
 International Journal of

Geo-Information

Article

Hierarchical Point Matching Method Based on
Triangulation Constraint and Propagation

Jingxue Wang 1,2,* , Ning Zhang 1 , Xiangqian Wu 3 and Weixi Wang 4

1 School of Geomatics, Liaoning Technical University, Fuxin 123000, China; 471820543@stu.lntu.edu.cn
2 Collaborative Innovation Institute of Geospatial Information Service, Liaoning Technical University,

Fuxin 123000, China
3 Combat Data Laboratory, Joint Logistic Support Force of PLA, Wuhan 430010, China;

wuxiangqian@prodetec.cn
4 Research Institute of Smart Cities, School of Architecture and Urban Planning, Shenzhen University,

Shenzhen 518060, China; wangwx@szu.edu.cn
* Correspondence: jingxue.wang@ucalgary.ca

Received: 24 April 2020; Accepted: 24 May 2020; Published: 26 May 2020
����������
�������

Abstract: Reliable image matching is the basis of image-based three-dimensional (3D) reconstruction.
This study presents a quasi-dense matching method based on triangulation constraint and propagation
as applied to different types of close-range image matching, such as illumination change, large
viewpoint, and scale change. The method begins from a set of sparse matched points that are
used to construct an initial Delaunay triangulation. Edge-to-edge matching propagation is then
conducted for the point matching. Two types of matching primitives from the edges of triangles with
areas larger than a given threshold in the reference image, that is, the midpoints of edges and the
intersections between the edges and extracted line segments, are used for the matching. A hierarchical
matching strategy is adopted for the above-mentioned primitive matching. The points that cannot be
matched in the first stage, specifically those that failed in a gradient orientation descriptor similarity
constraint, are further matched in the second stage. The second stage combines the descriptor and
the Mahalanobis distance constraints, and the optimal matching subpixel is determined according to
an overall similarity score defined for the multiple constraints with different weights. Subsequently,
the triangulation is updated using the newly matched points, and the aforementioned matching is
repeated iteratively until no new matching points are generated. Twelve sets of close-range images
are considered for the experiment. Results reveal that the proposed method has high robustness for
different images and can obtain reliable matching results.

Keywords: quasi-dense matching; descriptor; Mahalanobis distance; triangulation constraint;
matching propagation

1. Introduction

Image matching is a process of identifying corresponding features on different images and is an
essential step in image processing, such as three-dimensional (3D) reconstruction, image fusion, and
target tracking [1–3]. Numerous research papers were published in the field of image matching [4–10].
Existing image matching approaches can be classified into three categories according to the number
of matching results: (i) feature-based sparse matching, which is focused on the construction of a
descriptor and is widely used in initial matching to calculate projection parameters; (ii) quasi-dense
stereo matching algorithm based on region growing, which is focused on matching strategies, such as
matching constraints and matching propagation; (iii) dense pixel matching, which is mostly used in
binocular stereo vision.
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This study mainly aims to obtain matching results as dense as possible for different types of
images on the basis of initial sparse matching and matching propagation, and this study belongs
to the quasi-dense matching domain. The use of matching constraints is key in this method, and
the widely used epipolar constraint can be used to reduce the matching search space from two
dimensions (2D) to one dimension (1D). However, a large search space may exist, and this space is
generally combined with other various geometric constraints, such as parallax constraints [11], Voronoi
diagram [12–14], and Delaunay triangulation [15,16]. The search range of the epipolar line can be
limited to the internal corresponding triangle when combined with the triangulation constraint [17].
Li et al. [18] proposed a Voronoi diagram-based propagation stereo matching algorithm that firstly
subdivides the whole image into N cells by using the Voronoi diagram of the seed feature points;
then, the corresponding relations are propagated from the seed in each cell until all pixels within this
cell are processed. Similarly, Delaunay triangulation is widely used in matching [19–21]. Delaunay
triangulation is a form of a vector-based digital surface model constructed by a set of unorganized
points, whose main contributions in matching are constraint matching and matching propagation
through region segmentation of triangle meshes [22]. Zhao et al. [23] used Delaunay triangulation
to remove outliers in iterative matching by comparing Delaunay graph structures and then used the
dual graph of Delaunay to check the above-mentioned results, recover inliers, and remove outliers.
Ahuja et al. [24] proposed that a point within a triangle in a single image be matched to a point within
the corresponding triangle in another image, and this approach is called local position constraint.
Guo et al. [25] utilized the relationship between the matching point and the vertices of a triangle for
constraint matching candidates. Zhu et al. [26,27] added a parallax gradient to the constraint matching
candidates on the basis of the corresponding triangles established by the existing corresponding points
on the epipolar stereo pair. The method requires a vertex of a triangle with the highest matching
reliability to be selected as the reference point, and the parallax gradient is assumed to be related
to the ratio of the distance between the reference and potential matching points to their difference
in the parallax. The aforementioned methods can produce reliable matching results, but they only
consider the point matching. Wu et al. [28] proposed a matching method that integrates point and edge
matching based on self-adaptive edge-constrained triangulations to incorporate edge features in the
matching and improve the image matching performance of poor textural images. The method takes
advantage of edge information and updates triangulations dynamically. It is used for space-borne,
airborne, and terrestrial image matching and can produce reliable matching results for poor textural
images. However, it only uses image feature information. Jia et al. [29] proved the mathematical
property of equal proportion of triangulation affine transformation as a means of obtaining much
denser matching results and proposed a dense matching method for wide baseline images based on
the theory. In their method, the equal proportion points on the corresponding edges of triangles in two
views that satisfy the similarity constraints are regarded as corresponding points. The method can
achieve dense matching of images with continuous scenes but lacks robustness for different types of
images, especially large viewpoint change images with discontinuous surfaces.

This study proposes a new quasi-dense matching method based on triangulation constraint and
propagation. The proposed method can achieve dense matching and consider the edge features of the
image. Compared with existing approaches, our method has several advantages. Firstly, we introduce
the intersections between edge line segments and triangulation as matching primitives. In this manner,
more matches can be generated, and the image edge feature is considered at the same time. Secondly,
we propose a new descriptor for point dense matching that adopts overlapped subregions to increase
the correlation between description vectors and contributes to the generation of dense matching results.
Thirdly, we adopt the hierarchical matching strategy by integrating additional matching into the second
stage to reach subpixel accuracy. An overall similarity score is defined to integrate the descriptor
similarity measure, the distance of the point from a triangle’s edge, Mahalanobis distance, and the
distance of the point from the epipolar line as the four similarity measures with different weights to
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determine the best matching result. This stage helps generate more corresponding points and improves
matching results.

The remainder of the paper is organized as follows: Section 2 introduces our hierarchical
point matching method; Section 3 presents the experiments conducted on twelve image pairs and
demonstrates the performance of our method by integrating additional matching into the hierarchical
matching strategy; Section 4 offers the concluding remarks and suggests future work.

2. Proposed Method

The flowchart of the proposed dense matching algorithm is illustrated in Figure 1. The input
data of our method consist of two images. An image is selected as the reference image while the
other image acts as the search image. The scale-invariant feature transform (SIFT) algorithm [30] is
used to obtain the initial corresponding points. Incorrect matches are removed by the random sample
consensus algorithm (RANSAC) [31], and correct point-to-point correspondences are obtained. Next,
the corresponding Delaunay triangulation is constructed in both images. The line segments extracted
from the reference image are used to generate intersection points with triangles in the reference
image, which are used as matching primitives for the succeeding matching. For each triangle with an
area greater than the given threshold Ts, the midpoints of the three sides and the intersection points
mentioned above are matched in turn. Whether new corresponding points are generated after all the
triangles are processed should be assessed. If new corresponding points are generated, then Delaunay
triangulation is updated with these new points, and the aforementioned steps are repeated iteratively
until no new corresponding points are generated. Otherwise, the matching is stopped. Thereafter,
the final matching results are outputted.
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Two types of matching primitives are applied in our study. One includes the midpoints of three
edges of the triangle, and the other is the intersection point of the extracted line segments and edges
of the triangles. In the following sections, both primitives are referred to as the midpoint and the
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intersection point, respectively. The proposed method is an iterative matching process that includes
two stages in each iteration, with each stage corresponding to a matching strategy. In the first matching
stage, we match points only by using the proposed SIFT-like local gradient descriptors and Euclidean
distances. In the case of unmatched points, we further match them in the second stage by utilizing
multiple constraints, which is described in Section 2.2.

2.1. Point Matching Based on Descriptors with Overlapping Subregions

For any triangle with an area greater than Ts in the reference image, the midpoints of the three
sides and the intersections between the triangle and line segments are calculated. We suppose that
the triangles ∆abc and ∆a′b′c′ are a pair of corresponding triangles (Figure 2), and the corresponding
vertices (A, A′), (B, B′), and (C, C′) are three pairs of corresponding points. For any midpoint a,
its candidate point a′ is the midpoint of the corresponding side of the corresponding triangle in the
search image. For any intersection point d, its candidate point d′ is the intersection point between the
epipolar line of point d in the search image and the corresponding side of the corresponding triangle in
the search image. For each correspondence hypothesis (a, a′) or (d, d′), we propose a new descriptor
for similarity measure calculation and determine whether the hypothesis offers the correct match.
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Figure 2. Two types of matching primitives and their corresponding matching hypotheses. Three sets
of midpoint correspondence hypotheses are (a, a′), (b, b′), and (c, c′); (d, d′) is an intersection point
correspondence hypothesis.

2.1.1. Descriptor Construction

The feature descriptor in the feature matching process is an important algorithm because it
extracts pertinent information and encodes it into feature vectors, which are then used to differentiate a
feature from another or find the same features. With the popularization of the SIFT descriptor [32–34],
many descriptors based on histograms of gradient orientations, such as ASIFT [35] and Daisy [36],
were proposed. These descriptors have high robustness for different types of images during matching,
but they also have high computational complexity. As such, we propose a new SIFT-like descriptor for
the local neighborhood of a point that not only offers the advantages of the SIFT descriptor but also
reduces the computation cost. The descriptor construction is processed as described below.

Firstly, Gaussian filtering is used to reduce the image noise. Then, the neighborhood window
with a center at the target point is built for the descriptor construction. The size of the window is
(2w + 1) × (2w + 1), (w = 3, 4 . . . , n). In this study, we set w = 4. We assume that the coordinates of
the target point are (x0, y0) and the coordinates of the four corners of the neighborhood window are
(x0 −w, y0 −w), (x0 + w, y0 −w), (x0 −w, y0 + w), and (x0 + w, y0 + w). The neighborhood window
is then divided into four subregions, in which the square areas with the target point and the four
corners of the neighborhood window are used to set the diagonals. The size of each subregion is
(w + 1) × (w + 1). The schematic is shown in Figure 3. The four subregions with overlapping regions,
which all include the row and column where the target point is located, are obtained. This strategy
increases the correlation between regions and avoids the influence of region inconsistency caused by
large viewpoint changes.
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Secondly, each subregion is again divided into four square regions with the same sizes, and
16 small patches are obtained around the target point. A gradient magnitude histogram with four
orientations is then calculated in each small patch. As the impact of the nearby points on the descriptor
increases, the distance di from each point in the patch to the target point is calculated, and each gradient
magnitude is weighted by the corresponding distance di with the function gradienttrue = gradient× e−di

in the statistical process. Then, a statistical description vector about the gradient magnitudes in
the four directions for each small patch is obtained, the description vectors of four small patches in
the subregion are stacked, and a 4 × 4 description matrix for this subregion is obtained. Thereafter,
inspired by the mean-standard deviation line descriptor (MSLD) descriptor [37], the mean and standard
deviation vectors of matrix are calculated and normalized, respectively, to unit norm to make the
descriptor invariant to linear changes of illumination. Finally, the descriptor vector with a length of
32 is obtained by concatenating the normalized mean vector of four subregions with the normalized
standard deviation vector of four subregions into a single vector.

Our design of the descriptor adopts the subregions overlapping one another in the feature
description, which increases the correlation between description vectors and contributes to the
generation of dense matching results.

2.1.2. Dissimilarity Measure

For two points in any set of matching hypotheses in the first matching stage, the two descriptors
descriptor1 and descriptor2 are obtained for the reference and search image points, and Euclidean
distance is used to calculate the dissimilarities between the descriptors. If the Euclidean distance
distance1−2 is smaller than the given threshold T1, then this set of matching hypotheses is considered
correct, that is, the two points in the matching hypotheses are a pair of corresponding points.

2.2. Point Matching with Multiple Constraints

Points that could not be matched in the first stage are further matched using a strategy with
multiple constraints as described below.

Firstly, for reference point a with an initial candidate point denoted as a′, we define the searching
region as a square with a center at point a′ and a length of (2m + 1), where m is a user-defined
parameter. In this study, we set m = 1. All pixels in the searching window are regarded as matching
candidates. For each candidate, we build its descriptor and calculate the Euclidean distance distance1−2

between two descriptors of reference and candidate point. If at least one candidate point satisfies the
condition in which the distance1−2 value is smaller than the threshold T2, then the optimal matching
with subpixel accuracy should be determined further by utilizing multiple constraints.

Secondly, we divide each candidate point satisfied by the Euclidean distance constraint mentioned
above into grids and obtain a set of candidate subpixels. For each candidate subpixel, three dissimilarity
measures are defined as described below.
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The first dissimilarity measure distancep−l is the distance of the candidate subpixel from the
epipolar line corresponding to the reference point (Figure 4). In this study, the epipolar line is calculated
using the fundamental matrix obtained by corresponding points [38]. Its formula is le = Fx′ ; le′ = Fx,
where x and x′ are the corresponding points on both images, F is the fundamental matrix, and le
and le′ are the corresponding epipolar lines on both images. In theory, the corresponding points are
located on the corresponding epipolar lines, but small deviations may exist due to the inaccuracy of
the fundamental matrix.
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The second dissimilarity measure distancep−s is the distance of the candidate subpixel from the
corresponding side in the corresponding triangle, as shown in Figure 4.

The third dissimilarity measure is related to the Mahalanobis distance, which was introduced by
P.C. Mahalanobis in 1936. This distance is a measure of the distance between a point and a distribution.
The formula is as follows:

Mahalanobis distance =
√
(x− µ)T∑−1(x− µ) (1)

where x is a sample point, µ is the mean value of a set of sample points, and
∑

is the covariance matrix.
In this study, the Mahalanobis distance can also be defined as a dissimilarity measure between two
random vectors x and y of the same distribution with the covariance matrix

∑
,

Mahalanobis distance =
√
(x− y)T∑−1(x− y) (2)

where x and y are two matched points in a single image. We suppose the corresponding points on both
images are denoted by the two sets s and s′. For any new point-to-point correspondence (a, a′′ ) on
both images, the Mahalanobis distance between a and the corresponding points in the set s is similar
to that between a′′ and the corresponding points in the set s′. The dissimilarity measure distancem

is defined on the basis of this principle. To reduce the computational complexity, we only calculate
the Mahalanobis distance between the point and the three vertices of the triangle where the point
is located. We assume that dm1 and dm2 are the Mahalanobis distance vector of 3 × 1 corresponding
to the reference and candidate points, respectively. We define the third dissimilarity measure as
distancem = mean(

∣∣∣dm1 − dm2
∣∣∣) , where mean() denotes the ratio of the sum of all elements in the vector

and the total number of elements in the vector.
On the basis of the third dissimilarity measure mentioned above, we define two thresholds Tk,

where k ∈ {3, 4}, and eliminate the candidate subpixels with any element in |dm1 − dm2| greater than T3

or distancem > T4. Thus, only the subpixels fulfilling the two constraints above are retained. Then, an
overall matching similarity score Θs related to four dissimilarity measures is determined to achieve the
optimal matching subpixel for the reference point.

Θs = w1 ∗ e−distance1−2 + w2 ∗ e−distancem + w3 ∗ e−distancep−l + w4 ∗ e−distancep−s (3)
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where wk represents the different weights corresponding to four dissimilarity measures, in which
k ∈ {1, 2, 3, 4}. In this study, we set the weights to 0.45, 0.25, 0.15, and 0.15, respectively. As for all the
remaining potential matching subpixels, we calculate Θs and find the highest overall similarity score if
the highest value is larger than the given threshold T5, which corresponds to the subpixel selected as
the final matching point.

2.3. Matching Propagation

In the existing graph-based constraint matching, the images are divided into different regions
by Delaunay triangulation or Voronoi, and many corresponding regions are usually obtained from
two images. Matching propagation is performed within these regions (i.e., graph constraint matching
propagation). On the basis of the principle in which the corresponding points are located within the
corresponding regions, the matching search is conducted in the corresponding regions in different
views. Most methods use the feature points extracted in the region as the matching primitives [16,26,28].
This propagation method belongs to the patch-to-patch propagation strategy or the triangle-to-triangle
propagation strategy. Different from the region propagation strategies, a new edge-to-edge matching
propagation strategy is adopted in this study. This new strategy uses the edge of the triangle as the
carrier of matching propagation and the two types of points (midpoints and intersections) on the
edge as the matching primitive. As the main principle of this propagation method, triangulation is
updated by inserting newly matched points, new edges are generated as a means of obtaining new
matching points, and matching is performed on the corresponding edges of the corresponding triangles
in different views. Compared with the region-to-region propagation strategy, our proposed strategy
offers the advantage of having an edge that is more stable than the region in theory. The principle of
matching propagation is described in Algorithm 1.

Algorithm 1 Matching propagation strategy to obtain quasi-dense matching

Input: Reference image I1 and search image I2; Initial reliable corresponding points Pt(Pt1,Pt2) ; Line
segments Le extracted from the reference image; Ts; Tk, k = 1, 2, 3, 4, 5; wk, k = 1, 2, 3, 4;

Output: Corresponding points Pt

num1 = 0 , num2 = 1
While (num2 > num1)

num1 = size(Pt, 1) ; Tri1 = Delaunay(Pt1)

f or i = 1 : size(Tri1, 1)
Calculate the area of triangles, S

i f S > TS
Each correspondence hypothesis (a, a′) , # go to the first stage of mathching

Construct the descriptors of two points(des_a, des_a′)
i f dis(des_a, des_a′) ≤ Th1 , Pt = [Pt; [a, a′]]

}
first stage

else # go to the second stage of matching

Building a searching window
f or j = 1 : size(window, 1) ; f or k = 1 : size(window, 2)

i f dis(des_a j,k, des_a′ j,k) ≤ Th2 , grid pixel
Calculate score for each subpixel in pixel( j, k), end

end
i f maxscore ≥ T5, Pt = [Pt; [a, subpixelmaxscore ]], end

end


second stage

end
end

num2 = size(Pt, 1)
end

Return Pt
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During matching propagation, we only deal with newly generating edges of triangles in the
updating process of triangulation to avoid repeated matching in each iteration. The blue triangles
shown in Figure 5a represent the initial triangulation, while the black and green points are the newly
matched points (midpoints and intersections, respectively) generated by the first iteration. We insert
the newly matched points into the initial triangulation and obtain the updated triangulation. The red
edges of triangles in Figure 5b are the newly generated or split edges after the first matching, which
are used in the subsequent iteration matching.
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the number of corresponding points increases greatly. The results of the intersection point and the 
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Figure 6 shows the results of the different stages of matching for the tested stereo pairs, with
Ts = 30. Figure 6b presents the matching result of the second iterations, while Figure 6c shows the final
matching result, that is, the result of the ninth iteration. Two types of matching primitives (the intersection
points and midpoints) are matched by propagation, as shown by the green and red marks, respectively.
The intersection points in Figure 7 are all located on the feature edge of the building, while the midpoints
have an approximately uniform distribution. The numbers of the two types of points increase in each
iteration (Figure 8). As the number of iterations increases, the number of corresponding points and
triangles also increases, especially in the first four iterations in which the number of corresponding points
increases greatly. The results of the intersection point and the midpoint are relatively stable after five
and eight iterations, respectively. These phenomena are consistent with our original assumption that the
number of midpoints increases accordingly with the increase in triangles in the iterations, whereas the
number of extracted line segments in the image is fixed.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 9 of 19 
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3. Further Experiments and Analysis

The performance of our method is evaluated by selecting twelve representative image pairs for
the dense matching (Figure 9). These image pairs include various image transformations, such as
viewpoint changes, scale changes, illumination, and rotation. A computer with a 3.6-GHz central
processing unit (CPU) and 16 GB of random-access memory (RAM) is used for the experiment, and the
code is implemented in Matlab 2016a. Extensive experiments are conducted to select the initial proper
values for certain parameters of the proposed method. Then, hierarchical matching is performed in
different scene images with determined parameters.
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3.1. Parameter Selection

A method for accuracy assessment based on the homography matrix is adopted to assess the
matching accuracy. Firstly, the homography matrix is calculated according to the corresponding points
obtained by matching. Next, the corresponding points in the reference image are mapped onto the
search image by using the homography matrix. The distance histogram is obtained according to the
distance between the mapping and corresponding points. Finally, the inner and outer points are
determined according to the distance histogram, and the matching accuracy is calculated.
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The main parameters to be tuned in our method are Tk, where k ∈ {1, 2, 3, 4, 5}, and Ts. T1 and
T2 are the descriptors for the dissimilarity measure threshold. T1 is used to determine whether the
correspondence hypothesis is correct in the first stage, and T2 controls the matching hypotheses to be
processed in the second matching stage. T3 and T4 are the parameters for the Mahalanobis distance
constraint, and T5 is the overall similarity score threshold used to determine the final matching points
in the second stage. We firstly determine the approximate ranges of the parameters and steps according
to the histogram distribution of the operation results of all image pairs. Then, initial parameter values
are selected (Table 1) after the experimental analysis of representative image pairs. Thereafter, all the
image pairs are used to for parametric analysis. Owing to the relatively complex interaction between
the parameters in the iterative process and the parameter analysis of the unsupervised results, we
adopt the following strategy to determine the parameters. We firstly set the initial parameter values
and then update each of the parameters in turn according to the matching results. After parametric
analysis of the first eight image pairs (Figure 9a–h) according to the above-mentioned strategy, we find
that all test image pairs satisfy a set of parameter values optimally or have only small deviations from
the initial parameter values; thus, this set of parameters is chosen as the final parameters for matching
(Table 2).

Table 1. Initial threshold values for matching.

Parameters T1 T2 T3 T4 T5 Ts

Value 1.8 0.009 0.005 0.55 50
Range 0.5–1.5 1.2–2 0.006–0.015 0.002–0.015 0.45–0.75 50–20
Step 0.1 0.1 0.001 0.001 0.05 −5

Table 2. Final selected thresholds and parameters for matching.

Parameters T1 T2 T3 T4 T5 Ts w1 w2 w3 w4

Value 0.8 1.8 0.011 0.005 0.55 30 0.45 0.25 0.15 0.15

The image pair (a) in Figure 9, which is one of the image pairs corresponding to the optimal
parameter, is taken as an example. We update parameters Tk, where k ∈ {1, 2, 3, 4, 5}, and Ts successively.
The resulting curves with different parameter values are shown in Figures 10 and 11. The graphs on
the left show the number and accuracy of the matching, while the graphs on the right show the number
of iterations and running time. The larger the two values on the left figures are and the smaller the two
values in the right figures are, the better the matching result will be. As such, the optimal settings can
be selected for the parameters or thresholds by combining the four factors mentioned above.

We firstly determine T1. The matching results with different values are shown in Figure 10a,b.
The number and accuracy can reach their maximum values at the same time at T1 = 0.8, and
the numbers of iterations are all 10. Clearly, the running time decreases with the increase in T1.
This outcome is attributed to the number of matching hypotheses decreasing in the second matching
stage during each iteration with the increase in T1, while the running time of the second stage is more
time-consuming than the first stage. Thus, the running time is reduced.

We fix the value to T1 = 0.8 and conduct the experiment with different T2 values. The result is
shown in Figure 10c,d. The accuracy yields the local peak at T2 = 1.8, and the number of iterations
and run time reach the local minimum peak at the same time. The findings indicate that the initial T2

value can be retained at T2 = 1.8.
Figure 10e,f show the results with different T3 values. The number of matching result shows a

rising trend with the increase in T3, and the accuracy yields a peak at T3 = 0.011. The time and the
number of iterations are relatively stable even though the number of iterations is nine when T3 is 0.007
or 0.008, and the corresponding accuracy is low. Therefore, T3 must be selected in a manner wherein
the above-mentioned aspects are balanced and T3 is updated to 0.011.
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Figure 10. Matching results of different parameters: (a,c,e) represent the number of corresponding
points and accuracy of matching; (b,d,f) represent the number of matching iterations and running time
of the proposed method.

Similar to T3, parameter T4 constrains the matching candidates in the second stage. The larger both
values are, the more candidate matches will be generated in each iteration. As shown in Figure 11a,b,
the accuracy of the result can reach the local peak at T4 = 0.005, and the number, run time, and iteration
times begin to gradually flatten from T4 = 0.005. This finding suggests that the initial T4 value can
be retained.

For matching candidates obtained by the above-mentioned T3 and T4 constraints, we calculate
the overall similarity score for each candidate and determine the highest score. If the highest score
is larger than T5, then the candidate corresponding to the highest score will be selected as the final
corresponding point. As shown in Figure 11c,d, the number of matching presents a downtrend with
the increase in T5, and the accuracy yields a peak at T5 = 0.55. This result indicates that the initial T5

value can be retained.
Ts is the area of the triangle threshold that controls the size of the propagation triangle. The smaller

Ts is, the denser the matching results will be in general. This scenario can also be observed in
Figure 11e,f, in which the number of corresponding points increases with the decrease in Ts, and the
running time is significantly increased at the same time. Although the number of matched points can
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reach the local maximum at Ts = 20, Ts = 30, which has the highest accuracy, is eventually selected in
this study when running time is considered.

Notably, our method has low sensitivity toward different parameters within a certain range, in
which the numbers and accuracies of matching points only have slight differences, and the matching
results are relatively stable. Given that the proposed method is an iteration matching method, the last
matching result will directly affect the matching result of the next iteration, and the effect of the different
parameters on the result is relatively complex. Therefore, some signs can still be followed despite the
difficulty in achieving consistent regularity for the whole scheme.
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3.2. Different Matching Stages

Table 2 presents the required parameters that are finally determined according to the parametric
analysis in Section 3.1. The proposed method is used for the dense matching of the 12 sets of images
previously shown in Figure 9. The experimental results are listed in Table 3 and depicted in Figure 12.
The columns in Table 3 represent the number of initial corresponding points, the stage of finished
matching, the number of matching iterations, the number of matched midpoints, the number of



ISPRS Int. J. Geo-Inf. 2020, 9, 347 14 of 19

matched intersection points, the number of all corresponding points, the number of incorrect matching,
the matching accuracy, and the running time, respectively.
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Table 3. Comparison of matching results of the proposed method in different stages for twelve
image pairs.

Images Seed
Points Stage Number of

Iterations
Number of
Midpoints

Number of
Intersections Total Wrong Accuracy

(%)
Time

(s)

(a) 911
1 13 2760 1767 5436 23 99.58 83
2 12 6016 2185 9091 23 99.75 623

(b) 213
1 14 4749 2674 7634 24 99.69 64
2 12 8014 2905 11,116 67 99.4 591

(c) 635
1 24 10,592 2863 14,088 60 99.57 852
2 27 19,069 3826 23,488 119 99.49 3916

(d) 463
1 13 6794 4613 11,868 56 99.53 211
2 10 8530 4865 13,840 63 99.54 655

(e) 302
1 18 10,028 3952 14,280 40 99.72 336
2 12 13,838 4060 18,179 17 99.91 1134

(f) 39
1 21 3415 1855 5307 24 99.55 27
2 12 4581 1937 6550 18 99.73 125

(g) 750
1 37 2351 2119 5218 58 98.89 117
2 15 16,468 5690 22,802 8 99.96 904

(h) 190
1 14 2988 1920 5096 46 99.09 80
2 19 10,139 4516 14,772 67 99.54 536

(i) 89
1 18 1047 1226 2360 15 99.36 108
2 12 9090 2195 11,343 66 99.42 1058

(j) 192
1 21 12,994 5620 18,804 133 99.29 1232
2 14 19,509 5684 25,344 127 99.50 2392

(k) 233
1 14 6265 3729 10,225 53 99.48 404
2 23 11,533 4162 15,898 81 99.50 1479

(l) 724
1 18 10,958 3667 15,347 42 99.79 649
2 15 15,591 3640 19,939 23 99.89 1683

The results in Table 3 show several findings. Firstly, the proposed method utilizes the two-stage
hierarchical matching strategy. The number of corresponding points can be increased by adding
an implementation of the second matching stage, which will improve the accuracy of some results.
However, with the increase in the number of corresponding points and the computational complexity
in the second matching stage, the method will be a time-consuming process. Secondly, the number of
matched midpoints is higher than the number of matched intersections for the two matching primitives.
This phenomenon can be explained by the number of midpoints, which increases dynamically in the
iterative matching process. By contrast, the number of extracted line segments is fixed, while that of the
matched intersections tends to be stable after a few iterations. Thirdly, as shown by the corresponding
points and their distribution in different colors in Figure 11, the corresponding points manifest a
consistent distribution. Lastly, as for the experimental images selected in this study, the matching
accuracies of the method all exceed 98%, which indicates the method’s high accuracy. This result can be
attributed to the strict constraints of the algorithm and the reliability of the descriptors. The robustness
of the method is also verified by the different types of image matching experiments.

3.3. Comparison with Jia’s Method

We compare the results of the proposed method with the results of the quasi-dense matching
method presented in Jia (2019). In order to perform a comparative analysis of the two methods under
consistent conditions, we utilize the same initial corresponding points to construct initial triangulations
during the implementation of Jia’s method. Similar to our method, only triangles with an area greater
than 30 are used for matching propagation in the matching process. The comparison results of the
number of corresponding points, accuracy, the number of iterations, and running times of the two
methods for 12 sets of image pairs are provided in Figure 13. As observed, the number of corresponding
points of the proposed method is greater than that of Jia’s method for all test images, where Jia’s
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method fails in image pairs (e) and (f). In terms of accuracy, the accuracy of both methods is above
97%. However, the accuracy of the proposed method is higher than that of Jia’s method for most of the
image pairs. Notably, Jia’s method has an accuracy of 100% at image pair (f), but this accuracy belongs
to the accuracy of the initial seed point because Jia’s method fails in image pair (f) and does not obtain
the corresponding point. However, no regularity is observed in the number of iterations between
the two methods due to the complexity of the iterative process. We also compare the computation
times required by the two methods. The results show that our method runs 0.1–4.1 times slower than
Jia’s method, except for the image pairs (e) and (f). These results are due to three reasons. Firstly,
the proposed method is designed using two matching stages; points that do not meet the descriptor
similarity constraint in the first stage are further matched by extending the matching candidates and
using multiple constraints, which increases the number of matches while ensuring match reliability.
Secondly, compared with similarity constraints of single-pixel color information in Jia’s method, our
constructed gradient descriptors are more robust for different images, especially for images with
illumination change. The proposed method produces higher dense matching results, whereas Jia’s
method fails to match. Thirdly, although the above-mentioned aspects contribute to the dense matching
results of the proposed method, they require heavy workload. As a result, Jia’s method achieves better
computation times than our method, but the proposed method outperforms Jia’s method in terms of
robustness and density.
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4. Conclusions

A hierarchical method based on triangulation constraint and propagation for the dense matching
of points from a close-range image is proposed. The matching begins from the initial triangulation
constructed by the initial corresponding points generated using the SIFT method. The correspondences
between the image pairs are established with the midpoints and intersection points in the edges of the
triangles as matching primitives. The characteristics of the proposed method are manifold. Firstly,
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we utilize points in the edges of triangles as the matching primitives and then conduct edge-to-edge
matching propagation in the process of matching iteration. Our approach is more stable in theory
than the region-to-region propagation. Secondly, we use two types of matching strategies for the
different matching stages. We further match points that cannot be matched by the descriptor similarity
in the first stage by utilizing multiple constraints. An overall matching similarity score is defined for
the multiple constraints with different weights. In this manner, the number of matching results can
be increased, and the reliability of the matching can be enhanced. Thirdly, two aspects need to be
considered in improving the efficiency of the matching. The first aspect focuses on the multithreading
technique for improving processing performance. The second aspect is only for the newly generated
triangle edges, which are processed in each iteration matching to avoid repeated matching. Fourthly,
the descriptor construction with overlapping subregions can improve the reliability of the descriptors
and effectively restrain the propagation of mismatches. Lastly, intersections between feature line
segments and triangle edges are introduced as the matching primitive. This way enriches the edge
information of the result.

The results of the 12 typical close-range image pairs show that matching accuracy can exceed 98%.
Thus, the proposed method has high robustness for different images and can obtain reliable matching
results. In the future, we plan to change the range of matching results in images, from the coverage of
corresponding points to the maximum overlap of image pairs, by performing an outward growth of a
region with seed points. We plan to conduct tests to validate if the method can also obtain reliable
results for aerial images. We also intend to transform the matching results into discrete point clouds
for further 3D reconstruction.
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