selection of the adequate model is based on the Akaike information criterion (AIC). All
estimation results are available.
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