Adaptive Fast Smooth Second-Order Sliding Mode Fault-Tolerant Control for Hypersonic Vehicles
<p>Geometric parameters of the HSV model.</p> "> Figure 2
<p>The structure diagram of the control system.</p> "> Figure 3
<p>Angle of bank.</p> "> Figure 4
<p>Angle of attack.</p> "> Figure 5
<p>Sideslip angle and error.</p> "> Figure 6
<p>Error of bank angle.</p> "> Figure 7
<p>Error of attack.</p> "> Figure 8
<p>Variation of <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mi>a</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 9
<p>Variation of <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mi>e</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 10
<p>Variation of <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mi>r</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 11
<p>Angle of bank.</p> "> Figure 12
<p>Angle of attack.</p> "> Figure 13
<p>Sideslip angle and error.</p> "> Figure 14
<p>Error of bank angle.</p> "> Figure 15
<p>Error of attack.</p> "> Figure 16
<p>Variation of <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mi>a</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 17
<p>Variation of <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mi>e</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 18
<p>Variation of <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mi>r</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 19
<p>Aerodynamic uncertainty scatter plot.</p> "> Figure 20
<p>Bank angle of TSMFTC.</p> "> Figure 21
<p>Attack angle of TSMFTC.</p> "> Figure 22
<p>Sideslip angle of TSMFTC.</p> "> Figure 23
<p>Bank angle of AFSSOSMFTC.</p> "> Figure 24
<p>Attack angle of AFSSOSMFTC.</p> "> Figure 25
<p>Sideslip angle of AFSSOSMFTC.</p> "> Figure 26
<p>Angle of bank.</p> "> Figure 27
<p>Angle of attack.</p> "> Figure 28
<p>Sideslip angle and error.</p> "> Figure 29
<p>Error of bank angle.</p> "> Figure 30
<p>Error of attack.</p> "> Figure 31
<p>Variation of <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mi>a</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 32
<p>Variation of <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mi>e</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 33
<p>Variation of <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mi>r</mi> </msub> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
- (1)
- Considering the coupling model between lateral and longitudinal dynamics of HSVs, we divide the model into fast and slow loop systems. Controllers and observers are designed for each loop to achieve control objectives.
- (2)
- The article proposed an AFSSOSMFTC method. It involves designing a fixed-time disturbance observer to estimate and compensate for aggregated disturbances and non-catastrophic faults in actuators. A first-order differentiator is also introduced to avoid the explosion of complexity. The controller parameters are dynamically adjusted through an adaptive term, enhancing the robustness of the controller.
2. Establishment of the HSV Model
3. Control-Oriented HSV Model
4. Controller Design
- (1)
- The controller should ensure the stability of the HSV in the presence of external disturbances and actuator faults.
- (2)
- Throughout the flight, the controller should effectively achieve continuous and stable tracking of target commands by the HSV.
4.1. Fixed-Time Disturbance Observer Design
4.1.1. Controller Design Steps
4.1.2. Integral Sliding Surface
4.1.3. Controller Structure
- (1)
- Design of the slow loop controller
- (2)
- Design of the fast loop controller
4.2. Stability Analysis
- (1)
- Proof of Convergence for the Fixed-Time Disturbance Observer
- (2)
- Proof of Convergence for the Controller
5. Simulation Verification
- (1)
- Terminal Sliding Mode Fault-Tolerant Controller
5.1. Scenario 1
5.2. Scenario 2
5.3. Scenario 3
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Wu, T.; Zhu, Z.; Ma, C. Reinforcement Learning–Based Adaptive Attitude Control Method for a Class of Hypersonic Flight Vehicles Subject to Nonaffine Structure and Unmatched Disturbances. J. Aerosp. Eng. 2024, 37, 4024003. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, Y. Active Disturbance Rejection Control for Hypersonic Flutter Suppression Based on Parametric ROM. J. Aerosp. Eng. 2020, 33, 4020083. [Google Scholar] [CrossRef]
- Li, Y.; Wang, F.; Zhou, C. Prescribed performance filter backstepping control of hypersonic vehicle with full state constraints. Acta Aeronaut. Astronaut. Sin. 2020, 41, 109–120. [Google Scholar]
- Wang, Z.S.; Liao, Y.X.; Wei, C.S.; Dai, T. Fault tolerant Control of Fast Terminal Sliding Mode Preserving Performance of Hypersonic Vehicle. Acta Aeronaut. Astronaut. Sin. 2023, 44, 328476. [Google Scholar] [CrossRef]
- Guo, J.; Peng, Q.; Zhou, J. Disturbance Observer–Based Nonlinear Model Predictive Control for Air-Breathing Hypersonic Vehicles. J. Aerosp. Eng. 2019, 32, 4018121. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, X.; Lu, K.; Bai, W.; Huang, W. Research Progress and Prospect of the Hypersonic Flight Vehicle Control Technology. J. Astronaut. 2022, 43, 866–879. [Google Scholar] [CrossRef]
- Xu, B.; Shi, Z. An overview on flight dynamics and control approaches for hypersonic vehicles. Sci. China Inf. Sci. 2015, 58, 1–19. [Google Scholar] [CrossRef]
- Wang, Y.; Chao, T.; Wang, S.; Yang, M. Byrnes-Isidori-based dynamic sliding-mode control for nonminimum phase hypersonic vehicles. Aerosp. Sci. Technol. 2019, 95, 105478. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, P.; Tang, G.; Bao, W. Fixed-time sliding mode control for hypersonic morphing vehicles via event-triggering mechanism. Aerosp. Sci. Technol. 2023, 140, 108458. [Google Scholar] [CrossRef]
- Bu, X.; Jiang, B.; Feng, Y.A. Hypersonic tracking control under actuator saturations via readjusting prescribed performance functions. ISA Trans. 2023, 134, 74–85. [Google Scholar] [CrossRef]
- Huang, H.; Luo, C.; Han, B. Prescribed performance fuzzy back-stepping control of a flexible air-breathing hypersonic vehicle subject to input constraints. J. Intell. Manuf. 2022, 33, 853–866. [Google Scholar] [CrossRef]
- Zuo, R.; Li, Y.; Lv, M.; Liu, Z. Realization of trajectory precise tracking for hypersonic flight vehicles with prescribed performances. Aerosp. Sci. Technol. 2021, 111, 106554. [Google Scholar] [CrossRef]
- Wang, G.; Xia, H.W. A Learning-based Intelligent Control Method for Hypersonic Flight Vehicle. J. Astronaut. 2023, 44, 233–242. [Google Scholar] [CrossRef]
- Zhang, Y.; Shou, Y.; Zhang, P.; Han, W. Sliding mode based fault-tolerant control of hypersonic reentry vehicle using composite learning. Neurocomputing 2022, 484, 142–148. [Google Scholar] [CrossRef]
- An, H.; Wang, C.; Fidan, B. Sliding mode disturbance observer-enhanced adaptive control for the air-breathing hypersonic flight vehicle. Acta Astronaut. 2017, 139, 111–121. [Google Scholar] [CrossRef]
- Guo, R.; Ding, Y.; Yue, X. Active adaptive continuous nonsingular terminal sliding mode controller for hypersonic vehicle. Aerosp. Sci. Technol. 2023, 137, 108279. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, P.; Liu, L.; Tang, G. Predictive Sliding Mode Control Using Feedback Linearization for Hypersonic Vehicle. Procedia Eng. 2015, 99, 1076–1081. [Google Scholar] [CrossRef]
- Zhong, Q.; Zhao, J.Q.; Liu, R.F.; Du, W.; Dai, P. Disturbance Observer–Based Backstepping Control for Hypersonic Vehicles with Input Constraints. J. Aerosp. Eng. 2024, 37, 4023092. [Google Scholar] [CrossRef]
- Hu, Q.; Meng, Y. Adaptive backstepping control for air-breathing hypersonic vehicle with actuator dynamics. Aerosp. Sci. Technol. 2017, 67, 412–421. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, B.; Wu, F.; Hu, X.; Hong, R. HOSM observer based robust adaptive hypersonic flight control using composite learning. Neurocomputing 2018, 295, 98–107. [Google Scholar] [CrossRef]
- An, H.; Wang, Y.; Wu, Q.; Wang, C. Dual-mode control of hypersonic vehicles. Control Eng. Pract. 2023, 131, 105392. [Google Scholar] [CrossRef]
- Xia, R.; Chen, M.; Wu, Q.; Wang, Y. Neural network based integral sliding mode optimal flight control of near space hypersonic vehicle. Neurocomputing 2020, 379, 41–52. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, P.; He, R.; Tang, G.; Bao, W. Event-triggered attitude control for hypersonic morphing vehicles using fixed-time control technique. Aerosp. Sci. Technol. 2024, 144, 108773. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, W.; Wei, C.; Xu, T. Nonlinear disturbance observer based adaptive super-twisting sliding mode control for generic hypersonic vehicles with coupled multisource disturbances. Eur. J. Control 2021, 57, 253–262. [Google Scholar] [CrossRef]
- Wang, L.; Qi, R.; Jiang, B. Adaptive actuator fault-tolerant control for non-minimum phase air-breathing hypersonic vehicle model. Isa Trans. 2022, 126, 47–64. [Google Scholar] [CrossRef]
- Shen, Q.; Jiang, B.; Cocquempot, V. Fault-Tolerant Control for T–S Fuzzy Systems with Application to Near-Space Hypersonic Vehicle with Actuator Faults. IEEE Trans. Fuzzy Syst. 2012, 20, 652–665. [Google Scholar] [CrossRef]
- Guo, F.; Lu, P. Improved Adaptive Integral-Sliding-Mode Fault-Tolerant Control for Hypersonic Vehicle with Actuator Fault. IEEE Access 2021, 9, 46143–46151. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, L.; Xu, J. Adaptive fault-tolerant controller for morphing aircraft based on the L2 gain and a neural network. Aerosp. Sci. Technol. 2023, 132, 107985. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, C.; Li, Y.; Huang, J. Adaptive Control for Hypersonic Vehicles with Time-Varying Faults. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1442–1455. [Google Scholar] [CrossRef]
- Lv, J.; Wang, C.; Kao, Y. Adaptive fixed-time quantized fault-tolerant attitude control for hypersonic reentry vehicle. Neurocomputing 2023, 520, 386–399. [Google Scholar] [CrossRef]
- Gao, M.; Yao, J. Finite-time H∞ adaptive attitude fault-tolerant control for reentry vehicle involving control delay. Aerosp. Sci. Technol. 2018, 79, 246–254. [Google Scholar] [CrossRef]
- Liang, X.; Wang, Q.; Hu, C.; Dong, C. Fixed-time observer based fault tolerant attitude control for reusable launch vehicle with actuator faults. Aerosp. Sci. Technol. 2020, 107, 106314. [Google Scholar] [CrossRef]
- Wu, T.; Wang, H.; Yu, Y.; Liu, Y.; Wu, J. Quantized fixed-time fault-tolerant attitude control for hypersonic reentry vehicles. Appl. Math. Model. 2021, 98, 143–160. [Google Scholar] [CrossRef]
- Keshmiri, S.; Colgren, R.; Mirmirani, M. Development of an Aerodynamic Database for a Generic Hypersonic Air Vehicle. In Proceedings of the AIAA 2005-6251, San Francisco, CA, USA, 15–18 August 2005. [Google Scholar]
- Basin, M.; Yu, P.; Shtessel, Y. Finite- and fixed-time differentiators utilising HOSM techniques. IET Control Theory Appl. 2017, 11, 1144–1152. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Lu, R.; Zuo, Z.; Li, X. An Overview of Finite/Fixed-Time Control and Its Application in Engineering Systems. IEEE/CAA J. Autom. Sin. 2022, 9, 2106–2120. [Google Scholar] [CrossRef]
Parameter | Parameter Value |
---|---|
Module | Parameters |
---|---|
Slow Loop | |
Sliding mode surface in Equation (15) and the controller in Equation (18) | |
Disturbance observer in Equation (16) | |
First-order filter in Equation (19) | |
Fast Loop | |
Sliding mode surface in Equation (20) and the controller in Equation (23) | |
Disturbance observer in Equation (21) | |
First-order filter in Equation (24) |
Module | Parameters |
---|---|
Slow Loop | |
Sliding mode surface in Equation (45) and controller in Equation (46) | |
Fast Loop | |
Sliding mode surface in Equation (45) and controller in Equation (47) |
Scenario 1 | Angle of Bank (deg) | Angle of Attack (deg) | Sideslip Angle (deg) |
---|---|---|---|
AFSSOSMFTC | 0.02085 | 0.02055 | 0.02130 |
TSMFTC | 0.06052 | 0.06139 | 0.05795 |
Scenario 1 | Angle of Bank (deg) | Angle of Attack (deg) | Sideslip Angle (deg) |
---|---|---|---|
AFSSOSMFTC | 0.02084 | 0.02054 | 0.02130 |
TSMFTC | 0.06047 | 0.06131 | 0.05792 |
Scenario 2 | Angle of Bank (deg) | Angle of Attack (deg) | Sideslip Angle (deg) |
---|---|---|---|
AFSSOSMFTC | 0.00400 | 0.00329 | 0.00462 |
TSMFTC | 0.04057 | 0.10290 | 0.00742 |
Scenario 2 | Angle of Bank (deg) | Angle of Attack (deg) | Sideslip Angle (deg) |
---|---|---|---|
AFSSOSMFTC | 0.00400 | 0.00329 | 0.00462 |
TSMFTC | 0.04057 | 0.10286 | 0.00742 |
Scenario 3 | Angle of Bank (deg) | Angle of Attack (deg) | Sideslip Angle (deg) |
---|---|---|---|
AFSSOSMFTC | 0.00434 | 0.00330 | 0.00462 |
TSMFTC | 0.04201 | 0.10313 | 0.00716 |
Scenario 3 | Angle of Bank (deg) | Angle of Attack (deg) | Sideslip Angle (deg) |
---|---|---|---|
AFSSOSMFTC | 0.00434 | 0.00330 | 0.00462 |
TSMFTC | 0.04201 | 0.10309 | 0.00716 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Liu, L.; Ji, P.; Guo, C. Adaptive Fast Smooth Second-Order Sliding Mode Fault-Tolerant Control for Hypersonic Vehicles. Aerospace 2024, 11, 951. https://doi.org/10.3390/aerospace11110951
Cao L, Liu L, Ji P, Guo C. Adaptive Fast Smooth Second-Order Sliding Mode Fault-Tolerant Control for Hypersonic Vehicles. Aerospace. 2024; 11(11):951. https://doi.org/10.3390/aerospace11110951
Chicago/Turabian StyleCao, Lijia, Lei Liu, Pengfei Ji, and Chuandong Guo. 2024. "Adaptive Fast Smooth Second-Order Sliding Mode Fault-Tolerant Control for Hypersonic Vehicles" Aerospace 11, no. 11: 951. https://doi.org/10.3390/aerospace11110951
APA StyleCao, L., Liu, L., Ji, P., & Guo, C. (2024). Adaptive Fast Smooth Second-Order Sliding Mode Fault-Tolerant Control for Hypersonic Vehicles. Aerospace, 11(11), 951. https://doi.org/10.3390/aerospace11110951