Multisource Hyperspectral and LiDAR Data Fusion for Urban Land-Use Mapping based on a Modified Two-Branch Convolutional Neural Network
<p>Datasets, training, and testing samples used in this study.</p> "> Figure 1 Cont.
<p>Datasets, training, and testing samples used in this study.</p> "> Figure 2
<p>Architecture of the proposed two-branch convolutional neural network.</p> "> Figure 3
<p>Architecture of the proposed hyperspectral imagery (HSI) branch.</p> "> Figure 4
<p>Architecture of Residual block-A and Residual block-B in the HSI branch. O: Output; C: Concatenate; +: Sum.</p> "> Figure 5
<p>Patch size k vs. overall accuracy.</p> "> Figure 6
<p>Structure of the adaptive feature-fusion module. C: Concatenate; ×: pointwise production.</p> "> Figure 7
<p>Classification maps for (<b>a</b>) HSI branch only; (<b>b</b>) LiDAR branch only; (<b>c</b>) proposed two-branch CNN.</p> ">
Abstract
:1. Introduction
2. Study Area and Dataset
3. Methods
3.1. Overall Workflow
3.2. Hyperspectral Branch
3.3. LiDAR Branch
3.4. Squeeze-and-Excitation Module for Adaptive Feature Fusion
3.5. Data Augmentation and Network Training
3.6. Accuracy Assessment
4. Results and Discussion
4.1. Results of Urban Land-Use Classification
4.2. Accuracy-Assessment Results
4.3. Ablation Analysis
4.4. Comparison with Other Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Zhao, H.; Li, P.; Yin, Z. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Lu, D.; Hetrick, S.; Moran, E. Land Cover Classification in a Complex Urban-Rural Landscape with QuickBird Imagery. Photogramm. Eng. Remote Sens. 2010, 10, 1159–1168. [Google Scholar] [CrossRef]
- Powell, R.L.; Roberts, D.A.; Dennison, P.E.; Hess, L.L. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sens. Environ. 2007, 106, 253–267. [Google Scholar] [CrossRef]
- Pu, R.; Landry, S.; Yu, Q. Object-based urban detailed land cover classification with high spatial resolution IKONOS imagery. Int. J. Remote Sens. 2011, 32, 3285–3308. [Google Scholar] [CrossRef] [Green Version]
- Demarchi, L.; Canters, F.; Cariou, C.; Licciardi, G.; Chan, J.C. Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping. ISPRS J. Photogramm. Remote Sens. 2014, 87, 166–179. [Google Scholar] [CrossRef]
- Tong, X.; Xie, H.; Weng, Q. Urban Land Cover Classification with Airborne Hyperspectral Data: What Features to Use? IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3998–4009. [Google Scholar] [CrossRef]
- Debes, C.; Merentitis, A.; Heremans, R.; Hahn, J.; Frangiadakis, N.; Kasteren, T.V.; Liao, W.; Bellens, R.; Pizurica, A.; Gautama, S.; et al. Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2405–2418. [Google Scholar] [CrossRef]
- Man, Q.; Dong, P.; Guo, H. Pixel- and feature-level fusion of hyperspectral and lidar data for urban land-use classification. Int. J. Remote Sens. 2015, 36, 1618–1644. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1416–1427. [Google Scholar] [CrossRef] [Green Version]
- Sankey, T.; Donager, J.; McVay, J.; Sankey, J.B. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA. Remote Sens. Environ. 2017, 195, 30–43. [Google Scholar] [CrossRef]
- Kereszturi, G.; Schaefer, L.N.; Schleiffarth, W.K.; Procter, J.; Pullanagari, R.R.; Mead, S.; Kennedy, B. Integrating airborne hyperspectral imagery and LiDAR for volcano mapping and monitoring through image classification. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 323–339. [Google Scholar] [CrossRef]
- Liu, X.; Bo, Y. Object-Based Crop Species Classification Based on the Combination of Airborne Hyperspectral Images and LiDAR Data. Remote Sens. 2015, 7, 922–950. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, R.S.; Latifi, H.; Weinacker, H.; Dees, M.; Koch, B.; Heurich, M. Integrating LiDAR and high-resolution imagery for object-based mapping of forest habitats in a heterogeneous temperate forest landscape. Int. J. Remote Sens. 2018, 1–26. [Google Scholar] [CrossRef]
- Sasaki, T.; Imanishi, J.; Ioki, K.; Morimoto, Y.; Kitada, K. Object-based classification of land cover and tree species by integrating airborne LiDAR and high spatial resolution imagery data. Landsc. Ecol. Eng. 2012, 8, 157–171. [Google Scholar] [CrossRef]
- Sturari, M.; Frontoni, E.; Pierdicca, R.; Mancini, A.; Malinverni, E.S.; Tassetti, A.N.; Zingaretti, P. Integrating elevation data and multispectral high-resolution images for an improved hybrid Land Use/Land Cover mapping. Eur. J. Remote Sens. 2017, 50, 1–17. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [Google Scholar]
- Bulat, A.; Tzimiropoulos, G. Binarized Convolutional Landmark Localizers for Human Pose Estimation and Face Alignment with Limited Resources. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 3706–3714. [Google Scholar]
- Bulat, A.; Tzimiropoulos, G. How far are we from solving the 2D and 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks). In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1021–1030. [Google Scholar]
- Zhu, X.; Tuia, D.; Mou, L.; Xia, G.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Alshehhi, R.; Marpu, P.R.; Woon, W.L.; Mura, M.D. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2017, 130, 139–149. [Google Scholar] [CrossRef]
- Rezaee, M.; Mahdianpari, M.; Zhang, Y.; Salehi, B. Deep Convolutional Neural Network for Complex Wetland Classification Using Optical Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3030–3039. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, R.; Bilal, M.; Yang, X.; Wang, J.; Li, W. Multilevel Cloud Detection for High-Resolution Remote Sensing Imagery Using Multiple Convolutional Neural Networks. ISPRS Int. J. Geo-Inf. 2018, 7, 181. [Google Scholar] [CrossRef]
- Rußwurm, M.; Körner, M. Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders. ISPRS Int. J. Geo-Inf. 2018, 7, 129. [Google Scholar] [CrossRef]
- Xu, X.; Li, W.; Ran, Q.; Du, Q.; Gao, L.; Zhang, B. Multisource Remote Sensing Data Classification Based on Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 937–949. [Google Scholar] [CrossRef]
- Huang, B.; Zhao, B.; Song, Y. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sens. Environ. 2018, 214, 73–86. [Google Scholar] [CrossRef]
- Hughes, L.H.; Schmitt, M.; Mou, L.; Wang, Y.; Zhu, X. Identifying Corresponding Patches in SAR and Optical Images with a Pseudo-Siamese CNN. IEEE Geosci. Remote Sens. Lett. 2018, 15, 784–788. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv, 2015; arXiv:1502.03167. [Google Scholar]
- Lin, T.Y.; RoyChowdhury, A.; Maji, S. Bilinear CNN Models for Fine-grained Visual Recognition. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 13–16 December 2015; pp. 1449–1457. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv, 2014; arXiv:1412.6980. [Google Scholar]
- TensorFlow. Available online: https://tensorflow.google.cn/ (accessed on 3 November 2018).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chapelle, O.; Vapnik, V.; Bousquet, O.; Mukherjee, S. Choosing Multiple Parameters for Support Vector Machines. Mach. Learn. 2002, 46, 131–159. [Google Scholar] [CrossRef] [Green Version]
No. | Class Name | Training Set | Testing Set | Color |
---|---|---|---|---|
1 | Healthy grass | 198 | 1053 | |
2 | Stressed grass | 190 | 1064 | |
3 | Synthetic grass | 192 | 505 | |
4 | Tree | 188 | 1056 | |
5 | Soil | 186 | 1056 | |
6 | Water | 182 | 143 | |
7 | Residential | 196 | 1072 | |
8 | Commercial | 191 | 1053 | |
9 | Road | 193 | 1059 | |
10 | Highway | 191 | 1036 | |
11 | Railway | 181 | 1054 | |
12 | Parking lot 1 | 192 | 1041 | |
13 | Parking lot 2 | 184 | 285 | |
14 | Tennis court | 181 | 247 | |
15 | Running track | 187 | 473 | |
Total | 2832 | 12,197 |
Layer Name | Input Size | Output Size |
---|---|---|
Input | 11 × 11 × 10 | - |
Conv1 | 11 × 11 × 10 | 11 × 11 × 64 |
Conv2 | 11 × 11 × 64 | 11 × 11 × 128 |
Maxpooling1 | 11 × 11 × 128 | 6 × 6 × 128 |
Residual block-A1 | 6 × 6 × 128 | 6 × 6 × 128 |
Residual block-A2 | 6 × 6 × 128 | 6 × 6 × 128 |
Maxpooling2 | 6 × 6 × 128 | 3 × 3 × 128 |
Conv3 | 3 × 3 × 128 | 3 × 3 × 256 |
Residual block-B1 | 3 × 3 × 256 | 3 × 3 × 256 |
Residual block-B2 | 3 × 3 × 256 | 3 × 3 × 256 |
GAP | 3 × 3 × 256 | 1 × 1 × 256 |
FC | 1 × 1 × 256 | 1 × 1 × 128 |
Softmax | 1 × 1 × 128 | 1 × 1 × 15 |
Layer Name | Input Size | Output Size |
---|---|---|
HSI branch output | 3 × 3 × 256 | - |
Lidar branch output | 3 × 3 × 256 | - |
GAP | 3 × 3 × 256 | 1 × 1 × 256 |
FC1 | 1 × 1 × 256 | 1 × 1 × 64 |
FC2 | 1 × 1 × 64 | 1 × 1 × 256 |
Sigmoid | 1 × 1 × 256 | 1 × 1 × 256 |
Flatten | 3 × 3 × 256 | 1 × 1 × 2304 |
Concat | 1 × 1 × 2304, 1 × 1 × 2304 | 1 × 1 × 4608 |
FC3 | 1 × 1 × 4608 | 1 × 1 × 128 |
Softmax | 1 × 1 × 128 | 1 × 1 × 15 |
Testing Data | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | UA | |
1 | 875 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
2 | 0 | 894 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
3 | 0 | 0 | 504 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
4 | 15 | 0 | 0 | 1020 | 2 | 0 | 9 | 6 | 5 | 0 | 0 | 3 | 0 | 0 | 0 | 96.2 |
5 | 0 | 0 | 0 | 0 | 1051 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 99.0 |
6 | 0 | 0 | 0 | 0 | 1 | 143 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 99.3 |
7 | 9 | 0 | 0 | 32 | 1 | 0 | 968 | 8 | 12 | 22 | 0 | 5 | 0 | 0 | 0 | 91.6 |
8 | 0 | 11 | 0 | 0 | 0 | 0 | 14 | 989 | 0 | 97 | 0 | 5 | 0 | 0 | 0 | 88.6 |
9 | 0 | 0 | 0 | 2 | 0 | 0 | 21 | 0 | 904 | 2 | 5 | 5 | 0 | 0 | 0 | 96.3 |
10 | 80 | 6 | 0 | 2 | 0 | 0 | 0 | 0 | 66 | 838 | 1 | 0 | 8 | 0 | 0 | 83.7 |
11 | 74 | 152 | 0 | 0 | 0 | 0 | 57 | 32 | 13 | 77 | 1020 | 0 | 12 | 0 | 0 | 71.0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 47 | 0 | 21 | 1014 | 0 | 0 | 0 | 92.8 |
13 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 5 | 2 | 0 | 7 | 9 | 265 | 0 | 0 | 91.4 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 247 | 0 | 99.6 |
15 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 473 | 99.6 |
PA | 83.1 | 84.0 | 99.8 | 96.6 | 99.5 | 100 | 90.3 | 93.9 | 85.4 | 80.9 | 96.8 | 97.4 | 93.0 | 100 | 90.3 | |
OA | 91.87 | Kappa | 0.9117 |
No. | Class Name | Only HSI Branch | Only LiDAR Branch | Feature-Stacking | Proposed |
---|---|---|---|---|---|
1 | Healthy grass | 82.05 | 47.39 | 82.33 | 83.09 |
2 | Stressed grass | 84.02 | 33.46 | 84.96 | 84.02 |
3 | Synthetic grass | 96.04 | 91.49 | 99.80 | 99.80 |
4 | Tree | 86.27 | 74.53 | 89.58 | 96.59 |
5 | Soil | 94.51 | 33.81 | 99.62 | 99.53 |
6 | Water | 79.02 | 58.74 | 98.60 | 100.00 |
7 | Residential | 95.06 | 57.65 | 83.96 | 90.30 |
8 | Commercial | 72.17 | 90.69 | 85.84 | 93.92 |
9 | Road | 82.06 | 37.39 | 86.31 | 85.36 |
10 | Highway | 65.35 | 42.08 | 69.88 | 80.89 |
11 | Railway | 71.82 | 75.90 | 90.61 | 96.77 |
12 | Parking lot 1 | 92.03 | 25.46 | 93.56 | 97.41 |
13 | Parking lot 2 | 85.61 | 61.40 | 91.58 | 92.98 |
14 | Tennis court | 97.17 | 74.49 | 100.00 | 100.00 |
15 | Running track | 95.06 | 57.65 | 83.96 | 90.30 |
OA (%) | 83.83 | 53.42 | 88.25 | 91.87 | |
Kappa | 0.8244 | 0.4967 | 0.8725 | 0.9117 |
Method | OA | Kappa |
---|---|---|
Pixel-based and non-PCA | 81.49% | 0.8001 |
Pixel-based and PCA | 86.05% | 0.8486 |
Patch-based and non-PCA | 89.38% | 0.8849 |
Patch-based and PCA | 91.87% | 0.9117 |
Method | OA | Kappa |
---|---|---|
Random Forest | 83.97% | 0.8264 |
Support Vector Machine | 84.16% | 0.8282 |
Xu et al. [28] | 87.98% | 0.8698 |
Our two-branch CNN | 91.87% | 0.9117 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Q.; Zhu, D.; Yang, J.; Li, B. Multisource Hyperspectral and LiDAR Data Fusion for Urban Land-Use Mapping based on a Modified Two-Branch Convolutional Neural Network. ISPRS Int. J. Geo-Inf. 2019, 8, 28. https://doi.org/10.3390/ijgi8010028
Feng Q, Zhu D, Yang J, Li B. Multisource Hyperspectral and LiDAR Data Fusion for Urban Land-Use Mapping based on a Modified Two-Branch Convolutional Neural Network. ISPRS International Journal of Geo-Information. 2019; 8(1):28. https://doi.org/10.3390/ijgi8010028
Chicago/Turabian StyleFeng, Quanlong, Dehai Zhu, Jianyu Yang, and Baoguo Li. 2019. "Multisource Hyperspectral and LiDAR Data Fusion for Urban Land-Use Mapping based on a Modified Two-Branch Convolutional Neural Network" ISPRS International Journal of Geo-Information 8, no. 1: 28. https://doi.org/10.3390/ijgi8010028
APA StyleFeng, Q., Zhu, D., Yang, J., & Li, B. (2019). Multisource Hyperspectral and LiDAR Data Fusion for Urban Land-Use Mapping based on a Modified Two-Branch Convolutional Neural Network. ISPRS International Journal of Geo-Information, 8(1), 28. https://doi.org/10.3390/ijgi8010028