Functional Method for Analyzing Open-Space Ratios around Individual Buildings and Its Implementation with GIS
<p>The building footprints in the study area in the Shibuya ward in Tokyo. The gray polygons are buildings in the study area. The white polygons are buildings in the peripheral area surrounding the study area and are used for edge correction. The circular curve centered at <span class="html-italic">B</span><sub>21</sub> is the 50 m wide buffer zone around <span class="html-italic">B</span><sub>21</sub>. The circular rings centered at <span class="html-italic">B</span><sub>130</sub> are 10 m with buffer rings surrounding <span class="html-italic">B</span><sub>130</sub>. The broken circular curve around the clump of the dark gray buildings is the 50 m wide buffer zone around the clump.</p> "> Figure 2
<p>(<b>a</b>) The buffer zone <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>B</mi> </mrow> <mrow> <mi>f</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mn>50</mn> <mi mathvariant="normal">m</mi> </mrow> <mrow> <msub> <mrow> <mi>B</mi> </mrow> <mrow> <mn>21</mn> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math> around Building <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>B</mi> </mrow> <mrow> <mn>21</mn> </mrow> </msub> </mrow> </semantics></math>. (<b>b</b>) The buildings in the buffer zone. (<b>c</b>) The open space in the buffer zone <math display="inline"><semantics> <mrow> <mi>O</mi> <mfenced separators="|"> <mrow> <mi>x</mi> </mrow> <mrow> <msub> <mrow> <mi>B</mi> </mrow> <mrow> <mn>21</mn> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math>.</p> "> Figure 3
<p>(<b>a</b>) The buffer zone of 40 m in width around <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>B</mi> </mrow> <mrow> <mn>130</mn> </mrow> </msub> </mrow> </semantics></math>. (<b>b</b>) The buffer zone of 30 m in width around <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>B</mi> </mrow> <mrow> <mn>130</mn> </mrow> </msub> </mrow> </semantics></math>. (<b>c</b>) The fourth ring area surrounding <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>B</mi> </mrow> <mrow> <mn>130</mn> </mrow> </msub> </mrow> </semantics></math>. (<b>d</b>) The open space in the buffer zone <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>B</mi> </mrow> <mrow> <mi>f</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> <mrow> <msub> <mrow> <mi>B</mi> </mrow> <mrow> <mn>130</mn> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math>. (<b>e</b>) The open space in the buffer zone <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>B</mi> </mrow> <mrow> <mi>f</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <msub> <mrow> <mi>x</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> </mrow> <mrow> <msub> <mrow> <mi>B</mi> </mrow> <mrow> <mn>130</mn> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math>. (<b>f</b>) The open space in the fourth ring.</p> "> Figure 4
<p>(<b>a</b>) Cumulative local open-space ratio function of Building <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>B</mi> </mrow> <mrow> <mn>21</mn> </mrow> </msub> </mrow> </semantics></math> indicated by the thick black curve and that of Building <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>B</mi> </mrow> <mrow> <mn>130</mn> </mrow> </msub> </mrow> </semantics></math> indicated by the thick gray curve. The upper dotted horizontal straight line shows the average open-space ratio in the whole study area. (<b>b</b>) The difference in open-space ratio between the two open-space ratio functions. The dotted horizontal line indicates that the difference in the open-space ratio is 0.1.</p> "> Figure 5
<p>(<b>a</b>) Incremental local open-space ratio function of Building <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>B</mi> </mrow> <mrow> <mn>21</mn> </mrow> </msub> </mrow> </semantics></math> indicated by the thick black curve and that of Building <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>B</mi> </mrow> <mrow> <mn>130</mn> </mrow> </msub> </mrow> </semantics></math> indicated by the thick gray curve. The upper dotted horizontal straight line shows the average open-space ratio in the whole study area. The dotted horizontal line indicates the average open-space ratio in the whole study area. (<b>b</b>) The difference in open-space ratios between the two open-space ratio functions. The <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math>-th ring means the ring area between the <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math> m buffer circular line and the <math display="inline"><semantics> <mrow> <mi>x</mi> </mrow> </semantics></math> − 1 m buffer circular line. The dotted horizontal lines indicate that the difference in the open-space ratio is between 0.1 and −0.1.</p> "> Figure 6
<p>(<b>a</b>) The global cumulative open-space ratio function, i.e., the average of local cumulative open-space ratios of all buildings in the study area. The dotted horizontal line indicates the average open-space ratio in the whole study area. (<b>b</b>) The standard deviation of the cumulative local open-space ratios of all buildings in the whole study area. The dotted horizontal line indicates that the standard deviation is 0.05.</p> "> Figure 7
<p>Four classes of buildings with similar open-space ratios in a 15 m wide buffer zone around each building. The open-space ratio of buildings decreases from green (highest), yellow, orange and red (lowest) in this order.</p> "> Figure 8
<p>The process of clumping polygons using the buffer zone operator with the graphic modeler of QGIS. The number of clumps decreases from (<b>a</b>) nine, (<b>b</b>) eight, (<b>c</b>) seven, (<b>d</b>) six, (<b>e</b>) five, (<b>f</b>) four, (<b>g</b>) three, (<b>h</b>) two, (<b>i</b>) one.</p> "> Figure 9
<p>The clumps of buildings in the case of 6 m wide buffer zones. Buildings belonging to the same clump are surrounded by the same color.</p> "> Figure 10
<p>The incremental local open-space function of the clump of buildings indicated by the black curve in <a href="#ijgi-13-00070-f009" class="html-fig">Figure 9</a>. The width of a ring is 1 m. The dotted horizontal line indicates the average open-space ratio in the whole study area.</p> "> Figure A1
<p>The graphic modeler (QGIS) of computing the open-space ratio function.</p> ">
Abstract
:1. Introduction
2. Methods and Implementation
2.1. Local Open-Space Ratio Function
2.2. Global Open-Space Ratio Function
2.3. Distinctly Different Classes of Open-Space Ratios
2.4. Open-Space Ratio Function of a Clump of Buildings
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Implementation of the Open-Space Functions with GIS
- Step 1: Compute the buffer zone of building , i.e., in Equation (1). This computation is performed by a GIS buffering operator (Figure 2a).
- Step 2: Compute the area occupied by buildings , , i.e., in Equation (1). This computation is performed by GIS union and dissolve operators (Figure 2b).
- Step 3: Compute the open space in the buffer zone of by excluding the union of all buildings obtained in Step 2 from the buffer zone obtained in Step 1, i.e., in Equation (1). This computation is performed by a GIS difference operator (Figure 2c).
- Step 4: Compute the local cumulative open-space ratio function by substituting these terms in Equation (1).
- Step 5: Repeat the presented procedure for , j = 1, …, m and , i = 1,…, n using a GIS processing modeler, such as the graphic modeler of QGIS or the model builder of ArcGIS.
References
- Solecki, W.D.; Mason, R.J.; Martin, S. The Geography of Support for Open-Space Initiatives: A Case Study of New Jersey’s 1998 Ballot Measure. Soc. Sci. Q. 2004, 85, 624–639. [Google Scholar] [CrossRef]
- Wijayawardana, N.; Abenayake, C.; Jayasinghe, A.; Dias, N. An Urban Density-Based Runoff Simulation Framework to Envisage Flood Resilience of Cities. Urban Sci. 2023, 7, 17. [Google Scholar] [CrossRef]
- Sharifi, E.; Lehmann, S. Correlation Analysis of Surface Temperature of Rooftops, Streetscapes and Urban Heat Island Effect: Case Study of Central Sydney. J. Urban Environ. Eng. 2015, 9, 3–11. [Google Scholar] [CrossRef]
- Chotchaiwong, P.; Wijitkosum, S. Predicting Urban Expansion and Urban Land Use Changes in Nakhon Ratchasima City Using a CA-Markov Model under Two Different Scenarios. Land 2019, 8, 140. [Google Scholar] [CrossRef]
- Cherian, N.C.; Subasinghe, C. Sun-Safe Zones: Investigating Integrated Shading Strategies for Children’s Play Areas in Urban Parks. Int. J. Environ. Res. Public Health 2023, 20, 114. [Google Scholar] [CrossRef]
- Catharine Ward Thompson, C.W. Urban Open Space in the 21st Century. Landsc. Urban Plan. 2002, 60, 59–72. [Google Scholar] [CrossRef]
- Gamero-Salinas, J.; Kishnani, N.; Monge-Barrio, A.; L’opez-Fidalgo, J.; Ana S’anchez-Ostiz, A. Evaluation of Thermal Comfort and Building Form Attributes in Different Semi-outdoor Environments in a High-density Tropical Setting. Build. Environ. 2021, 205, 108255. [Google Scholar] [CrossRef]
- Whitehand, J.W.R. Green Space in Urban Morphology: A Historico-geographical Approach. Urban Morphol. 2019, 23, 5–15. [Google Scholar] [CrossRef]
- Felt, J. Modern Zoning and Planning Progress in New York. Fordham Law Rev. 1961, 29, 681–692. [Google Scholar]
- Tough, R.; MacDonald, G. The New Zoning and New York City’s New Look. Land Econ. 1965, 41, 41–48. [Google Scholar] [CrossRef]
- Hamaina, R.; Leduc, T.; Moreau, G. A New Method to Characterize Density Adapted to a Coarse City Model. In Information Usion and Geographic Information Systems (IF&GIS 2013); Popovich, V., Claramunt, C., Schrenk, M., Korolenko, K., Eds.; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2014; pp. 249–263. [Google Scholar]
- Schirmer, P.M.; Axhausen, K.W. A Multiple Clustering of the Urban Morphology for Use in Quantitative Models. In The Mathematics of Urban Morphology; D’Acci, L., Ed.; Birkhauser: Basel, Switzerland, 2019; pp. 355–382. [Google Scholar]
- Steiniger, S.; Lange, T.; Burghardt, D.; Weibel, R. An Approach for the Classification of Urban Building Structure Based on Discriminat Analysis Techniques. Trans. GIS 2008, 12, 31–59. [Google Scholar] [CrossRef]
- Boffet, A.; Rocca Serra, S. Identification of Spatial Structures within Urban Blocks for Town. Algorithmica 2001, 30, 312–333. [Google Scholar]
- Openshaw, S. The Modifiable Areal Unit Problem. 1984 Concepts and Techniques in Modern Geography No. 38. Norwich: Geobooks.
- Yamada, I.; Thill, J. Comparison of Planar and Network K-functions in Traffic Accident Analysis. J. Transp. Geogr. 2004, 12, 149–158. [Google Scholar] [CrossRef]
- Ripely, B. Spatial Statistics; John Wiley: Hoboken, NJ, USA, 1981. [Google Scholar]
- Yamada, I.; Rogerson, P. An Empirical Comparison of Edge Effect Correction Methods Applied to K-function Analysis. Geogr. Anal. 2003, 35, 97–109. [Google Scholar]
- Boots, B.; Okabe, A. Local Statistical Spatial Analysis: Inventory and Prospect. Int. J. Geogr. Inf. Sci. 2007, 21, 355–375. [Google Scholar] [CrossRef]
- Okabe, A.; Boots, B.; Satoh, T. A Class of Local and Global K Functions and Their Exact Statistical Methods. In Perspectives on Spatial Data Analysis; Anselin, L., Rey, S., Eds.; Advances in Spatial Science; Springer: Berlin/Heidelberg, Germany, 2010; pp. 101–112. [Google Scholar]
- Ward, H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Okabe, A.; Boots, B.; Sugihara, K.; Chiu, S.N. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams; Jon Wiley: Chicester, UK, 2000. [Google Scholar]
- Usui, H.; Teraki, A.; Okunuki, K.; Satoh, T. A Comparison of Neighbourhood Relations based on Ordinary Delaunay Diagrams and area Delaunay Diagrams: An Application to Define the Neighbourhood Relations of Buildings. Int. J. Geogr. Inf. Sci. 2020, 34, 2177–2203. [Google Scholar] [CrossRef]
- Kristiadi, Y.; Sari, R.F.; Herdiansyah, H.; Hasibuan, H.S.; Lim, T.H. Developing DPSIR Framework for Managing Climate Change in Urban Areas: A Case Study in Jakarta, Indonesia. Sustainability 2022, 14, 15773. [Google Scholar] [CrossRef]
- Choi, S.; Jiao, J.; Lee, H.K.; Farahi, A. Combatting the Mismatch: Modeling bike-sharing Rental and Return Machine Learning Classification Forecast in Seoul, South Korea. J. Transp. Geogr. 2023, 109, 103587. [Google Scholar] [CrossRef]
- Sotoma, M.; Miyazaki, H.; Kyakuno, T.; Moriyama, M. Analysis of Land Use Zoning Regulations and Green Coverage Ratio. J. Asian Archit. Build. Eng. 2003, 2, b29–b34. [Google Scholar] [CrossRef]
- Mihara, K.; Hii, D.J.C.; Takasuna, H.; Sakata, K. How does green coverage ratio and spaciousness affect self-reported performance and mood? Build. Environ. 2023, 245, 1. [Google Scholar] [CrossRef]
- Loo, B.P.Y.; Lam, W.W.Y.; Mahendran, R.; Katagiri, K. How Is the Neighborhood Environment Related to the Health of Seniors Living in Hong Kong, Singapore, and Tokyo? Some Insights for Promoting Aging in Place. Ann. Am. Assoc. Geogr. 2017, 107, 812–828. [Google Scholar] [CrossRef]
- Ariffin, A.; Mukhelas, H.K.; Iman, A.H.M.; Desa, G.; Mohammad, I.S. Spatial-Based Sustainability Assessment of Urban Neighbourhoods: A Case Study of Johor Bahru City Council, Malaysia. In Geoinformation for Informed Decisions; Rahman, A., Boguslawski, P., Anton, F., Said, M., Omar, K., Eds.; Lecture Notes in Geoinformation and Cartography; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Bolton, L.T. Space Ratio: A measure of Density Potentials in the Built Environment. Sustain. Cities Soc. 2021, 75, 103356. [Google Scholar] [CrossRef]
- Fasihi, H. Urban Parks and Their Accessibility in Tehran, Iran. Environ. Justice 2019, 12, 242–249. [Google Scholar] [CrossRef]
- Larson1, L.R.; Zhang, Z.; Oh, J.I.; Beam, W.; Ogletree, S.S.; Bocarro, J.N.; Lee, K.J.J.; Casper, J.; Stevenson, K.T.; Hipp, J.A.; et al. Urban Park Use during the COVID-19 Pandemic: Are Socially Vulnerable Communities Disproportionately Impacted? Front. Sustain. Cities 2021, 3, 710243. [Google Scholar] [CrossRef]
- Cheng Gao, C.; Liu, J.; Cui, H.; Wang, Z.; He, S. Optimized Water Surface Ratio and Pervious Surface Proportion in Urbanized Riverside Areas. Environ. Earth Sci. 2014, 72, 569–576. [Google Scholar]
- Cheng Gao, C.; Liu, J.; Liu, X.; Zhang, H. Compensation Mechanism of Water Surface Ratio and Pervious Surface Proportion for Flood Mitigation in Urban Areas. Disaster Adv. 2012, 5, 1294–1297. [Google Scholar]
- Zhaoa, Y.; Zeng, L.; Weic, Y.; Liud, J.; Dengd, J.; Qucheng Dengc, Q.; Tonga, K.; Lib, J. An Indicator System for Assessing the Impact of Human Activities on River Structure. J. Hydrol. 2020, 582, 1245. [Google Scholar] [CrossRef]
- Yang, B.; Kim, C.; Lee, H.; Lim, W. A Study on the Distribution Characteristics of NATURALIZED PLANTS: For Gyeongsangbuk-do Area. Int. J. Hum. Disaster 2012, 6, 1–10. [Google Scholar] [CrossRef]
- Soehodho, S. Public transportation development and traffic accident prevention in Indonesia. IATSS Res. 2017, 40, 76–80. [Google Scholar] [CrossRef]
- Parka, S.; Jeonb, S.; Shinyup Kimc, S.; Choi, C. Prediction and Comparison of Urban Growth by Land Suitability Index Mapping Using GIS and RS in South Korea Soyoung Parka. Landsc. Urban Plan. 2011, 99, 104–114. [Google Scholar] [CrossRef]
- Yen, H.; Li, C. An Application of Open Government Data: An Evidence on Physical Activity Environment and Diseases. Int. J. Comput. Theory Eng. 2017, 9, 308–312. [Google Scholar] [CrossRef]
- Khatavkar, P. Nurturing Children’s Health Through Neighbourhood Morphology. Creat. Space 2018, 6, 11–22. [Google Scholar] [CrossRef]
- Yang, X.; Fan, Y.; Xia, D.; Zou, Y.; Deng, Y. Uses of and Preferences for Community Outdoor Spaces during Heat Periods. Sustainability 2023, 15, 11264. [Google Scholar] [CrossRef]
- Kesarovski, T.; Hern’andez-Palacio, F. Time, the Other Dimension of Urban Form: Measuring the Relationship between Urban Density and Accessibility to Grocery Shops in the 10-minute City. Urban Anal. City Sci. 2023, 50, 44–59. [Google Scholar] [CrossRef]
- Okabe, A.; Sugihara, K. Spatial Analysis along Networks; John Wiley: Chichester, UK, 2012. [Google Scholar]
- Usui, H. How to Harmonise Variations in Streetscape Skeletons under Zoning Regulations: Considering their External Diseconomies. Environ. Plan. B Urban Anal. City Sci. 2023, 50, 434–452. [Google Scholar] [CrossRef]
- Okabe, A.; Okabe, K. An Extended K Function Method for Analyzing Distributions of Polygons with GIS. Geogr. Anal. 2023, 55, 268–279. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okabe, K.; Okabe, A. Functional Method for Analyzing Open-Space Ratios around Individual Buildings and Its Implementation with GIS. ISPRS Int. J. Geo-Inf. 2024, 13, 70. https://doi.org/10.3390/ijgi13030070
Okabe K, Okabe A. Functional Method for Analyzing Open-Space Ratios around Individual Buildings and Its Implementation with GIS. ISPRS International Journal of Geo-Information. 2024; 13(3):70. https://doi.org/10.3390/ijgi13030070
Chicago/Turabian StyleOkabe, Kayo, and Atsuyuki Okabe. 2024. "Functional Method for Analyzing Open-Space Ratios around Individual Buildings and Its Implementation with GIS" ISPRS International Journal of Geo-Information 13, no. 3: 70. https://doi.org/10.3390/ijgi13030070
APA StyleOkabe, K., & Okabe, A. (2024). Functional Method for Analyzing Open-Space Ratios around Individual Buildings and Its Implementation with GIS. ISPRS International Journal of Geo-Information, 13(3), 70. https://doi.org/10.3390/ijgi13030070