An LLM-Based Inventory Construction Framework of Urban Ground Collapse Events with Spatiotemporal Locations
<p>Map of Zhejiang province, China.</p> "> Figure 2
<p>The framework for UGC inventory construction.</p> "> Figure 3
<p>Prompt templates for the LLM model.</p> "> Figure 4
<p>Evaluation of UGC event recognition model for each city.</p> "> Figure 5
<p>Statistic characteristics of UGC events from 2005 to 2022.</p> "> Figure 5 Cont.
<p>Statistic characteristics of UGC events from 2005 to 2022.</p> "> Figure 6
<p>Probability density risk evaluation results.</p> "> Figure 7
<p>Examples of false-positive events (collapse-related events).</p> "> Figure 8
<p>Geo-hazard frequency quantification of cities in Zhejiang province.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. News Report Crawling
3.2. LLM-Aided Event Recognition
3.3. LLM-Aided Event Extraction
4. Results and Analysis
4.1. UGC Event Recognition
4.2. UGC Event Extraction
4.3. UGC Inventory
5. Discussion
5.1. Comparison with Collapse-Related Accidents
5.2. Comparison with Other Geo-Hazards Events
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Ruan, Y.; Xuan, W.; Bao, H.; Du, Z. Risk Assessment and Spatial Regulation on Urban Ground Collapse Based on Geo-Detector: A Case Study of Hangzhou Urban Area. Nat. Hazards 2023, 118, 525–543. [Google Scholar] [CrossRef]
- Wang, X.-W.; Xu, Y.-S. Investigation on the Phenomena and Influence Factors of Urban Ground Collapse in China. Nat. Hazards 2022, 113, 1–33. [Google Scholar] [CrossRef]
- Pellicani, R.; Spilotro, G.; Gutiérrez, F. Susceptibility Mapping of Instability Related to Shallow Mining Cavities in a Built-up Environment. Eng. Geol. 2017, 217, 81–88. [Google Scholar] [CrossRef]
- Liu, R.; Sun, H.; Qin, J.; Zheng, Z. A Multi-Geophysical Approach to Assess Potential Sinkholes in an Urban Area. Eng. Geol. 2023, 318, 107100. [Google Scholar] [CrossRef]
- Zhang, C.; Kwon, S.; Oh, J.; Park, K. An Integrated AHP-PROMETHEE II Ranking Method to Evaluate the Resilience of Sewer Networks Considering Urban Flood and Ground Collapse Risks. Water Sci. Technol. 2023, 87, 1438–1453. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Liu, C.; Wang, G.; Kang, K.; Liu, Y. Study on Drilling Ground Collapse Induced by Groundwater Flow and Prevention Based on a Coupled CFD-DEM Method. KSCE J. Civ. Eng. 2022, 26, 2112–2125. [Google Scholar] [CrossRef]
- Tufano, R.; Guerriero, L.; Annibali Corona, M.; Bausilio, G.; Di Martire, D.; Nisio, S.; Calcaterra, D. Anthropogenic Sinkholes of the City of Naples, Italy: An Update. Nat. Hazards 2022, 112, 2577–2608. [Google Scholar] [CrossRef]
- Tan, F.; Tan, W.; Yan, F.; Qi, X.; Li, Q.; Hong, Z. Model Test Analysis of Subsurface Cavity and Ground Collapse Due to Broken Pipe Leakage. Appl. Sci. 2022, 12, 13017. [Google Scholar] [CrossRef]
- He, Q.; Tan, F.; Peng, Z.; Tao, L.; Jiao, Y.; Liu, S.; Peng, H. Genesis Analysis of Ground Collapse in Wuhan Based on 3D Geological Model. Front. Earth Sci. 2022, 10, 934452. [Google Scholar] [CrossRef]
- Zerhouny, M.; Fadil, A.; Hakdaoui, M. Underground Space Utilization in the Urban Land-Use Planning of Casablanca (Morocco). Land 2018, 7, 143. [Google Scholar] [CrossRef]
- Lu, W.; Wu, Y.; Choguill, C.L.; Lai, S.-K.; Luo, J. Underground Hangzhou: The Challenge of Safety vs. Commerciality in a Major Chinese City. Cities 2021, 119, 103414. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Parise, M.; De Waele, J.; Jourde, H. A Review on Natural and Human-Induced Geohazards and Impacts in Karst. Earth-Sci. Rev. 2014, 138, 61–88. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Y.; Chen, Y.; Peng, Q.; Liao, Z.; Zhu, J. A Case Study of Development and Utilization of Urban Underground Space in Shenzhen and the Guangdong-Hong Kong-Macao Greater Bay Area. Tunn. Undergr. Space Technol. 2021, 107, 103651. [Google Scholar] [CrossRef]
- Zhou, S.; Zhai, G. A Multi-Hazard Risk Assessment Framework for Urban Disaster Prevention Planning: A Case Study of Xiamen, China. Land 2023, 12, 1884. [Google Scholar] [CrossRef]
- Yu, M.; Bambacus, M.; Cervone, G.; Clarke, K.; Duffy, D.; Huang, Q.; Li, J.; Li, W.; Li, Z.; Liu, Q. Spatiotemporal Event Detection: A Review. Int. J. Digit. Earth 2020, 13, 1339–1365. [Google Scholar] [CrossRef]
- Wang, W.; Stewart, K. Spatiotemporal and Semantic Information Extraction from Web News Reports about Natural Hazards. Comput. Environ. Urban Syst. 2015, 50, 30–40. [Google Scholar] [CrossRef]
- Peuquet, D.J.; Robinson, A.C.; Stehle, S.; Hardisty, F.A.; Luo, W. A Method for Discovery and Analysis of Temporal Patterns in Complex Event Data. Int. J. Geogr. Inf. Sci. 2015, 29, 1588–1611. [Google Scholar] [CrossRef]
- Eligüzel, N.; Çetinkaya, C.; Dereli, T. Comparison of Different Machine Learning Techniques on Location Extraction by Utilizing Geo-Tagged Tweets: A Case Study. Adv. Eng. Inform. 2020, 46, 101151. [Google Scholar] [CrossRef]
- Feng, Y.; Sester, M. Extraction of Pluvial Flood Relevant Volunteered Geographic Information (VGI) by Deep Learning from User Generated Texts and Photos. ISPRS Int. J. Geo-Inf. 2018, 7, 39. [Google Scholar] [CrossRef]
- Zhang, F.; Fleyeh, H.; Wang, X.; Lu, M. Construction Site Accident Analysis Using Text Mining and Natural Language Processing Techniques. Autom. Constr. 2019, 99, 238–248. [Google Scholar] [CrossRef]
- Khalef, R.; El-adaway, I.H. Automated Identification of Substantial Changes in Construction Projects of Airport Improvement Program: Machine Learning and Natural Language Processing Comparative Analysis. J. Manag. Eng. 2021, 37, 04021062. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.; Shan, J. Spatial-Temporal Event Detection from Geo-Tagged Tweets. ISPRS Int. J. Geo-Inf. 2018, 7, 150. [Google Scholar] [CrossRef]
- Kasneci, E.; Seßler, K.; Küchemann, S.; Bannert, M.; Dementieva, D.; Fischer, F.; Gasser, U.; Groh, G.; Günnemann, S.; Hüllermeier, E.; et al. ChatGPT for Good? On Opportunities and Challenges of Large Language Models for Education. Learn. Individ. Differ. 2023, 103, 102274. [Google Scholar] [CrossRef]
- Kauf, C.; Ivanova, A.A.; Rambelli, G.; Chersoni, E.; She, J.S.; Chowdhury, Z.; Fedorenko, E.; Lenci, A. Event Knowledge in Large Language Models: The Gap between the Impossible and the Unlikely. Cogn. Sci. 2023, 47, e13386. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, R.; Fang, J.; Kong, F. Analysis on Spatio-Temporal Law and Causation of Urban Road Collapse in China from 2014 to 2018. Water Resour. Hydropower Eng. 2020, 51, 108–116. [Google Scholar] [CrossRef]
- Yang, S.; Feng, D.; Qiao, L.; Kan, Z.; Li, D. Exploring Pre-Trained Language Models for Event Extraction and Generation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 5284–5294. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, Y.; Wang, X.; Zhao, Z. Exploring Large Language Models for Human Mobility Prediction under Public Events. arXiv 2023, arXiv:2311.17351. [Google Scholar] [CrossRef]
- Huang, F.; Huang, Q.; Zhao, Y.; Qi, Z.; Wang, B.; Huang, Y.; Li, S. A Three-Stage Framework for Event-Event Relation Extraction with Large Language Model. In Proceedings of the International Conference on Neural Information Processing, Changsha, China, 20–23 November 2023; Springer: Singapore, 2023; pp. 434–446. [Google Scholar] [CrossRef]
- Abraham, S.; Mäs, S.; Bernard, L. Extraction of Spatio-Temporal Data about Historical Events from Text Documents. Trans. GIS 2018, 22, 677–696. [Google Scholar] [CrossRef]
- Kokla, M.; Guilbert, E. A Review of Geospatial Semantic Information Modeling and Elicitation Approaches. ISPRS Int. J. Geo-Inf. 2020, 9, 146. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, Z.; Li, H.; Hu, Y.; Gu, F.; Kersten, J.; Fan, H.; Klan, F. Location Reference Recognition from Texts: A Survey and Comparison. ACM Comput. Surv. 2023, 56, 1–37. [Google Scholar] [CrossRef]
- Sermet, Y.; Demir, I. Towards an Information Centric Flood Ontology for Information Management and Communication. Earth Sci. Inform. 2019, 12, 541–551. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L.; Li, W.; Qiu, Q.; Xie, Z.; Liu, H.; Zhou, Y. A Semi-Automatic Approach for Generating Geological Profiles by Integrating Multi-Source Data. Ore Geol. Rev. 2021, 134, 104190. [Google Scholar] [CrossRef]
- Guo, L.; Lei, C.; Xiong, C. Application Research of Ground Penetrating Radar Technology in Prevention and Control of Ground Collapse Disaster in Shenzhen. In Proceedings of the SEG 2019 Workshop: Geophysics for Smart City Development, Beijing, China, 29–31 July 2019; Society of Exploration Geophysicists: Houston, TX, USA, 2019; p. 19. [Google Scholar] [CrossRef]
- Liao, X.; Xu, W.; Zhang, J.; Qiao, Y.; Meng, C. Analysis of Affected Population Vulnerability to Rainstorms and Its Induced Floods at County Level: A Case Study of Zhejiang Province, China. Int. J. Disaster Risk Reduct. 2022, 75, 102976. [Google Scholar] [CrossRef]
- Liu, B.; Siu, Y.L.; Mitchell, G. A Quantitative Model for Estimating Risk from Multiple Interacting Natural Hazards: An Application to Northeast Zhejiang, China. Stoch. Environ. Res. Risk Assess. 2017, 31, 1319–1340. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, G.; Gao, J.; Wang, S.; Xue, B.; Wang, K.; Yang, J.; Jiang, R.; Lian, J. The Rainfall Thresholds and Soil Characteristics of Large Geological Disasters in Zhejiang, China. Arab. J. Geosci. 2022, 15, 559. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, X.; Shen, H.; Zhang, D.; Bao, H. GIS Analysis of Urban Ground Collapse Susceptibility: A Case Study of Eastern Hangzhou, China. Front. Earth Sci. 2024, 11, 1338877. [Google Scholar] [CrossRef]
- Yan, F.; Qiu, W.; Sun, K.; Jiang, S.; Huang, H.; Hong, Y.; Hou, Z. Investigation of a Large Ground Collapse, Water Inrush and Mud Outburst, and Countermeasures during Subway Excavation in Qingdao: A Case Study. Tunn. Undergr. Space Technol. 2021, 117, 104127. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, X. Excavation Collapse of Hangzhou Subway Station in Soft Clay and Numerical Investigation Based on Orthogonal Experiment Method. J. Zhejiang Univ. Sci. A 2012, 13, 760–767. [Google Scholar] [CrossRef]
- Chen, R.P.; Li, Z.C.; Chen, Y.M.; Ou, C.Y.; Hu, Q.; Rao, M. Failure Investigation at a Collapsed Deep Excavation in Very Sensitive Organic Soft Clay. J. Perform. Constr. Facil. 2015, 29, 04014078. [Google Scholar] [CrossRef]
- Zeng, A.; Liu, X.; Du, Z.; Wang, Z.; Lai, H.; Ding, M.; Yang, Z.; Xu, Y.; Zheng, W.; Xia, X.; et al. Glm-130b: An Open Bilingual Pre-Trained Model. arXiv 2022, arXiv:2210.02414. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, Y.; Stokes, E.C.; Zhang, X. Large-Scale Urban Building Function Mapping by Integrating Multi-Source Web-Based Geospatial Data. Geo-Spat. Inf. Sci. 2023, 1–15. [Google Scholar] [CrossRef]
- Qin, C.; Tang, Z.; Chen, J.; Chen, X. The Impact of Soil and Water Resource Conservation on Agricultural Production-an Analysis of the Agricultural Production Performance in Zhejiang, China. Agric. Water Manag. 2020, 240, 106268. [Google Scholar] [CrossRef]
- Du, M.; Hou, Y.; Qi, P.; Wang, K. The Impact of Different Historical Typhoon Tracks on Storm Surge: A Case Study of Zhejiang, China. J. Mar. Syst. 2020, 206, 103318. [Google Scholar] [CrossRef]
City Name | News Counts | LLM Result | Manual Result | Model Evaluation | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
True | False | Fail | True | Percentage | False | Percentage | R | P | F1 | ||
Hangzhou | 220 | 127 | 43 | 50 | 135 | 61.3% | 85 | 38.7% | 74.07% | 78.74% | 76.34% |
Huzhou | 30 | 15 | 12 | 3 | 0 | 0% | 30 | 100% | 0.00% | 0.00% | 0.00% |
Jiaxing | 40 | 19 | 11 | 10 | 4 | 10.0% | 36 | 90.0% | 100.00% | 21.05% | 34.78% |
Jinhua | 35 | 16 | 11 | 1 | 0 | 0% | 35 | 100% | 0.00% | 0.00% | 0.00% |
Lishui | 26 | 9 | 9 | 8 | 3 | 11.5% | 23 | 88.5% | 66.67% | 22.22% | 33.33% |
Ningbo | 83 | 32 | 36 | 15 | 3 | 3.6% | 80 | 96.3% | 100.00% | 9.38% | 17.14% |
Quzhou | 19 | 10 | 7 | 2 | 3 | 15.7% | 16 | 84.2% | 66.67% | 20.00% | 30.77% |
Shaoxing | 32 | 11 | 13 | 8 | 3 | 9.3% | 29 | 90.6% | 66.67% | 18.18% | 28.57% |
Taizhou | 49 | 22 | 11 | 16 | 6 | 12.2% | 43 | 87.8% | 50.00% | 13.64% | 21.43% |
Wenzhou | 79 | 43 | 22 | 14 | 5 | 6.3% | 74 | 93.7% | 40.00% | 4.65% | 8.33% |
Zhoushan | 24 | 7 | 17 | 0 | 0 | 0.0% | 24 | 100% | 0.00% | 0.00% | 0.00% |
City Name | True Positive | Time | Location | Model Precision | ||||
---|---|---|---|---|---|---|---|---|
Right | Wrong | Fail | Right | Wrong | Fail | |||
Hangzhou | 100 | 34 | 57 | 9 | 49 | 42 | 9 | 34% |
Huzhou | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Jiaxing | 4 | 2 | 2 | 0 | 4 | 0 | 0 | 50% |
Jinhua | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Lishui | 2 | 1 | 1 | 0 | 2 | 0 | 0 | 50% |
Ningbo | 3 | 3 | 0 | 0 | 3 | 0 | 0 | 100% |
Quzhou | 2 | 1 | 1 | 0 | 2 | 0 | 0 | 50.0% |
Shaoxing | 2 | 0 | 2 | 0 | 2 | 0 | 0 | 0% |
Taizhou | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 33.3% |
Wenzhou | 2 | 1 | 1 | 0 | 1 | 1 | 0 | 50.0% |
Zhoushan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
No. | Date | Lon. | Lat. | City | Location | Factor | Length (m2) | Area (m2) | Depth (m) |
---|---|---|---|---|---|---|---|---|---|
1 | 18 May 2022 | 120.313 | 30.309 | Hangzhou | Jinshahu Park Sunken Plaza | Pipe burst | \ | \ | \ |
2 | 30 August 2021 | 120.130 | 30.271 | Hangzhou | Southeast corner of Academy Road and Tianmushan Road | \ | \ | 12 | \ |
3 | 29 December 2020 | 120.125 | 30.269 | Hangzhou | Xixi Road Sidewalk | Subway construction | \ | 25 | \ |
4 | 30 June 2020 | 120.153 | 30.161 | Hangzhou | Dongguan Road Puyan Road Farmers’ Market, Binjiang District | Heavy rain | \ | 8~9 | 0.5 |
5 | 30 June 2020 | 120.328 | 30.318 | Hangzhou | Intersection of Shangsha Road and Xueyuan Street, Xiasha | Heavy rain | \ | \ | \ |
6 | 2 October 2021 | 120.280 | 30.442 | Hangzhou | Intersection of Heyu Road and Xinzhou Road, Linping District | Collapse of foundation pit | \ | 8 | 4 |
7 | 15 November 2008 | 120.234 | 30.168 | Hangzhou | Xianghu Station of Metro Line 1 | Collapse of foundation pit | 75 | \ | 15 |
8 | 21 March 2021 | 120.183 | 30.311 | Hangzhou | Resettlement housing site of ShenjiaNanyuan, opposite to Dongxinyuan, Changbang Road, Xiacheng District | Collapse of foundation pit | 40 | \ | \ |
9 | 28 August 2019 | 120.180 | 30.268 | Hangzhou | Bao-shan-qiao to North Jianguo Road station at Metro Line 5 | Subway construction | \ | \ | \ |
10 | 16 August 2019 | 120.182 | 30.244 | Hangzhou | Under the approach bridge to Hangzhou City Station Railway Station | Subway construction | \ | \ | \ |
11 | 7 May 2021 | 120.072 | 30.330 | Hangzhou | Jinjiadu to Zijinhang Road Station Interval at Metro Line 4 | Subway construction | \ | \ | \ |
12 | 11 June 2018 | 120.064 | 30.347 | Hangzhou | Yunhe Lake construction project site in the north of SanDun | Collapse of foundation pit | \ | 2000 | \ |
13 | 7 December 2018 | 120.180 | 30.252 | Hangzhou | In front of KuiXiang Community, Jianguo Middle Roa | Subway construction | \ | \ | \ |
14 | 21 April 2016 | 120.129 | 30.282 | Hangzhou | Intersection of WenEr Road and XueYuan Road | Rainwater pipes leaking | \ | 20 | \ |
15 | 22 February 2016 | 120.102 | 30.175 | Hangzhou | Yunqi HNA Hotel, No. 1, Meiling South Road | Road construction | \ | 250 | \ |
16 | 19 October 2015 | 120.162 | 30.339 | Hangzhou | ChuXin Road No. 31 | Collapse of foundation pit | \ | 10 | 3 |
17 | 1 April 2014 | 120.207 | 30.240 | Hangzhou | ChengXing Road Station at Metro Line 4 | Subway construction | \ | \ | \ |
18 | 25 February 2009 | 120.200 | 30.282 | Hangzhou | Pu-jia-qiao section on the Canal Walking Trail | Engineering quality | \ | \ | \ |
19 | 7 January 2008 | 120.184 | 30.277 | Hangzhou | GenShan Canal Bridge | Water pipe burst | \ | 30 | 3~4 |
20 | 13 March 2012 | 120.096 | 30.294 | Hangzhou | Project site of Wuzhou International Plaza at the intersection of Gudun Road and Yuhangtang Road | Collapse of foundation pit | \ | \ | \ |
21 | 26 April 2021 | 120.569 | 30.045 | Shaoxing | Intersection of Guandu Road and Henghu Road | Engineering quality | \ | \ | \ |
22 | 14 January 2018 | 120.575 | 30.047 | Shaoxing | Jiayuan Plaza | Engineering quality | \ | \ | \ |
23 | 18 October 2010 | 119.888 | 28.982 | Jinhua | Former Dongfeng Perspex Company in Wuyi County | Abandoned mines | \ | \ | \ |
24 | 10 September 2020 | 120.610 | 27.960 | Wenzhou | Shanghui Road, Louqiao Street | Engineering quality | \ | \ | \ |
25 | 10 March 2019 | 121.631 | 29.883 | Ningbo | Gaoxin District Baolong Plaza | Engineering quality | 30 | 150 | \ |
26 | 9 May 2005 | 120.938 | 30.040 | Ningbo | Xiao-Yong Railway between Yuyao West and Yiting Interval | Earth cutting | 150 | \ | 10 |
27 | 9 August 2006 | 118.756 | 28.831 | Quzhou | Houxi Street, Jiangshan City, Quzhou, Zhe-Gan Line | Geological cave collapse | \ | \ | \ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; Qi, J.; Ma, X.; Wu, S.; Liu, R.; Zhang, X. An LLM-Based Inventory Construction Framework of Urban Ground Collapse Events with Spatiotemporal Locations. ISPRS Int. J. Geo-Inf. 2024, 13, 133. https://doi.org/10.3390/ijgi13040133
Hao Y, Qi J, Ma X, Wu S, Liu R, Zhang X. An LLM-Based Inventory Construction Framework of Urban Ground Collapse Events with Spatiotemporal Locations. ISPRS International Journal of Geo-Information. 2024; 13(4):133. https://doi.org/10.3390/ijgi13040133
Chicago/Turabian StyleHao, Yanan, Jin Qi, Xiaowen Ma, Sensen Wu, Renyi Liu, and Xiaoyi Zhang. 2024. "An LLM-Based Inventory Construction Framework of Urban Ground Collapse Events with Spatiotemporal Locations" ISPRS International Journal of Geo-Information 13, no. 4: 133. https://doi.org/10.3390/ijgi13040133
APA StyleHao, Y., Qi, J., Ma, X., Wu, S., Liu, R., & Zhang, X. (2024). An LLM-Based Inventory Construction Framework of Urban Ground Collapse Events with Spatiotemporal Locations. ISPRS International Journal of Geo-Information, 13(4), 133. https://doi.org/10.3390/ijgi13040133