An Analysis of the Spatial Variations in the Relationship Between Built Environment and Severe Crashes
<p>Study area and census block groups.</p> "> Figure 2
<p>Spatial modeling framework.</p> "> Figure 3
<p>Spatial indicators of crashes.</p> "> Figure 4
<p>Correlation matrix of independent variables.</p> "> Figure 5
<p>Spatial variation in coefficients.</p> "> Figure 5 Cont.
<p>Spatial variation in coefficients.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Spatial Analysis
2.2.1. Global Regression Models
2.2.2. Local Regression Models
2.2.3. GWR and MGWR with Spatially Lagged Dependent Variable (GWRL and MGWRL)
2.3. Modeling Framework
2.4. Subset Selection
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO. Death on Roads. Available online: https://extranet.who.int/roadsafety/death-on-the-roads/#ticker (accessed on 10 June 2024).
- Blincoe, L.; Miller, T.R.; Zaloshnja, E.; Lawrence, B.A. The Economic and Societal Impact of Motor Vehicle Crashes, 2010 (Revised). 2015. Available online: https://trid.trb.org/view/1311862 (accessed on 10 June 2024).
- Blincoe, L.; Miller, T.R.; Wang, J.S.; Swedler, D.; Coughlin, T.; Lawrence, B.; Guo, F.; Klauer, S.; Dingus, T. The Economic and Societal Impact of Motor Vehicle Crashes. 2023. Available online: https://rosap.ntl.bts.gov (accessed on 15 June 2024).
- NHTSA. Traffic Crashes Cost America Billions in 2019. 2023. Available online: https://www.nhtsa.gov/press-releases/traffic-crashes-cost-america-billions-2019 (accessed on 29 July 2024).
- ITF. Road Safety Annual Report 2018. 2018. Available online: https://www.itf-oecd.org/road-safety-annual-report-2018 (accessed on 9 June 2024).
- National Center for Statistics and Analysis. Rural/Urban Comparison of Traffic Fatalities: 2018 Data (Traffic Safety Facts. Report No. DOT HS 812 957). 2020. Available online: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812957 (accessed on 9 June 2024).
- Ziakopoulos, A.; Yannis, G. A review of spatial approaches in road safety. Accid. Anal. Prev. 2020, 135, 105323. [Google Scholar] [CrossRef] [PubMed]
- Ewing, R.; Dumbaugh, E. The Built Environment and Traffic Safety. J. Plan. Lit. 2009, 23, 347–367. [Google Scholar] [CrossRef]
- Merlin, L.A.; Guerra, E.; Dumbaugh, E. Crash risk, crash exposure, and the built environment: A conceptual review. Accid. Anal. Prev. 2020, 134, 105244. [Google Scholar] [CrossRef]
- Lord, D.; Mannering, F. The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives. Transp. Res. Part. A Policy Pract. 2010, 44, 291–305. [Google Scholar] [CrossRef]
- Ouyang, Y.; Bejleri, I. Geographic Information System–Based Community-Level Method to Evaluate the Influence of Built Environment on Traffic Crashes. Transp. Res. Rec. J. Transp. Res. Board. 2014, 2432, 124–132. [Google Scholar] [CrossRef]
- Ukkusuri, S.; Hasan, S.; Aziz, H.M.A.A. Random Parameter Model Used to Explain Effects of Built-Environment Characteristics on Pedestrian Crash Frequency. Transp. Res. Rec. J. Transp. Res. Board. 2011, 2237, 98–106. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, X.; Patton, D. Examining spatial relationships between crashes and the built environment: A geographically weighted regression approach. J. Transp. Geogr. 2018, 69, 221–233. [Google Scholar] [CrossRef]
- Khattak, A.J.; Wang, X.; Zhang, H. Spatial Analysis and Modeling of Traffic Incidents for Proactive Incident Management and Strategic Planning. Transp. Res. Rec. J. Transp. Res. Board. 2010, 2178, 128–137. [Google Scholar] [CrossRef]
- Ukkusuri, S.; Miranda-Moreno, L.F.; Ramadurai, G.; Isa-Tavarez, J. The role of built environment on pedestrian crash frequency. Saf. Sci. 2012, 50, 1141–1151. [Google Scholar] [CrossRef]
- Chen, P.; Shen, Q. Identifying high-risk built environments for severe bicycling injuries. J. Saf. Res. 2019, 68, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Shen, Q. Built environment effects on cyclist injury severity in automobile-involved bicycle crashes. Accid. Anal. Prev. 2016, 86, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Tasic, I.; Elvik, R.; Brewer, S. Exploring the safety in numbers effect for vulnerable road users on a macroscopic scale. Accid. Anal. Prev. 2017, 109, 36–46. [Google Scholar] [CrossRef]
- Aguero-Valverde, J.; Jovanis, P.P. Spatial Correlation in Multilevel Crash Frequency Models. Transp. Res. Rec. J. Transp. Res. Board. 2010, 2165, 21–32. [Google Scholar] [CrossRef]
- Abdel-Aty, M.; Lee, J.; Siddiqui, C.; Choi, K. Geographical unit based analysis in the context of transportation safety planning. Transp. Res. Part. A Policy Pract. 2013, 49, 62–75. [Google Scholar] [CrossRef]
- Gomes, M.J.T.L.; Cunto, F.; Silva, A.R. Geographically weighted negative binomial regression applied to zonal level safety performance models. Accid. Anal. Prev. 2017, 106, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Gao, F.; Liu, F.; Han, C.; Lee, J. Spatial heterogeneity analysis of macro-level crashes using geographically weighted Poisson quantile regression. Accid. Anal. Prev. 2020, 148, 105833. [Google Scholar] [CrossRef]
- Aljoufie, M.; Tiwari, A. Modeling road safety in car-dependent cities: Case of Jeddah city, Saudi Arabia. Sustainability 2021, 13, 1816. [Google Scholar] [CrossRef]
- Zafri, N.M.; Khan, A. Using geographically weighted logistic regression (GWLR) for pedestrian crash severity modeling: Exploring spatially varying relationships with natural and built environment factors. IATSS Res. 2023, 47, 325–334. [Google Scholar] [CrossRef]
- Qu, X.; Zhu, X.; Xiao, X.; Wu, H.; Guo, B.; Li, D. Exploring the Influences of Point-of-Interest on Traffic Crashes during Weekdays and Weekends via Multi-Scale Geographically Weighted Regression. ISPRS Int. J. Geoinf. 2021, 10, 791. [Google Scholar] [CrossRef]
- Li, X.; Yu, S.; Huang, X.; Dadashova, B.; Cui, W.; Zhang, Z. Do underserved and socially vulnerable communities observe more crashes? A spatial examination of social vulnerability and crash risks in Texas. Accid. Anal. Prev. 2022, 173, 106721. [Google Scholar] [CrossRef] [PubMed]
- Zafri, N.M.; Khan, A. A spatial regression modeling framework for examining relationships between the built environment and pedestrian crash occurrences at macroscopic level: A study in a developing country context. Geogr. Sustain. 2022, 3, 312–324. [Google Scholar] [CrossRef]
- Tang, X.; Bi, R.; Wang, Z. Spatial analysis of moving-vehicle crashes and fixed-object crashes based on multi-scale geographically weighted regression. Accid. Anal. Prev. 2023, 189, 107123. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Das, S.; Khan, M.N. Decoding the impacts of contributory factors and addressing social disparities in crash frequency analysis. Accid. Anal. Prev. 2024, 194, 107375. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.F.; Sulistyah, U.D.; Putra, I.G.B.; Lord, D. Exploring the spatial relationship of e-bike and motorcycle crashes: Implications for risk reduction. J. Saf. Res. 2024, 88, 199–216. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Hong, Y.; He, Y.; Pei, M. Advancing and lagging effects of weather conditions on intercity traffic volume: A geographically weighted regression analysis in the Guangdong-Hong Kong-Macao Greater Bay Area. Int. J. Transp. Sci. Technol. 2024, 13, 58–76. [Google Scholar] [CrossRef]
- Comber, A.; Brunsdon, C.; Charlton, M.; Dong, G.; Harris, R.; Lu, B.; Lü, Y.; Murakami, D.; Nakaya, T.; Wang, Y.; et al. A Route Map for Successful Applications of Geographically Weighted Regression. Geogr. Anal. 2023, 55, 155–178. [Google Scholar] [CrossRef]
- Center for Neighborhood Technology. Housing + Transportation Affordability Index. Available online: https://www.cnt.org/tools/housing-and-transportation-affordability-index (accessed on 10 November 2020).
- Smart Growth EPA. Smart Location Mapping. Available online: https://www.epa.gov/smartgrowth/smart-location-mapping#SLD (accessed on 10 November 2020).
- Census Bureau Data. Available online: https://data.census.gov (accessed on 9 September 2024).
- FDOT Safety Office, Department of Highway Safety and Motor Vehicles (DHSMV). Crash Analysis Reporting (CAR) System – Reports and Database. Available online: https://www.fdot.gov/safety/safetyengineering/crash-data-systems-and-mapping (accessed on 16 July 2023).
- FHWA. KABCO Injury Classification Scale and Definitions by State. Available online: https://safety.fhwa.dot.gov/hsip/spm/conversion_tbl/pdfs/kabco_ctable_by_state.pdf (accessed on 25 November 2024).
- NHTSA. Model Minimum Uniform Crash Criteria. Available online: https://www.nhtsa.gov/traffic-records/model-minimum-uniform-crash-criteria (accessed on 25 November 2024).
- ESRI. ArcGIS Pro, Release 3.1; Environmental Systems Research Institute: Redlands, CA, USA, 2023. [Google Scholar]
- Alisan, O.; Tuydes-Yaman, H.; Ozguven, E.E. Tabu-Search-Based Combinatorial Subset Selection Approach to Support Investigation of Built Environment and Traffic Safety Relationship. Transp. Res. Rec. J. Transp. Res. Board. 2022, 2677, 588–609. [Google Scholar] [CrossRef]
- Anselin, L.; Rey, S. Properties of Tests for Spatial Dependence in Linear Regression Models. Geogr. Anal. 1991, 23, 112–131. [Google Scholar] [CrossRef]
- Won Kim, C.; Phipps, T.T.; Anselin, L. Measuring the benefits of air quality improvement: A spatial hedonic approach. J. Environ. Econ. Manag. 2003, 45, 24–39. [Google Scholar] [CrossRef]
- Ward, M.; Gleditsch, K. Spatial Regression Models; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2008. [Google Scholar]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Lu, B.; Charlton, M.; Harris, P.; Fotheringham, A.S. Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data. Int. J. Geogr. Inf. Sci. 2014, 28, 660–681. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C. Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis. Environ. Plan. A 1998, 30, 1905–1927. [Google Scholar] [CrossRef]
- Mollalo, A.; Vahedi, B.; Rivera, K.M. GIS-based spatial modeling of COVID-19 incidence rate in the continental United States. Sci. Total Environ. 2020, 728, 138884. [Google Scholar] [CrossRef]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. MGWR: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS Int. J. Geoinf. 2019, 8, 269. [Google Scholar] [CrossRef]
- Yang, W. An Extension of Geographically Weighted Regression with Flexible Bandwidths. Ph.D. Thesis, University of St. Andrews, Fife, Scotland, UK, 2014. Available online: http://hdl.handle.net/10023/7052 (accessed on 15 September 2024).
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yue, H.; Li, Z. Examining the influences of air quality in China’s cities using multi-scale geographically weighted regression. Trans. GIS. 2019, 23, 1444–1464. [Google Scholar] [CrossRef]
- Sisman, S.; Aydinoglu, A.C. A modelling approach with geographically weighted regression methods for determining geographic variation and influencing factors in housing price: A case in Istanbul. Land Use Policy. 2022, 119, 106183. [Google Scholar] [CrossRef]
- Anselin, L. Exploring Spatial Data with GeoDa: A Workbook. 2005. Available online: https://www.geos.ed.ac.uk/~gisteac/fspat/geodaworkbook.pdf (accessed on 10 September 2024).
- Bivand, R.; Millo, L.; Piras, G. A Review of Software for Spatial Econometrics in R. Mathematics 2021, 9, 1276. [Google Scholar] [CrossRef]
- Scrucca, L. GA: A Package for Genetic Algorithms in R. J. Stat. Softw. 2013, 53, 1–37. Available online: http://www.jstatsoft.org/v53/i04/ (accessed on 11 July 2024). [CrossRef]
- Domijan, K. tabuSearch: Tabu-search Algorithm for Binary Configurations. R. 2018. Available online: https://cran.r-project.org/web/packages/tabuSearch/index.html (accessed on 11 November 2020).
- Cai, Q.; Abdel-Aty, M.; Lee, J.; Huang, H. Integrating macro- and micro-level safety analyses: A Bayesian approach incorporating spatial interaction. Transp. A Transp. Sci. 2018, 15, 285–306. [Google Scholar] [CrossRef]
- Wang, J.; Ji, L.; Ma, S.; Sun, X.; Wang, M. Analysis of Factors Influencing the Severity of Vehicle-to-Vehicle Accidents Considering the Built Environment: An Interpretable Machine Learning Model. Sustainability 2023, 15, 12904. [Google Scholar] [CrossRef]
- Wang, J.; Ma, S.; Jiao, P.; Ji, L.; Sun, X.; Lu, H. Analyzing the Risk Factors of Traffic Accident Severity Using a Combination of Random Forest and Association Rules. Appl. Sci. 2023, 13, 8559. [Google Scholar] [CrossRef]
- Lee, J.; Yasmin, S.; Eluru, N.; Abdel-Aty, M.; Cai, Q. Analysis of crash proportion by vehicle type at traffic analysis zone level: A mixed fractional split multinomial logit modeling approach with spatial effects. Accid. Anal. Prev. 2018, 111, 12–22. [Google Scholar] [CrossRef]
- LaScala, E.A.; Gerber, D.; Gruenewald, P.J. Demographic and environmental correlates of pedestrian injury collisions: A spatial analysis. Accid. Anal. Prev. 2000, 32, 651–658. [Google Scholar] [CrossRef]
- Yu, C.Y.Y. Built environmental designs in promoting pedestrian safety. Sustainability 2015, 7, 9444–9460. [Google Scholar] [CrossRef]
- Feyzollahi, M.; Pineau, P.O.; Rafizadeh, N. Drivers of Driving: A Review. Sustainability 2024, 16, 2479. [Google Scholar] [CrossRef]
- Nam, Y.; Hawkins, J.; Butler, D.; Aldridge, N.; Elayan, M.; Yoo, K.I. Modeling Pedestrian and Bicyclist Crash Exposure with Location-Based Service Data; SPR-FY23(025); Nebraska Department of Transportation: Lincoln, NE, USA, 2024. [Google Scholar]
- Wang, T.; Yu, J.; Chen, Y.; Ma, C.; Ye, X.; Chen, J. Factors Associated with the Severity of Motor Vehicle Crashes Involving Electric Motorcycles and Electric Bicycles: A Random Parameters Logit Approach with Heterogeneity in Means. Transp. Res. Rec. J. Transp. Res. Board. 2023, 2677, 691–704. [Google Scholar] [CrossRef]
- Xu, C.; Li, H.; Zhao, J.; Chen, J.; Wang, W. Investigating the relationship between jobs-housing balance and traffic safety. Accid. Anal. Prev. 2017, 107, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Khondakar, B.; Sayed, T.; Lovegrove, G. Transferability of Community-Based Collision Prediction Models for Use in Road Safety Planning Applications. J. Transp. Eng. 2010, 136, 871–880. [Google Scholar] [CrossRef]
- Guerra, E.; Dong, X.; Kondo, M. Do Denser Neighborhoods Have Safer Streets? Population Density and Traffic Safety in the Philadelphia Region. J. Plan. Educ. Res. 2019, 42, 654–667. [Google Scholar] [CrossRef]
- Yu, C.Y.; Xu, M. Local Variations in the Impacts of Built Environments on Traffic Safety. J. Plan. Educ. Res. 2018, 38, 314–328. [Google Scholar] [CrossRef]
- Ding, H.; Sze, N.N.; Li, H.; Guo, Y. Roles of infrastructure and land use in bicycle crash exposure and frequency: A case study using Greater London bike sharing data. Accid. Anal. Prev. 2020, 144, 105652. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Ding, H.; Sze, N.N.; Zheng, N. Investigating built environment and traffic flow impact on crash frequency in urban road networks. Accid. Anal. Prev. 2024, 201, 107561. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Abdel-Aty, M.; Lee, J.; Eluru, N. Comparative analysis of zonal systems for macro-level crash modeling. J. Saf. Res. 2017, 61, 157–166. [Google Scholar] [CrossRef]
- Lee, J.; Abdel-Aty, M.; Cai, Q. Intersection crash prediction modeling with macro-level data from various geographic units. Accid. Anal. Prev. 2017, 102, 213–226. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, J. Effects of the built environment on automobile-involved pedestrian crash frequency and risk. J. Transp. Health 2016, 3, 448–456. [Google Scholar] [CrossRef]
Variable 1 | Explanation | Mean | SD | Max | Min |
---|---|---|---|---|---|
Crash rate | Number of severe crashes per 100 million VMT | 26.61 | 45.74 | 526.48 | 0.00 |
LN_crash_rate | Natural logarithm of cash rate | 2.73 | 1.13 | 6.27 | 0.00 |
D0A | Urban indicator (1 Urban, 0 Rural) | 0.88 | 0.33 | 1.00 | 0.00 |
D0B | Total population (×1000 persons) | 1.64 | 0.86 | 5.62 | 0.15 |
D0B_B_P | % of Black population | 32.08 | 25.82 | 99.20 | 0.00 |
D0B_H_P | % of Hispanic population | 6.05 | 5.48 | 34.61 | 0.00 |
D0B_U5_P | % of population under the age of 5 | 5.02 | 3.80 | 15.87 | 0.00 |
D0B_O65_P | % of population above the age of 65 | 14.46 | 10.30 | 53.38 | 0.00 |
D0B_M_P | Male % of population | 47.66 | 7.16 | 78.87 | 29.44 |
D0C_HHS | Average household size (persons) | 2.42 | 0.44 | 4.07 | 1.11 |
D0C_OC_P | % of occupied housing units | 87.17 | 11.14 | 100.00 | 29.34 |
D0C_B90_P | % of housing units built before 1990 | 60.78 | 23.32 | 100.00 | 3.45 |
D0C_A0_P | % of households with zero automobiles | 7.35 | 8.98 | 47.40 | 0.00 |
D0C_A1_P | % of households with one automobile | 38.30 | 13.55 | 79.24 | 8.30 |
D0D_L9 | % of population 25 years and more with no schooling completed | 1.53 | 2.76 | 25.17 | 0.00 |
D0D_CE | % of population 25 years and more with at least bachelor’s degree | 27.47 | 16.33 | 65.33 | 0.00 |
D0E | Total number of workers (×1000 workers) | 0.69 | 0.38 | 2.43 | 0.17 |
D0E_HI | Median household income (×USD 1000) | 56.97 | 32.17 | 158.19 | 0.00 |
D0E_LWH | % of low wage (less than USD 1250/month) workers (home location) | 27.01 | 8.56 | 50.69 | 13.85 |
D1A_LA | Land area (×1000 acres) | 2.59 | 8.09 | 81.64 | 0.07 |
D1B | Gross population density on unprotected land (total population/land area) | 4.40 | 4.12 | 22.10 | 0.03 |
D1C_5_ENT | Gross entertainment employment density | 0.38 | 0.90 | 6.76 | 0.00 |
D1C_5_IND | Gross industrial employment density (number of industrial jobs/land area) | 0.13 | 0.27 | 2.26 | 0.00 |
D1C_5_OFF | Gross office employment density (number of office jobs/land area) | 0.64 | 3.34 | 42.21 | 0.00 |
D1C_5_RET | Gross retail employment density (number of retail jobs/land area) | 0.23 | 0.57 | 5.55 | 0.00 |
D2A_JP_HH | Jobs per household (total employment/number of households) | 1.50 | 3.66 | 33.12 | 0.00 |
D2A_WRK_EM | Workers per job (number of workers/total employment) | 11.00 | 38.31 | 443.00 | 0.03 |
D2B_E5_MX | Employment entropy (five-tier employment entropy) | 0.66 | 0.24 | 0.98 | 0.00 |
D2C_TRIP_E | Trip productions and trip attractions equilibrium index (0–1) | 0.37 | 0.30 | 0.99 | 0.00 |
D2C_WRK_MX | Workers per job equilibrium index (0–1) | 0.31 | 0.32 | 0.98 | 0.00 |
D2D_NDX | Employment mix index (0–100) | 5.34 | 2.21 | 9.00 | 0.40 |
D3A_AO | Network density of auto-oriented links per square mile (per square mile) | 0.89 | 1.20 | 7.41 | 0.00 |
D3A_MM | Network density of multi-modal links per square mile (miles per square mile) | 1.77 | 1.95 | 10.73 | 0.00 |
D3B_MM3 | Intersection density of multi-modal intersections having three legs per square mile (number of 3-leg intersections/area) | 8.13 | 8.88 | 40.09 | 0.00 |
D3B_MM4 | Intersection density of multi-modal intersections having four or more legs per square mile (number of 4-leg intersections/area) | 3.29 | 6.04 | 46.69 | 0.00 |
D3D_R1_P | % of primary roads | 3.43 | 8.75 | 40.75 | 0.00 |
D3D_R2_P | % of secondary roads | 16.02 | 10.94 | 48.03 | 0.00 |
D3D_R2_D | Density of secondary roads (miles per square mile) | 2.28 | 2.21 | 13.76 | 0.00 |
D3E | Total sidewalk length (miles) | 9.28 | 9.95 | 53.05 | 0.00 |
D4C_W_P | Transit ridership % of workers | 2.21 | 1.70 | 7.00 | 0.00 |
D4D | Number of bus stops (stops) | 18.14 | 18.54 | 117.00 | 0.00 |
D5B | Walking index (1–20) | 9.85 | 4.09 | 18.00 | 2.00 |
D6A_M_P | % of motorized modes for commuting (excluding transit) | 88.67 | 10.51 | 100.00 | 40.20 |
D6B_AA | Annual average daily traffic (average of 3 years) for all modes (×1000 vehicles) | 129.91 | 104.88 | 592.40 | 3.37 |
Total number of census block groups (n): 174 |
Jarque–Bera Test | ||
Test-Stat | p-Value | |
OLS | 14.35 | 0.00 |
Breusch–Pagan Test | ||
Test-stat | p-Value | |
OLS | 31.84 | 0.00 |
SLM | 25.56 | 0.01 |
SEM | 27.96 | 0.01 |
Lagrange Multiplier (LM) Test | ||
Test stat | p-Value | |
SLM | 26.22 | 0.00 |
SEM | 15.87 | 0.00 |
SLM (robust) | 10.67 | 0.00 |
SEM (robust) | 0.32 | 0.57 |
OLS | SLM | SEM | GWR | GWRL | MGWR | MGWRL | |
---|---|---|---|---|---|---|---|
Condition number (CN) | 3.45 | 3.45 | 3.45 | 4.09 | 4.15 | 4.19 | 3.82 |
Moran’s I (two-tailed) | 0.18 | 0.01 | 0.00 | 0.14 | 0.00 | 0.06 | −0.02 |
z-score | 4.19 | 0.32 | 0.13 | 3.31 | 0.24 | 1.39 | −0.35 |
p-value | 0.00 | 0.75 | 0.90 | 0.00 | 0.81 | 0.16 | 0.72 |
Global Models | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Estimate | Std. Error | t-Value | z-Value | z-Value | p-Value | |||||||||
OLS | SLM | SEM | OLS | SLM | SEM | OLS | SLM | SEM | OLS | SLM | SEM | ||||
Intercept | 0.00 | −0.04 | −0.03 | 0.04 | 0.04 | 0.08 | 0.00 | −0.97 | −0.37 | 1.00 | 0.33 | 0.71 | |||
D0A | −0.18 | −0.17 | −0.17 | 0.05 | 0.04 | 0.05 | −3.70 | −3.87 | −3.46 | 0.00 | *** | 0.00 | *** | 0.00 | *** |
D0B | −0.31 | −0.29 | −0.31 | 0.05 | 0.04 | 0.04 | −6.62 | −7.04 | −7.27 | 0.00 | *** | 0.00 | *** | 0.00 | *** |
D0C_OC_P | −0.15 | −0.11 | −0.14 | 0.06 | 0.05 | 0.05 | −2.70 | −2.10 | −2.63 | 0.01 | ** | 0.04 | * | 0.01 | ** |
D0C_A0_P | −0.11 | −0.12 | −0.08 | 0.06 | 0.05 | 0.06 | −1.86 | −2.33 | −1.48 | 0.07 | . | 0.02 | * | 0.14 | |
D0C_A1_P | −0.12 | −0.14 | −0.13 | 0.06 | 0.05 | 0.05 | −2.07 | −2.78 | −2.46 | 0.04 | * | 0.01 | ** | 0.01 | ** |
D0D_CE | −0.44 | −0.36 | −0.38 | 0.06 | 0.05 | 0.06 | −7.63 | −6.68 | −6.38 | 0.00 | *** | 0.00 | *** | 0.00 | *** |
D1C_5_OFF | −0.08 | −0.06 | −0.09 | 0.05 | 0.05 | 0.05 | −1.52 | −1.21 | −1.87 | 0.13 | 0.22 | 0.06 | . | ||
D2A_WRK_EM | −0.21 | −0.20 | −0.18 | 0.05 | 0.04 | 0.04 | −4.47 | −4.79 | −4.40 | 0.00 | *** | 0.00 | *** | 0.00 | *** |
D2C_TRIP_E | 0.17 | 0.17 | 0.15 | 0.05 | 0.04 | 0.05 | 3.32 | 3.69 | 3.23 | 0.00 | ** | 0.00 | *** | 0.00 | *** |
D4D | 0.15 | 0.07 | 0.16 | 0.07 | 0.06 | 0.08 | 2.12 | 1.10 | 2.08 | 0.04 | * | 0.27 | 0.04 | * | |
D6A_M_P | −0.11 | −0.12 | −0.13 | 0.06 | 0.05 | 0.05 | −1.97 | −2.42 | −2.40 | 0.05 | . | 0.02 | * | 0.02 | * |
D6B_AA | 0.43 | 0.41 | 0.40 | 0.06 | 0.05 | 0.06 | 7.11 | 7.63 | 6.68 | 0.00 | *** | 0.00 | *** | 0.00 | *** |
Rho | 0.39 | 0.07 | 5.22 | 0.00 | *** | ||||||||||
Lambda | 0.49 | 0.09 | 5.20 | 0.00 | *** |
Local Models | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Mean | Min | Max | |||||||||
GWR | GWRL | MGWR | MGWRL | GWR | GWRL | MGWR | MGWRL | GWR | GWRL | MGWR | MGWRL | |
Intercept | 0.01 | 0.00 | 0.01 | 0.02 | −0.07 | −0.01 | −0.02 | 0.02 | 0.08 | 0.02 | 0.03 | 0.03 |
D0A | −0.17 | −0.16 | −0.16 | −0.16 | −0.23 | −0.23 | −0.20 | −0.21 | −0.12 | −0.12 | −0.12 | −0.11 |
D0B | −0.33 | −0.28 | −0.32 | −0.31 | −0.40 | −0.32 | −0.43 | −0.46 | −0.24 | −0.24 | −0.14 | −0.12 |
D0C_OC_P | −0.14 | −0.10 | −0.16 | −0.09 | −0.21 | −0.11 | −0.44 | −0.10 | −0.11 | −0.08 | 0.00 | −0.09 |
D0C_A0_P | −0.12 | −0.15 | −0.15 | −0.15 | −0.20 | −0.19 | −0.16 | −0.18 | −0.07 | −0.11 | −0.14 | −0.13 |
D0C_A1_P | −0.14 | −0.15 | −0.11 | −0.13 | −0.19 | −0.17 | −0.12 | −0.14 | −0.07 | −0.12 | −0.09 | −0.12 |
D0D_CE | −0.43 | −0.35 | −0.41 | −0.37 | −0.48 | −0.39 | −0.57 | −0.38 | −0.36 | −0.33 | −0.25 | −0.36 |
D1C_5_OFF | −0.08 | −0.06 | −0.05 | −0.05 | −0.18 | −0.07 | −0.05 | −0.05 | −0.03 | −0.05 | −0.05 | −0.05 |
D2A_WRK_EM | −0.22 | −0.21 | −0.31 | −0.30 | −0.24 | −0.22 | −0.58 | −0.74 | −0.18 | −0.19 | −0.14 | −0.06 |
D2C_TRIP_E | 0.17 | 0.15 | 0.15 | 0.12 | 0.14 | 0.13 | 0.13 | 0.12 | 0.21 | 0.18 | 0.20 | 0.14 |
D4D | 0.16 | 0.06 | 0.18 | 0.09 | 0.06 | 0.02 | 0.13 | 0.08 | 0.30 | 0.08 | 0.30 | 0.09 |
D6A_M_P | −0.12 | −0.15 | −0.11 | −0.13 | −0.18 | −0.16 | −0.28 | −0.37 | −0.04 | −0.13 | 0.23 | 0.18 |
D6B_AA | 0.40 | 0.41 | 0.37 | 0.39 | 0.36 | 0.40 | 0.33 | 0.38 | 0.50 | 0.43 | 0.49 | 0.39 |
lagY | 0.30 | 0.20 | 0.22 | −0.10 | 0.36 | 0.42 |
Variable | Bandwidth | Monte Carlo Test |
---|---|---|
D0A | 172 | 0.02 |
D0B | 132 | 0.16 |
D0C_OC_P | 87 | 0.13 |
D0C_A0_P | 172 | 0.90 |
D0C_A1_P | 170 | 0.75 |
D0D_CE | 80 | 0.17 |
D1C_5_OFF | 172 | 1.00 |
D2A_WRK_EM | 75 | 0.21 |
D2C_TRIP_E | 166 | 0.35 |
D4D | 147 | 0.07 |
D6A_M_P | 61 | 0.02 |
D6B_AA | 142 | 0.27 |
Model | AIC | AICc | R2 | MAD | RMSE |
---|---|---|---|---|---|
OLS | 308.57 | 311.22 | 0.70 | 0.40 | 0.54 |
SLM | 287.09 | 290.15 | 0.74 | 0.38 | 0.50 |
SEM | 293.79 | 296.85 | 0.73 | 0.38 | 0.51 |
GWR | 302.16 | 309.47 | 0.74 | 0.37 | 0.51 |
GWRL | 283.30 | 289.13 | 0.76 | 0.36 | 0.49 |
MGWR | 276.41 | 294.60 | 0.81 | 0.33 | 0.44 |
MGWRL | 262.13 | 278.42 | 0.82 | 0.32 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alisan, O.; Ozguven, E.E. An Analysis of the Spatial Variations in the Relationship Between Built Environment and Severe Crashes. ISPRS Int. J. Geo-Inf. 2024, 13, 465. https://doi.org/10.3390/ijgi13120465
Alisan O, Ozguven EE. An Analysis of the Spatial Variations in the Relationship Between Built Environment and Severe Crashes. ISPRS International Journal of Geo-Information. 2024; 13(12):465. https://doi.org/10.3390/ijgi13120465
Chicago/Turabian StyleAlisan, Onur, and Eren Erman Ozguven. 2024. "An Analysis of the Spatial Variations in the Relationship Between Built Environment and Severe Crashes" ISPRS International Journal of Geo-Information 13, no. 12: 465. https://doi.org/10.3390/ijgi13120465
APA StyleAlisan, O., & Ozguven, E. E. (2024). An Analysis of the Spatial Variations in the Relationship Between Built Environment and Severe Crashes. ISPRS International Journal of Geo-Information, 13(12), 465. https://doi.org/10.3390/ijgi13120465