Data Gap Classification for Terrestrial Laser Scanning-Derived Digital Elevation Models
<p>Examples of occlusion and dropout data gaps in terrestrial laser scanning (TLS) data.</p> "> Figure 2
<p>General flow chart for the proposed data gap classification methodology.</p> "> Figure 3
<p>Conceptual depiction of projecting TLS data from native cylindrical coordinate system to panoramic 2D image.</p> "> Figure 4
<p>Example of a TLS 2D panoramic image, colored by intensity (grayscale). Black pixels indicate no laser pulse returns and are present in locations with standing water (specular reflection), regions with low reflectivity, and locations beyond the maximum measurement range of the scanner (e.g., the sky and distant horizon).</p> "> Figure 5
<p>Example of a TLS 2D image with data gaps (blue), flagged dropout boundaries (yellow), and top and bottom vertical scan (green).</p> "> Figure 6
<p>Demonstration of the TLS digital elevation model (DEM) data gap classification methodology. The DEM is colored with a grayscale color ramp (black is higher elevation). (<b>a</b>) Unclassified data gaps in DEM identified in white. (<b>b</b>) Individual data gaps are assigned unique identification number (ID). Each unclassified data gap is assigned a unique random color for visualization purposes. (<b>c</b>) The dropout boundary flag raster (red pixels surrounding some of the data gaps) is introduced. (<b>d</b>) The dropout boundary raster is used to classify data gaps as either occlusions (red) or dropouts (blue).</p> "> Figure 7
<p>Photograph of the test site with the Riegl VZ-400 TLS, cardboard boxes, and water receptacles.</p> "> Figure 8
<p>Overview of the test site (<b>left</b>) and layout map indicating scan locations and data gap sources (<b>right</b>).</p> "> Figure 9
<p>Data gap classification results for test site DEM A and DEM B. The DEMs are colored using a grayscale color ramp (black is higher elevation). Areas in red represent occlusions and dropouts are colored blue. Locations of the cardboard boxes are colored black.</p> "> Figure 10
<p>An image at the Rabbit Rock site showing the undulating rock and pooled water conditions.</p> "> Figure 11
<p>Overview map of Rabbit Rock site with locations of TLS scan positions.</p> "> Figure 12
<p>Clipped data classification results for DEMs RR1 (top) and RR2 (bottom).</p> "> Figure 13
<p>Comparison of results with co-acquired TLS scanner-based imagery for scan positions SP15 (top) and SP16 (bottom).</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Data Gap Classification
2.1.1. Identify Dropout Boundaries—Step 1
2.1.2. Classification of Data Gaps—Step 2
2.2. Validation
3. Rabbit Rock Study Site
Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- LiDAR Glossary | AGRG. Available online: http://agrg.cogs.nscc.ca/resources/lidar-glossary/ (accessed on 11 June 2017).
- Telling, J.; Lyda, A.; Hartzell, P.; Glennie, C. Review of Earth science research using terrestrial laser scanning. Earth-Sci. Rev. 2017, 169, 35–68. [Google Scholar] [CrossRef] [Green Version]
- Höfle, B.; Griesbaum, L.; Forbriger, M. GIS-based detection of gullies in terrestrial LiDAR data of the Cerro Llamoca Peatland (Peru). Remote Sens. 2013, 5, 5851–5870. [Google Scholar] [CrossRef] [Green Version]
- Olsen, M.J.; Wartman, J.; McAlister, M.; Mahmoudabadi, H.; O’Banion, M.S.; Dunham, L.; Cunningham, K. To fill or not to fill: Sensitivity analysis of the influence of resolution and hole filling on point cloud surface modeling and individual rockfall event detection. Remote Sens. 2015, 7, 12103–12134. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, S.S.; Yilmaz, A. A semi-automated method to create a lidar-based hydro-flattened DEM. Int. J. Remote Sens. 2017, 38, 1365–1387. [Google Scholar] [CrossRef]
- Höfle, B.; Vetter, M.; Pfeifer, N.; Mandlburger, G.; Stötter, J. Water surface mapping from airborne laser scanning using signal intensity and elevation data. Earth Surf. Process. Landf. 2009, 34, 1635–1649. [Google Scholar] [CrossRef]
- Smeeckaert, J.; Mallet, C.; David, N.; Chehata, N.; Ferraz, A. Large-scale classification of water areas using airborne topographic lidar data. Remote Sens. Environ. 2013, 138, 134–148. [Google Scholar] [CrossRef]
- Wei, L.-X.; Yang, B.; Jiang, J.-P.; Cao, G.-Z. Adaptive algorithm for classifying LiDAR data into water and land points by multifeature statistics. J. Appl. Remote Sens. 2016, 10, 045020. [Google Scholar] [CrossRef]
- O’Banion, M.S.; Olsen, M.J. Efficient planning and acquisition of terrestrial laser scanning–derived digital elevation models: Proof of concept study. J. Survey. Eng. 2018, 145, 06018003. [Google Scholar] [CrossRef]
- Underwood, A.J. Experimental ecology of rocky intertidal habitats: What are we learning? J. Exp. Mar. Biol. Ecol. 2000, 250, 51–76. [Google Scholar] [CrossRef]
- Beck, M.W. Comparison of the measurement and effects of habitat structure on gastropods in rocky intertidal and mangrove habitats. Mar. Ecol. Prog. Ser. 1998, 169, 165–178. [Google Scholar] [CrossRef]
- Meager, J.J.; Schlacher, T.A.; Green, M. Topographic complexity and landscape temperature patterns create a dynamic habitat structure on a rocky intertidal shore. Mar. Ecol. Prog. Ser. 2011, 428, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Schoch, G.C.; Dethier, M.N. Scaling up: The statistical linkage between organismal abundance and geomorphology on rocky intertidal shorelines. J. Exp. Mar. Biol. Ecol. 1996, 201, 37–72. [Google Scholar] [CrossRef]
- Leica Geosystems. Leica Cyclone 8.0 Help; Leica Geosystems: St. Gallen, Switzerland, 2014. [Google Scholar]
- Huber, D. The ASTM E57 file format for 3D imaging DATA exchange. In Proceedings of the SPIE Electronics Imaging Science and Technology Conference (IS&T), 3D Imaging Metrology, Pittsburgh, PA, USA, 22–27 January 2011; Volume 7864A. [Google Scholar]
- Barnea, S.; Filin, S. Registration of terrestrial laser scans via image based features. In Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 Part 3, Espoo, Finland, 12–14 September 2007; pp. 32–37. [Google Scholar]
- Olsen, M.J.; Ponto, K.; Kimball, J.; Seracini, M.; Kuester, F. 2D open-source editing techniques for 3D laser scans. In Proceedings of the 38th Annual Conference on Computer Applications and Quantitative Methods in Archaeology, CAA, Granada, Spain, 6–9 April 2010; pp. 47–50. [Google Scholar]
- Mahmoudabadi, H.; Olsen, M.J.; Todorovic, S. Efficient terrestrial laser scan segmentation exploiting data structure. ISPRS J. Photogram. Remote Sens. 2016, 119, 135–150. [Google Scholar] [CrossRef] [Green Version]
- Dillencourt, M.B.; Samet, H.; Tamminen, M. A general approach to connected-component labeling for arbitrary image representations. J. ACM 1992, 39, 253–280. [Google Scholar] [CrossRef]
- Fisher, R.; Perkins, S.; Walker, A.; Wolfart, E. Connected Components Labeling. Available online: http://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm (accessed on 23 October 2020).
- Olsen, M. Bin ‘N’ Grid: A Simple Program for Statistical Filtering of Point Cloud Data. LIDAR Magazine. 2011. Available online: https://lidarmag.com/2011/05/29/bin-n-grid-a-simple-program-for-statistical-filtering-of-point-cloud-data/ (accessed on 23 October 2020).
- Olsen, M.; Johnstone, E.; Kuester, F.; Driscoll, N.; Ashford, S.A. New automated point-cloud alignment for ground-based light detection and ranging data of long coastal sections. J. Survey. Eng. 2011, 137, 14–25. [Google Scholar] [CrossRef]
- Hollenbeck, J.P.; Olsen, M.J.; Haig, S.M. Using terrestrial laser scanning to support ecological research in the rocky intertidal zone. J. Coast Conserv. 2014, 18, 701–714. [Google Scholar] [CrossRef]
- ESRI. ArcGIS Pro; v.2.6.1; ESRI: Redlands, CA, USA, 2020. [Google Scholar]
DEM | Occlusions (%) | Dropouts (%) | Returns (%) | Occlusion Area (m2) | Dropout Area (m2) | Return Area (m2) | Total Area (m2) |
---|---|---|---|---|---|---|---|
DEM A | 5.04 | 0.54 | 94.42 | 15.1 | 1.6 | 283.8 | 300.6 |
DEM B | 0.07 | 0.51 | 99.42 | 0.2 | 1.5 | 298.8 | 300.6 |
DEM | Occlusions (%) | Dropouts (%) | Returns (%) | Occlusion Area (m2) | Dropout Area (m2) | Return Area (m2) | Total Area (m2) |
---|---|---|---|---|---|---|---|
DEM RR1 | 2.56 | 36.19 | 61.25 | 436.3 | 6166.2 | 10,436.5 | 17,039.1 |
DEM RR2 | 2.39 | 25.48 | 72.13 | 406.4 | 4341.8 | 12,291.0 | 17,039.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Banion, M.S.; Olsen, M.J.; Hollenbeck, J.P.; Wright, W.C. Data Gap Classification for Terrestrial Laser Scanning-Derived Digital Elevation Models. ISPRS Int. J. Geo-Inf. 2020, 9, 749. https://doi.org/10.3390/ijgi9120749
O’Banion MS, Olsen MJ, Hollenbeck JP, Wright WC. Data Gap Classification for Terrestrial Laser Scanning-Derived Digital Elevation Models. ISPRS International Journal of Geo-Information. 2020; 9(12):749. https://doi.org/10.3390/ijgi9120749
Chicago/Turabian StyleO’Banion, Matthew S., Michael J. Olsen, Jeff P. Hollenbeck, and William C. Wright. 2020. "Data Gap Classification for Terrestrial Laser Scanning-Derived Digital Elevation Models" ISPRS International Journal of Geo-Information 9, no. 12: 749. https://doi.org/10.3390/ijgi9120749
APA StyleO’Banion, M. S., Olsen, M. J., Hollenbeck, J. P., & Wright, W. C. (2020). Data Gap Classification for Terrestrial Laser Scanning-Derived Digital Elevation Models. ISPRS International Journal of Geo-Information, 9(12), 749. https://doi.org/10.3390/ijgi9120749