Thickness Model of the Adhesive on Spacecraft Structural Plate
<p>The actuator of the non-contact rotary screen coating process with measurement function: (<b>b</b>) shows the internal structure of the actuator in (<b>a</b>).</p> "> Figure 2
<p>The geometric model of the squeegee.</p> "> Figure 3
<p>The contours with FEM for deformed configurations of the squeegee. Initial and deformation states are presented by the solid border and color area, respectively.</p> "> Figure 4
<p>Deformation curve of the lower edge of the wedge part for the FEM and the analytical solution. (<b>a</b>) 40 N, 75<math display="inline"><semantics> <mrow> <mo>°</mo> </mrow> </semantics></math>; (<b>b</b>) 60 N, 75<math display="inline"><semantics> <mrow> <mo>°</mo> </mrow> </semantics></math>; (<b>c</b>) 40 N, 85<math display="inline"><semantics> <mrow> <mo>°</mo> </mrow> </semantics></math>; (<b>d</b>) 60 N, 85<math display="inline"><semantics> <mrow> <mo>°</mo> </mrow> </semantics></math>.</p> "> Figure 5
<p>Schematic of flow field division for the rotary screen printing process. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>X</mi> </mrow> <mrow> <mi>a</mi> <mi>q</mi> </mrow> </msub> </mrow> </semantics></math> is the accumulated length of adhesive in front of the squeegee. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math> is the adhesive flow speed under the squeegee. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> </mrow> </semantics></math> is the printing speed of the squeegee and rotary screen. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>H</mi> </mrow> <mrow> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math> is the adhesive layer thickness. <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>H</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> </mrow> </semantics></math> is the rotary screen thickness.</p> "> Figure 6
<p>Flow field model in front of the squeegee.</p> "> Figure 7
<p>Velocity distribution in the flow field: (<b>a</b>) Non-dimensional x-velocity of a vertical section under different non-dimensional pressure gradients; (<b>b</b>) velocity distribution of adhesive in the vertical section at x = X relative to the substrate.</p> "> Figure 8
<p>Partial schematic diagram (dashed square) and flow area of the rotary screen. a is the projection direction. The blue area is the mesh. the dashed square is the sampling area of the rotary screen.</p> "> Figure 9
<p>The dynamic pressure at the squeegee tip under different conditions. The pressure of the squeegee with (<b>a</b>) force, (<b>b</b>) angle, (<b>c</b>) elastic modulus, and (<b>d</b>) coating speed. The black line represents the given parameters, and the x-axis represents the changing parameters in the figure.</p> "> Figure 10
<p>Deposited thickness in relation to the thickness under the squeegee.</p> "> Figure 11
<p>Variations in thickness <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>H</mi> </mrow> <mrow> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math> under different parameters. (<b>a</b>) Variations in thickness with angle for different power-law indices. Variations in thickness with (<b>b</b>) force <span class="html-italic">F</span>, (<b>c</b>) screen thickness <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>H</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> </mrow> </semantics></math>, and (<b>d</b>) elastic modulus <span class="html-italic">E</span> at θ = 75°and 85° for different power-law indices <span class="html-italic">n</span>.</p> "> Figure 12
<p>Variation and fit equation in viscosity with shear rate.</p> "> Figure 13
<p>CFD simulation of rotary screen printing: (<b>a</b>) Boundary conditions of CFD model; (<b>b</b>) grid division of CFD model; volume fraction of the phase contours in (<b>c</b>) t = 0.2 and (<b>d</b>) t = 0.6 cases; (<b>e</b>) total pressure field; and (<b>f</b>) streamline pattern of velocity.</p> "> Figure 14
<p>Photo and scanning contours of rotary screen printing: (<b>a</b>) Coating test; (<b>b</b>) scanning image of the adhesive layer. Red is the thicker area, while blue is the thinner area.</p> "> Figure 15
<p>Comparison of the thickness <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>H</mi> </mrow> <mrow> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math> is obtained by the approximate analytical solution (red solid line), the experimental solution (black triangle), and the CFD solution (Blue Square). (<b>a</b>) Variation in thickness with force. (<b>b</b>) Variation in thickness with angle.</p> "> Figure 16
<p>Experimental and simulation errors compared to theoretical values.</p> ">
Abstract
:1. Introduction
2. Analysis of Squeegee Deformation
3. Modeling of Adhesive Layer Thickness
3.1. Equation for Dynamic Pressure at Squeegee Tip
3.2. Equation for Flow Velocity Under Squeegee
3.3. Equation for Theoretical Thickness of Adhesive Layer
4. Simulation and Testing of Adhesive Coating Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Djojodihardjo, H. Structural integrity of spacecraft structures subject to motion, thermo-structural dynamics and environmental effects—An overview. Acta Astronaut. 2024, 222, 219–243. [Google Scholar] [CrossRef]
- Costa, M.; Viana, G.; da Silva, L.F.M.; Campilho, R.D.S.G. Environmental effect on the fatigue degradation of adhesive joints: A review. J. Adhes. 2017, 93, 127–146. [Google Scholar] [CrossRef]
- Megson, T.H.G. Chapter 12—Structural components of aircraft and spacecraft. In Aircraft Structures for Engineering Students, 7th ed.; Megson, T.H.G., Ed.; Butterworth-Heinemann: Oxford, UK, 2022; pp. 421–445. [Google Scholar] [CrossRef]
- Al-Mosawe, A.; Agha, M.; Oraim, H.A.-M.R. Enhancing fatigue life of steel plates with CFRP laminate: Effects of curing temperature, stress range, and adhesive thickness. J. Constr. Steel Res. 2024, 213, 108352. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, C.; Wang, W.; Zhu, J. Study on the Fracture Performance of Adhesive Structures Type III. J. Mech. Strength Jixie Qiangdu 2024, 46, 195–201. [Google Scholar]
- Lorenz, A.; Klawitter, M.; Linse, M.; Tepner, S.; Röth, J.; Wirth, N.; Greutmann, R.; Lehner, M.; Senne, A.; Reukauf, D.; et al. The project «Rock-Star»: The evolution of rotary printing for solar cell metallization. In Proceedings of the 9th Workshop on Metallization and Interconnection for Crystalline Silicon Solar Cells, Genk, Belgium, 5–6 October 2020. [Google Scholar]
- Bernardino, S.; Scholarworks, C.; Lastimosa, M.; Kent, C.; Murakami, T. Screen printing. The Fairchild Books Dictionary of Fashion; Fairchild Books: New York, NY, USA, 2022. [Google Scholar]
- Kobs, D.R.; Voigt, D.R. Parametric dependencies in thick-film screening. Solid State Technol. 1971, 14, 34. [Google Scholar]
- Pan, J.; Tonkay, G.L.; Quintero, A. Screen printing process design of experiments for fine line printing of thick film ceramic substrates. J. Electron. Manuf. 1998, 9, 203–213. [Google Scholar] [CrossRef]
- Riemer, D.E. The Theoretical Fundamentals of the Screen Printing Process. Microelectron. Int. 1989, 6, 8–17. [Google Scholar] [CrossRef]
- Taylor, S.G. On scraping viscous fluid from a plane surface. Sci. Pap. Sir Geoffrey Ingram Taylor 1962, 1971, 410–413. [Google Scholar]
- Kawabata, J.; Shi-Igai, H.; Yabuno, K.; Saito, T. An analysis of highly viscous flow using Imai’s complex function method with application to screen printing: Fluid Dyn. Res. 10, 11. Fluid. Dyn. Res. 1993, 11, 183. [Google Scholar] [CrossRef]
- Huner, B. Stokes flow analysis of the screen-printing process. Int. J. Microcircuits Electron. Packag. 1994, 17, 21–26. [Google Scholar]
- Riedler, J.; Schneider, W. Viscous flow in corner regions with a moving wall and leakage of fluid. Acta Mech. 1983, 48, 95–102. [Google Scholar] [CrossRef]
- Valu, F.; Malcomete, O.; Grigoriu, A. Hydromechanics of the screen printing process. In SpringerBriefs in Applied Sciences and Technology; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Wilberforce, T.; Alaswad, A. Performance analysis of a vertical axis wind turbine using computational fluid dynamics. Energy 2023, 263, 125892. [Google Scholar] [CrossRef]
- Thakur, V.; Mallik, S.; Vuppala, V. CFD Simulation of Solder Paste Flow and Deformation Behaviours during Stencil Printing Process. Int. J. Recent Adv. Mech. Eng. 2015, 4, 1–13. [Google Scholar] [CrossRef]
- Chen, H.; Jog, M.A.; Turkevich, L.A. Computational fluid dynamics simulations of aerosol behavior in a high-speed (Heubach) rotating drum dustiness tester. Particuology 2023, 72, 68–80. [Google Scholar] [CrossRef]
- Kus, T.; Madejski, P. Analysis of the Multiphase Flow With Condensation in the Two-Phase Ejector Condenser Using Computational Fluid Dynamics Modeling. J. Energy Resour. Technol. 2024, 146, 030901. [Google Scholar] [CrossRef]
- Durairaj, R.; Jackson, G.J.; Ekere, N.N.; Glinski, G.; Bailey, C. Correlation of solder paste rheology with computational simulations of the stencil printing process. Solder. Surf. Mt. Technol. 2002, 14, 11–17. [Google Scholar] [CrossRef]
- Clements, D.J.; Desmulliez, M.P.Y.; Abraham, E. The evolution of paste pressure during stencil printing. Solder. Surf. Mt. Technol. 2007, 19, 9–14. [Google Scholar] [CrossRef]
- Krammer, O. Investigating the effect of squeegee attack angle on the solder paste pressure during stencil printing. In Proceedings of the 2015 38th International Spring Seminar on Electronics Technology (ISSE), Eger, Hungary, 6–10 May 2015. [Google Scholar]
- Glinski, G.P.; Bailey, C.; Pericleous, K.A. A non-Newtonian computational fluid dynamics study of the stencil printing process. Proc. Inst. Mech. Eng. Part C 2001, 215, 437–446. [Google Scholar] [CrossRef]
- Ishak, M.H.H.; Aziz, M.S.A.; Samad, M.H.S.A.; Ismail, F.; Salleh, M.A.A.M. Influence of squeegee impact on stencil printing process: CFD approach. IOP Conf. Ser. Mater. Sci. Eng. 2020, 957, 012065. [Google Scholar] [CrossRef]
- Huang, T.; Yuan, Y.; Zheng, J.L.; Avital, E.; Wen, P.H. Large deformations of tapered beam with finite integration method. Eng. Anal. Bound. Elem. 2019, 107, 115–123. [Google Scholar] [CrossRef]
- Ghannadiasl, A.; Khodapanah Ajirlou, S. Dynamic analysis of multiple cracked Timoshenko beam under moving load—Analytical method. J. Vib. Control 2022, 28, 379–395. [Google Scholar] [CrossRef]
- Kimiaeifar, A.; Domairry, G.; Mohebpour, S.R.; Sohouli, A.R.; Davodi, A.G. Analytical solution for large deflections of a cantilever beam under nonconservative load based on homotopy analysis method. Numer. Methods Partial. Differ. Equ. 2011, 27, 541–553. [Google Scholar] [CrossRef]
- Li, Z.; Huang, D.; Yan, K.; Xu, Y. Large deformation analysis of functionally graded beam with variable cross-section by using peridynamic differential operator. Compos. Struct. 2022, 279, 114788. [Google Scholar] [CrossRef]
- Salehi, P.; Yaghoobi, H.; Torabi, M. Application of the differential transformation method and variational iteration method to large deformation of cantilever beams under point load. J. Mech. Sci. Technol. 2012, 26, 2879–2887. [Google Scholar] [CrossRef]
- Osmani, A.; Meftah, S.A. Lateral buckling of tapered thin walled bi-symmetric beams under combined axial and bending loads with shear deformations allowed. Eng. Struct. 2018, 165, 76–87. [Google Scholar] [CrossRef]
- Bilancia, P.; Baggetta, M.; Hao, G.; Berselli, G. A variable section beams based Bi-BCM formulation for the kinetostatic analysis of cross-axis flexural pivots. Int. J. Mech. Sci. 2021, 205, 106587. [Google Scholar] [CrossRef]
- Aghaei, H. Nonlinear extensional-flexural vibrations in variable cross section beams with eccentric intermediate mass. Int. J. Mech. Sci. 2021, 196, 106248. [Google Scholar] [CrossRef]
- Dunkerley, K.; Hughes, J. Screen Printing Machines for Carpets. J. Soc. Dye. Colour. 2008, 91, 265–276. [Google Scholar] [CrossRef]
- Mannan, S.H.; Ekere, N.N.; Ismail, I.; Lo, E.K. Squeegee deformation study in the stencil printing of solder pastes. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 1994, 17, 470–476. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, Z.; Ji, C.; Chen, Y. Mathematical modelling of flow field in 3-dimensional additive printing. Int. J. Mech. Sci. 2022, 224, 107326. [Google Scholar] [CrossRef]
- Jeong, J.T.; Kim, M.U. Slow Viscous Flow Due to Sliding of a Semi-Infinite Plate over a Plane. J. Phys. Soc. Jpn. 1985, 54, 1789–1799. [Google Scholar] [CrossRef]
- Owczarek, J.; Howland, F.L. Study of the Off-Contact Screen Printing Process—I: Model of the Printing Process and Some Results Derived from Experiments; Institute for Electrical and Electronics Engineers (IEEE): New York, NY, USA, 1990; Volume 13, pp. 358–367. [Google Scholar]
- Owczarek, J.; Howland, F.L. Study of the Off-Contact Screen Printing Process—II: Analysis of the Model of the Printing Process; Institute for Electrical and Electronics Engineers (IEEE): New York, NY, USA, 1990; Volume 13, pp. 368–375. [Google Scholar]
- Jewell, E. Hydrodynamic Interactions in the Screen Printing Process. J. Prepress Print. Technol. 2003, 1, 10–17. [Google Scholar]
- White, G.S.; Breward, C.J.W.; Howell, P.D.; Young, R.J.S. A model for the screen-printing of Newtonian fluids. J. Eng. Math. 2005, 54, 49–70. [Google Scholar] [CrossRef]
- Taroni, M.; Breward, C.J.W.; Howell, P.D.; Oliver, J.M.; Young, R.J.S. The screen printing of a power-law fluid. J. Eng. Math. 2011, 73, 93–119. [Google Scholar] [CrossRef]
- Fox, I.J.; Bohan, M.F.J.; Claypole, T.C.; Gethin, D.T. Film thickness prediction in halftone screen-printing. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2003, 217, 345–359. [Google Scholar] [CrossRef]
- Kanwal, M.; Wang, X.; Shahzad, H.; Chen, Y.; Sajid, M. Mathematical modeling of micropolar fluid in blade coating using lubrication theory. SN Appl. Sci. 2020, 2, 561. [Google Scholar] [CrossRef]
- Sunar, M.; Bakar, M.A.; Jalar, A.; Ramli, M.R.; Ani, F.C. Effect of alloy particle size and stencil aperture shape on solder printing quality. Microelectron. Int. 2022, 39, 81–90. [Google Scholar] [CrossRef]
- Hawkyard, C.; Miah, S. The parameters of rotary-creen printing. J. Soc. Dye. Colour. 2008, 103, 27–31. [Google Scholar] [CrossRef]
- Özdemir, L.; Kurt, B.; Akgul, A.; Oktav, M.; Nayci Duman, M. Optimization of ink consumption in screen printing within color difference limits. Pigment. Resin. Technol. 2022, 53, 17–27. [Google Scholar] [CrossRef]
- Ghadiri, F.; Ahmed, D.H.; Sung, H.J.; Shirani, E. Non-Newtonian ink transfer in gravure–offset printing. Int. J. Heat Fluid Flow 2011, 32, 308–317. [Google Scholar] [CrossRef]
- Yang, J.; Yang, J.; Huang, Y.; Sun, H. Deflection prediction of assembly integral steel-concrete floor voided with steel mesh boxes. J. Constr. Steel Res. 2024, 213, 108344. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Venner, C.H.; Sun, H. A thermal EHL investigation for finite line contact under starved condition on bush-pin hinge pairs in industrial chains. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2022, 237, 1119–1132. [Google Scholar] [CrossRef]
- Wang, H.; Qian, J.; Li, H.; Ding, F. Rheological characterization and simulation of chitosan-TiO 2 edible ink for screen-printing. Progress. Org. Coat. 2018, 120, 19–27. [Google Scholar] [CrossRef]
- Tian, Z.H.; Duan, L.; Wu, L.; Shen, L.; Li, G. Rheological properties of glutaraldehyde-crosslinked collagen solutions analyzed quantitatively using mechanical models. Mater. Sci. Eng. C 2016, 63, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Huang, S. Study on the Rheological Behaviors, Thixotropy, and Printing Characteristics of Screen Printing Slurry for Nd-Fe-B. Materials 2024, 17, 4626. [Google Scholar] [CrossRef]
Parameter | L (mm) | (mm) | h (mm) | |
---|---|---|---|---|
Value | 69.42 | 35 | 6.5 | 9 |
Group | 1 | 2 | 3 | Average | |
---|---|---|---|---|---|
Name | |||||
F | 20 N | 1.043 | 1.055 | 1.050 | 1.049 |
30 N | 1.102 | 1.096 | 1.093 | 1.097 | |
40 N | 1.145 | 1.141 | 1.138 | 1.141 | |
1.345 | 1.312 | 1.333 | 1.330 | ||
1.29 | 1.278 | 1.278 | 1.282 | ||
1.134 | 1.150 | 1.138 | 1.141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Li, P.; Chen, Y.; Chi, X.; Sun, Y. Thickness Model of the Adhesive on Spacecraft Structural Plate. Aerospace 2025, 12, 159. https://doi.org/10.3390/aerospace12020159
Guo Y, Li P, Chen Y, Chi X, Sun Y. Thickness Model of the Adhesive on Spacecraft Structural Plate. Aerospace. 2025; 12(2):159. https://doi.org/10.3390/aerospace12020159
Chicago/Turabian StyleGuo, Yanhui, Peibo Li, Yanpeng Chen, Xinfu Chi, and Yize Sun. 2025. "Thickness Model of the Adhesive on Spacecraft Structural Plate" Aerospace 12, no. 2: 159. https://doi.org/10.3390/aerospace12020159
APA StyleGuo, Y., Li, P., Chen, Y., Chi, X., & Sun, Y. (2025). Thickness Model of the Adhesive on Spacecraft Structural Plate. Aerospace, 12(2), 159. https://doi.org/10.3390/aerospace12020159