A Localized Evaluation of Surface Water Quality Using GIS-Based Water Quality Index along Satpara Watershed Skardu Baltistan, Pakistan
<p>(<b>A</b>) Skardu District with Pakistan and Gilgit-Baltistan map inset, (<b>B</b>) Satpara Watershed, (<b>C</b>) Skardu Municipal Areas.</p> "> Figure 2
<p>Showing (<b>A</b>) Contour Map of Satpara Watershed (<b>B</b>) Slope Map in degrees of Satpara Watershed (<b>C</b>) Altitude Map of Satpara Watershed.</p> "> Figure 3
<p>Temperature °C variation map of Satpara Watershed.</p> "> Figure 4
<p>Geo-spatial variation map of <span class="html-italic">Escherichia Coli</span> within Satpara Watershed.</p> "> Figure 5
<p>(<b>A</b>) Spatial variation map of pH of Satpara Watershed (<b>B</b>) Spatial variation in EC of Satpara Watershed.</p> "> Figure 6
<p>(<b>A</b>) Alkalinity variation map of Satpara Watershed (<b>B</b>) Bicarbonates (<math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>HCO</mi> </mrow> <mn>3</mn> <mo>−</mo> </msubsup> </mrow> </semantics></math>) concentration map of Satpara Watershed.</p> "> Figure 7
<p>(<b>A</b>). Map of spatial variation in TH in Satpara Watershed (<b>B</b>). Map of spatial variation in total TDS of Satpara Watershed.</p> "> Figure 8
<p>Cations Spatial distributions of Satpara Watershed: (<b>A</b>). (<math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Mg</mi> </mrow> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </mrow> </semantics></math>), (<b>B</b>). (<math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Ca</mi> </mrow> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </mrow> </semantics></math>), (<b>C</b>). (<math display="inline"><semantics> <mrow> <msup> <mi mathvariant="normal">K</mi> <mo>+</mo> </msup> </mrow> </semantics></math>), and (<b>D</b>). (<math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Na</mi> </mrow> <mo>+</mo> </msup> </mrow> </semantics></math>).</p> "> Figure 9
<p>Anions spatial distributions of Satpara Watershed: (<b>A</b>). (<math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>HCO</mi> </mrow> <mn>3</mn> <mrow> <mn>2</mn> <mo>−</mo> </mrow> </msubsup> </mrow> </semantics></math>), (<b>B</b>). (<math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>NO</mi> </mrow> <mn>3</mn> <mo>−</mo> </msubsup> </mrow> </semantics></math>), (<b>C</b>). (<math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Cl</mi> </mrow> <mo>−</mo> </msup> </mrow> </semantics></math>), (<b>D</b>). (<math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>SO</mi> </mrow> <mn>4</mn> <mrow> <mn>2</mn> <mo>−</mo> </mrow> </msubsup> </mrow> </semantics></math>).</p> "> Figure 10
<p>Sodium Absorption Ratio (SAR) Map of Satpara Watershed.</p> "> Figure 11
<p>Final Water Quality Index Map of Satpara Watershed.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Hydrology
4. Geology of the Area
5. Materials and Methods
5.1. Sample Collection
5.2. Laboratory Measurements
5.3. Physico-Chemical Analysis
5.4. Bacteriological Analysis
5.5. GIS Analysis and GPS
5.6. Water Quality Index (WQI)
5.7. Correlation Matric
6. Results
6.1. Geospatial Variations in Temperature (°C) of Satpara Watershed
6.2. Geospatial Variations in Bacterial (E. coli) Contamination of Satpara Watershed
6.3. Geo-Spatial Variations in pH Concentration of Satpara Watershed
6.4. Geospatial Variation in Electrical Conductivity (EC) of Satpara Watershed
6.5. Geospatial Variation in Total Alkalinity of Satpara Watershed
6.6. Geospatial Variation in Bicarbonate Concentration of Satpara Watershed
6.7. Geospatial Variation in Total Hardness Concentration of Satapara Watershed
6.8. Geospatial Variation in TDS Concentration Satpara Watershed
6.9. Geospatial Variations in Cations
6.10. Geospatial Variations in Anions
6.11. Spatial Variation of Sodium Adsorption Ratio
6.12. Residual of Sodium Carbonate (RSC)
6.13. Water Quality Classification of Satpara Watershed
6.14. Correlation Analysis of Water Quality
7. Discussion
8. Limitations of the Study
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sr. No | Sample No. | Sampling Localities | Source of Water | WQI | Classification |
---|---|---|---|---|---|
1 | S_1 | Way to Deosai Plateau | Stream | 188.262 | Poor |
2 | S_2 | Way to Deosai Plateau | Stream | 171.558 | Poor |
3 | S_3 | Way to Deosai Plateau | Stream | 163.8 | Poor |
4 | S_4 | Asmani Mour site | Stream | 163.73 | Poor |
5 | S_5 | Tributary Checkpost area | Stream | 190.641 | Poor |
6 | S_6 | Spring near Hassan Satpara Cafe | Stream | 146.356 | Poor |
7 | S_7 | Spring Satpara Gol | Stream | 223.5 | Very Poor |
8 | S_8 | Spring Satpara Gol | Stream | 166.555 | Poor |
9 | S_9 | Satpara inlet left tributary | Stream | 298.347 | Unfit for Drinking |
10 | S_10 | Satpara inlet left tributary | Stream | 317.813 | Unfit for Drinking |
11 | S_11 | Satpara Grong bridge site | Stream | 175.915 | Poor |
12 | S_12 | Irrigation channel Eastward | Stream | 180.548 | Poor |
13 | S_13 | Spring near irrigation channel | Stream | 181.249 | Poor |
14 | S_14 | Satpara main stream | Stream | 167.065 | Poor |
15 | S_15 | Satpara main stream | Stream | 157.595 | Poor |
16 | S_16 | Satpara main stream | Stream | 170.261 | Poor |
17 | S_17 | RCC Bridge site | Stream | 165.212 | Poor |
18 | S_18 | Satpara Grong spring | Stream | 194.68 | Very Poor |
19 | S_19 | Sat. Grong Western tributary | Stream | 144.684 | Poor |
20 | S_20 | Satpara Grong main stream | Stream | 175.384 | Poor |
21 | S_21 | Satpara upper Grong | Spring | 307.011 | Unfit for Drinking |
22 | S_22 | Satpara Grong bridge site | Stream | 176.253 | Poor |
23 | S_23 | Spring near dam inlet | Spring | 194.954 | Very Poor |
24 | S_24 | Dam inlet | Stream | 218.994 | Very Poor |
25 | S_25 | Spring near irrigation channel | Spring | 210.717 | Very Poor |
26 | S_26 | Irrigation channel discharge site | Stream | 191.794 | Very Poor |
27 | S_27 | Spring Hargisa | Spring | 185.262 | Poor |
28 | S_28 | Tufail Colony | Tap | 192.383 | Poor |
29 | S_29 | Eid Gah | Tap | 188.234 | Very Poor |
30 | S_30 | Hospital Colony | Tap | 190.711 | Poor |
31 | S_31 | Main Reservoir | Reservoir | 191.323 | Very Poor |
32 | S_32 | Main Reservoir | Reservoir | 186.679 | Very Poor |
33 | S_33 | Main Reservoir | Reservoir | 210.643 | Very Poor |
34 | S_34 | Main Reservoir | Reservoir | 204.974 | Very Poor |
35 | S_35 | Main Reservoir | Reservoir | 186.309 | Very Poor |
36 | S_36 | Main Reservoir | Reservoir | 177.008 | Poor |
37 | S_37 | Main Reservoir | Reservoir | 181.681 | Very Poor |
38 | S_38 | Main Reservoir | Reservoir | 254.791 | Very Poor |
39 | S_39 | Main Reservoir | Reservoir | 184.066 | Poor |
40 | S_40 | Main Reservoir | Reservoir | 175.303 | Poor |
41 | S_41 | Main Reservoir | Reservoir | 177.36 | Poor |
42 | S_42 | Main Reservoir | Reservoir | 181.26 | Poor |
43 | S_43 | Main Reservoir | Reservoir | 181.84 | Poor |
44 | S_44 | Main Reservoir | Reservoir | 232.058 | Very Poor |
45 | S_45 | Main Reservoir | Reservoir | 206.568 | Very Poor |
46 | S_46 | Water Safety Tank | Tap | 195.315 | Poor |
47 | S_47 | WAPDA Water Complex | Tap | 2411.909 | Poor |
48 | S_48 | Deosai Plateau | Spring | 183.017 | Poor |
49 | S_49 | Spring near Jamia Mosque | Spring | 382.869 | Unfit for Drinking |
50 | S_50 | LG and RD | Stream | 248.472 | Unfit for Drinking |
51 | S_51 | Shatong Deosai | Tap | 188.262 | Poor |
References
- Butt, A.Q.; Shangguan, D.; Waseem, M.; Haq, F.u.; Ding, Y.; Mukhtar, M.A.; Afzal, M.; Muhammad, A. Ascertainment of Hydropower Potential Sites Using Location Search Algorithm in Hunza River Basin, Pakistan. Water 2023, 15, 2929. [Google Scholar] [CrossRef]
- Kulshreshtha, S.N. A global outlook for water resources to the year 2025. Water Resour. Manag. 1998, 12, 167–184. [Google Scholar] [CrossRef]
- Coleman, B.L.; Louie, M.; Salvadori, M.I.; McEwen, S.A.; Neumann, N.; Sibley, K.; Irwin, R.J.; Jamieson, F.B.; Daignault, D.; Majury, A.; et al. Contamination of Canadian private drinking water sources with antimicrobial resistant Escherichia coli. Water Res. 2013, 47, 3026–3036. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Lu, Y.; Saeed, M.A.; Bilal, H.; Sher, H.; Khan, H.; Ali, J.; Wang, P.; Uwizeyimana, H.; Baninla, Y.; et al. Prevalent fecal contamination in drinking water resources and potential health risks in Swat, Pakistan. J. Environ. Sci. 2018, 72, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K. Fresh water availability and its global challenge. Br. J. Multidiscip. Adv. Stud. 2023, 4, 1–78. [Google Scholar] [CrossRef]
- Gallopin Gilberto, C.; Rijsberman, F. Three global water scenarios. Int. J. Water 2000, 1, 16–40. [Google Scholar] [CrossRef]
- Wada, Y.; van Beek, L.P.H.; Bierkens, M.F.P. Modelling global water stress of the recent past: On the relative importance of trends in water demand and climate variability. Hydrol. Earth Syst. Sci. 2011, 15, 3785–3808. [Google Scholar] [CrossRef]
- Ferretti, E.; Bonadonna, L.; Lucentini, L.; Della Libera, S.; Semproni, M.; Ottaviani, M. A case study of sanitary survey on community drinking water supplies after a severe (post-Tsunami) flooding event. Ann. Dell’Istituto Super. Sanità 2010, 46, 236–241. [Google Scholar]
- WHO/UNICEF Joint Water Supply; Sanitation Monitoring Programme. Progress on Drinking Water and Sanitation: 2014 Update; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Li, E.; Saleem, F.; Edge, T.A.; Schellhorn, H.E. Biological indicators for fecal pollution detection and source tracking: A review. Processes 2021, 9, 2058. [Google Scholar] [CrossRef]
- Sohail, M.T.; Aftab, R.; Mahfooz, Y.; Yasar, A.; Yen, Y.; Shaikh, S.A.; Irshad, S. Estimation of water quality, management and risk assessment in Khyber Pakhtunkhwa and Gilgit-Baltistan, Pakistan. Desalination Water Treat. 2019, 171, 105–114. [Google Scholar] [CrossRef]
- Butt, A.Q.; Shangguan, D.; Ding, Y.; Banerjee, A.; Mukhtar, M.A.; Taj, K. Evaluation of environmental impact assessment and mitigation strategies for Gulpur hydropower project, Kotli, Pakistan. Discov. Appl. Sci. 2024, 6, 137. [Google Scholar] [CrossRef]
- Haydar, S.; Arshad, M.; Aziz, J.A. Evaluation of drinking water quality in urban areas of Pakistan: A case study of Southern Lahore. Pak. J. Eng. Appl. Sci. 2009, 5, 16–23. [Google Scholar]
- Butt, A.Q.; Shangguan, D.; Ding, Y.; Banerjee, A.; Sajjad, W.; Mukhtar, M.A. Assessing the existing guidelines of environmental impact assessment and mitigation measures for future hydropower projects in Pakistan. Front. Environ. Sci. 2024, 11, 1342953. [Google Scholar] [CrossRef]
- Nishat, M. The Economic Impacts of Inadequate Sanitation in Pakistan; Water and Sanitation Programme: Islamabad, Pakistan, 2013. [Google Scholar]
- Hussain, S.W.; Hussain, K.; Zehra, Q.; Liaqat, S.; Ali, A.; Abbas, Y.; Hussain, B. Assessment of drinking water quality “Natural springs and surface water” and associated health risks in Gilgit-Baltistan Pakistan. Pure Appl. Biol. (PAB) 2022, 11, 919–931. [Google Scholar] [CrossRef]
- Nafees, M.A.; Ahmed, K.; Ali, S.; Karim, R.; Khan, T. Bacteriological analysis of drinking water sources in CKNP region of Gilgit–Baltistan, Pakistan. Int. J. Biosci. 2014, 5, 54–59. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Richards, L.A. (Ed.) Diagnosis and Improvement of Saline and Alkali Soils; No. 60; US Government Printing Office: Washington, DC, USA, 1954. [Google Scholar]
- Semiromi, F.B.; Hassani, A.H.; Torabian, A.; Karbassi, A.R.; Lotfi, F.H. Water quality index development using fuzzy logic: A case study of the Karoon River of Iran. Afr. J. Biotechnol. 2011, 10, 10125–10133. [Google Scholar]
- Thapinta, A.; Hudak, P.F. Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand. Environ. Int. 2003, 29, 87–93. [Google Scholar] [CrossRef]
- El Azhari, H.; Cherif, E.K.; Sarti, O.; Azzirgue, E.M.; Dakak, H.; Yachou, H.; da Silva, J.C.G.E.; Salmoun, F. Assessment of surface water quality using the water quality index (IWQ), multivariate statistical analysis (MSA), and geographic information system (GIS) in Oued Laou Mediterranean Watershed, Morocco. Water 2022, 15, 130. [Google Scholar] [CrossRef]
- Azzirgue, E.M.; Cherif, E.K.; Tchakoucht, T.A.; Azhari, H.E.; Salmoun, F. Testing groundwater quality in Jouamaa Hakama Region (North of Morocco) using water quality indices (WQIs) and fuzzy logic method: An exploratory study. Water 2022, 14, 3028. [Google Scholar] [CrossRef]
- Fatima, S.U.; Khan, M.A.; Shaukat, S.S.; Alamgir, A.; Siddiqui, F.; Sulman, N. Geo-Spatial Assessment of Water Quality in Shigar Valley, Gilgit Baltistan, Pakistan. Health 2022, 14, 535–552. [Google Scholar] [CrossRef]
- Fatima, S.U.; Khan, M.A.; Alamgir, A.; Mahmood, N.; Sulman, N. Multivariate and spatial methods-based water quality assessment of Chu Tran Valley, Gilgit Baltistan. Appl. Water Sci. 2022, 12, 129. [Google Scholar] [CrossRef]
- Fatima, S.U.; Khan, M.A.; Alamgir, A.; Sulman, N.; Khan TM, A.; Khan, F.A.; Khan, M.A. Water Quality Evaluation of Chapurson Valley in Hunza Nagar, Gilgit Baltistan, Pakistan, Based on Statistical Analysis and Water Quality Index. Health 2023, 15, 379–396. [Google Scholar] [CrossRef]
- Ahsan, W.A.; Ahmad, H.R.; Farooqi ZU, R.; Sabir, M.; Ayub, M.A.; Rizwan, M.; Ilic, P. Surface water quality assessment of Skardu springs using Water Quality Index. Environ. Sci. Pollut. Res. 2021, 28, 20537–20548. [Google Scholar] [CrossRef] [PubMed]
- Lodhi, Z.H.; Akif, M.; Kalsoom, U. Evaluation of drinking water from different sources in Skardu-Northern area with special reference to heavy metals. J. Chem. Soc. Pak. 2003, 25, 110–113. [Google Scholar]
- Malik, M.A.; Azam, M.; Saboor, A. Water Quality Status of Upper KPK and Northern Areas of Pakistan; Pakistan Council of Research in Water Resources, Water Resources Research Centre, Peshawar, Ministry of Science and Technology: Islamabad, Pakistan, 2010. [Google Scholar]
- Gilgit-Baltistan Environmental Protection Agency (GB-EPA). Assessment of Drinking Water Quality “Natural Springs and Surface Water” in Gilgit-Baltistan-2019; Gilgit-Baltistan Environmental Protection Agency (GB-EPA): Gilgit, Pakistan, 2019. [Google Scholar]
- Sami, M.F.; Jameel, M.S.; Raza, A.; Ali, B.; Bhatti, S.S. Seepage Analysis of Satpara Dam; A Case Study in 852 Pakistan. Turk. J. Mater. 2022, 7, 17–24. [Google Scholar]
- Shaheen, H.; Ibrahim, M.; Ullah, Z. Spatial patterns and diversity of the alpine flora of Deosai plateau, western Himalayas. Pak. J. Bot. 2019, 51, 205–212. [Google Scholar] [CrossRef]
- Malik, Z.M.; Hussain, A. Investigation and treatment of post-construction incidents at Satpara Dam. Dams Reserv. 2012, 22, 27–44. [Google Scholar] [CrossRef]
- Khan, I.; Waqas, T.; Samiullah; Ullah, S. Precipitation variability and its trend detection for monitoring of drought hazard in northern mountainous region of Pakistan. Arab. J. Geosci. 2020, 13, 698. [Google Scholar] [CrossRef]
- Jan, M.Q.; Howie, R.A. The mineralogy and geochemistry of the metamorphosed basic and ultrabasic rocks of the Jijal complex, Kohistan, NW Pakistan. J. Petrol. 1981, 22, 85–126. [Google Scholar] [CrossRef]
- Casnedi, R.; Ebblin, C. Geological notes on the area between Astor and Skardu (Kashmir). Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 1977, 62, 662–668. [Google Scholar]
- Desio, A. Karakorum Mountains. Geol. Soc. Lond. Spec. Publ. 1974, 4, 255–266. [Google Scholar] [CrossRef]
- Khan, T.; Jan, M.Q.; Khan, M.A.; Kausar, A.B. High-grade metasedimentary rocks (Gilgit Formation) in the vicinity of Gilgit, Kohistan, northern Pakistan. J. Mineral. Petrol. Econ. Geol. 1997, 92, 465–479. [Google Scholar] [CrossRef]
- Jorgensen, J.H.; Lee, J.C.; Alexander, G.A.; Wolf, H.W. Comparison of Limulus assay, standard plate count, and total coliform count for microbiological assessment of renovated wastewater. Appl. Environ. Microbiol. 1979, 37, 928–931. [Google Scholar] [CrossRef] [PubMed]
- Khouni, I.; Louhichi, G.; Ghrabi, A. Use of GIS based Inverse Distance Weighted interpolation to assess surface water quality: Case of Wadi El Bey, Tunisia. Environ. Technol. Innov. 2021, 24, 101892. [Google Scholar] [CrossRef]
- Jacobs, H.L.; Gabrielson, I.N.; Horton, R.K.; Lyon, W.A.; Hubbard, E.C.; McCallum, G.E. Water quality criteria-stream vs. effluent standards. J. (Water Pollut. Control. Fed.) 1965, 37, 292–315. [Google Scholar]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; Tozer, R.G. A water quality index-do we dare. Water Sew. Work. 1970, 117, 339–343. [Google Scholar]
- Sadat-Noori, S.M.; Ebrahimi, K.; Liaghat, A.M. Groundwater quality assessment using the Water Quality Index and GIS in Saveh-Nobaran aquifer, Iran. Environ. Earth Sci. 2014, 71, 3827–3843. [Google Scholar] [CrossRef]
- Chaudhari, A.N.; Mehta, D.J.; Sharma, N.D. Coupled effect of seawater intrusion on groundwater quality: Study of South West zone of Surat city. Water Supply 2022, 22, 1716–1734. [Google Scholar] [CrossRef]
- Şener, Ş.; Şener, E.; Davraz, A. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW Turkey). Sci. Total Environ. 2017, 584, 131–144. [Google Scholar] [CrossRef]
- Alamgir, A.; Khan, M.A.; Iftikhar, T.; Shaukat, S.S. Public health assessment and water quality index of tanker water available in Karachi City. Int. J. Biol. Biotechnol. 2021, 18, 281–297. [Google Scholar]
- Pradhan, S.K.; Patnaik, D.; Rout, S.P. Water quality index for the groundwater in and around a phosphatic fertilizer plant. Indian J. Environ. Prot. 2001, 21, 355–358. [Google Scholar]
- Asadi, S.S.; Vuppala, P.; Reddy, M.A. Remote sensing and GIS techniques for evaluation of groundwater quality in municipal corporation of Hyderabad (Zone-V), India. Int. J. Environ. Res. Public Health 2007, 4, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S.L.; Patha, V. A preliminary assignment of water quality index to Mandakini rive r, Chitrakoot. Indian J Env. Prot. 2007, 27, 1036–1038. [Google Scholar]
- Yidana, S.M.; Yidana, A. Assessing water quality using water quality index and multivariate analysis. Environ. Earth Sci. 2010, 59, 1461–1473. [Google Scholar] [CrossRef]
- Saeedi, M.; Abessi, O.; Sharifi, F.; Meraji, H. Development of groundwater quality index. Environ. Monit. Assess. 2010, 163, 327–335. [Google Scholar] [CrossRef]
- Addy, K.; Green, L.; Herron, E. pH and Alkalinity; University of Rhode Island: Kingston, Jamaica, 2004. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011; pp. 104–108. [Google Scholar]
- World Health Organization. Hardness in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; No. WHO/HSE/WSH/10.01/10; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Hespanhol, I.; Prost AM, E. WHO guidelines and national standards for reuse and water quality. Water Res. 1994, 28, 119–124. [Google Scholar] [CrossRef]
- Kumar, M.; Puri, A. A review of permissible limits of drinking water. Indian J. Occup. Environ. Med. 2012, 16, 40–44. [Google Scholar]
- Fewtrell, L.; Bartram, J. (Eds.) Water Quality: Guidelines, Standards & Health; IWA Publishing: London, UK, 2001. [Google Scholar]
- Sposito, G.; Mattigod, S.V. On the chemical foundation of the sodium adsorption ratio. Soil Sci. Soc. Am. J. 1977, 41, 323–329. [Google Scholar] [CrossRef]
- Zafar, S.; Khan, A.; Ullah, H.; Khan, M.S.; Khan, I.; Hameed, A.; Rehman, S.U.; Yasmeen, G. Assessing impact of effluent discharge on irrigation water quality in southern region of Khyber Pakhtunkhwa, Pakistan. Environ. Monit. Assess. 2017, 189, 156. [Google Scholar] [CrossRef]
- Petersen, F.; Hubbart, J.A.; Kellner, E.; Kutta, E. Land-use-mediated Escherichia coli concentrations in a contemporary Appalachian watershed. Environ. Earth Sci. 2018, 77, 754. [Google Scholar] [CrossRef]
- Ke, X.; Gui, S.; Huang, H.; Zhang, H.; Wang, C.; Guo, W. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere 2017, 175, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S. An assessment of groundwater quality for irrigation and drinking purposes around brick kilns in three districts of Balochistan province, Pakistan, through water quality index and multivariate statistical approaches. J. Geochem. Explor. 2019, 197, 14–26. [Google Scholar]
- Frei, M.; Bielert, U.; Heinrichs, H. Effects of pH, alkalinity and bedrock chemistry on metal concentrations of springs in an acidified catchment (Ecker Dam, Harz Mountains, FRG). Chem. Geol. 2000, 170, 221–242. [Google Scholar] [CrossRef]
- Al-Khashman, O.A.; Alnawafleh, H.M.; Jrai, A.M.A.; Ala’a, H. Monitoring and assessing of spring water quality in Southwestern Basin of Jordan. Open J. Mod. Hydrol. 2017, 7, 331–349. [Google Scholar] [CrossRef]
- An, Y.J.; Breindenbach, G.P. Monitoring E. coli and total coliforms in natural spring water as related to recreational mountain areas. Environ. Monit. Assess. 2005, 102, 131–137. [Google Scholar] [CrossRef]
- GB-EPA; AKRSP. Initial Environmental Examination (IEE) of Additional Water Resources Satpara; USAID: Washington, DC, USA, 2017. [Google Scholar]
- Stoewer, M.M.; Knöller, K.; Stumpp, C. Tracing freshwater nitrate sources in pre-alpine groundwater catchments using environmental tracers. J. Hydrol. 2015, 524, 753–767. [Google Scholar] [CrossRef]
- Emberson, R.; Galy, A.; Hovius, N. Weathering of reactive mineral phases in landslides acts as a source of carbon dioxide in mountain belts. J. Geophys. Res. Earth Surf. 2018, 123, 2695–2713. [Google Scholar] [CrossRef]
- Afzal, M.; Liu, T.; Butt, A.Q.; Nadeem, A.A.; Ali, S.; Pan, X. Geospatial Assessment of Managed Aquifer Recharge Potential Sites in Punjab, Pakistan. Remote Sens. 2023, 15, 3988. [Google Scholar] [CrossRef]
Parameters | NSDWG | WHO Standards | Weight (wi) | Relative Weight (Wi) |
---|---|---|---|---|
pH | 8.5 | 8.5 | 3 | 0.09375 |
TDS | 500 | 500 | 5 | 0.15625 |
75 | 75 | 2 | 0.0625 | |
12 | 12 | 1 | 0.03125 | |
75 | 75 | 1 | 0.03125 | |
50 | 50 | 1 | 0.03125 | |
250 | 250 | 4 | 0.125 | |
50 | 50 | 3 | 0.09375 | |
120 | 120 | 2 | 0.0625 | |
250 | 250 | 4 | 0.125 | |
E. coli | 0 | 0 | 5 | 0.15625 |
∑ wi = 32 | ∑ Wi = 0.97 |
Sr. No | Water Quality Range | Type of Water |
---|---|---|
1 | <50 | Excellent |
2 | 50–150.1 | Good |
3 | 150–250.1 | Poor |
4 | 250–350.1 | Very Poor Water |
5 | >350 | Unfit for Drinking |
Categories | Colonies/100 mL | Risks |
---|---|---|
Class A | No or 0 colony | Nil |
Class B | Colonies (0 to10) | Low |
Class C | Colonies (11–100) | High |
Class D | Colonies (101–1000) | Very High |
Carbonates) | |
---|---|
Classification | mg/L or ppm |
Soft | 0–17.1 |
Slightly Hard | 17.1–60 |
Moderately Hard | 60–120 |
Hard | 120–180 |
Very Hard | 180 and greater |
SAR Hazards of Irrigation Water | ||
---|---|---|
S. No. | SAR | Notes |
1 | <3.0 | No, restriction or hazard |
2 | 3–6 | Should be taken in sensitive and tested |
3 | 6–8 | Gypsum should be used except for sensitive crops |
4 | >9.0 | Unsuitable and causes severe damages |
S. No. | RSC | Hazards |
---|---|---|
1 | <0 | None |
2 | 1–1.25 | Now, with the elimination of magnesium and calcium from irrigation water |
3 | 1.25–2.50 | Medium, with appreciable removal of calcium and magnesium |
4 | >2.50 | High, with most calcium and magnesium removed, leaving sodium |
Parameters | Unit | Mean | Max. | Min. | Standard Deviation |
---|---|---|---|---|---|
Ppm | 2.814 | 7.7 | 1 | 1.678 | |
Ppm | 1.573 | 3.95 | 0.4 | 1.254 | |
ppm | 22.92 | 60 | 14 | 7.746 | |
ppm | 2.808 | 13.8 | 0 | 3.126 | |
ppm | 13.96 | 22 | 10 | 96.737 | |
ppm | 1.738 | 6.5 | 0.8 | 0.938 | |
ppm | 1.2438 | 5 | 0.37 | 0.742 | |
ppm | 53.52 | 170 | 13 | 26.843 | |
EC | (µS/cm) | 152.1 | 427 | 67.3 | 58.000 |
E. coli | Colonies/100 mL | 0.52 | 8 | 0 | 1.723 |
Hardness | ppm | 71.62 | 200 | 30 | 26.792 |
TDS | ppm | 100.25 | 282 | 44.42 | 38.57 |
pH | 7.662 | 8.1 | 7.2 | 0.188 |
Parameters | Na+ | EC | E. coli | pH | Hardness | TDS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ||||||||||||||
0.79 | 1 | |||||||||||||
0.71 | 0.56 | 1 | ||||||||||||
0.08 | −0.03 | 0.27 | 1 | |||||||||||
0.54 | 0.49 | 0.73 | 0.22 | 1 | ||||||||||
0.58 | 0.44 | 0.80 | 0.29 | 0.87 | 1 | |||||||||
0.73 | 0.64 | 0.84 | −0.04 | 0.77 | 0.77 | 1 | ||||||||
EC | 0.80 | 0.59 | 0.88 | 0.14 | 0.73 | 0.76 | 0.83 | 1 | ||||||
E. coli | 0.04 | −0.05 | 0.24 | 0.25 | 0.04 | 0.19 | 0.07 | 0.11 | 1 | |||||
0.34 | 0.42 | 0.40 | 0.05 | 0.67 | 0.62 | 0.68 | 0.47 | 0.04 | 1 | |||||
pH | 0.09 | 0.07 | 0.21 | 0.23 | 0.16 | 0.30 | 0.12 | 0.18 | 0.31 | 0.25 | 1 | |||
Hardness | 0.71 | 0.62 | 0.89 | 0.12 | 0.83 | 0.85 | 0.94 | 0.86 | 0.16 | 0.69 | 0.17 | 1 | ||
TDS | 0.80 | 0.58 | 0.88 | 0.15 | 0.74 | 0.77 | 0.83 | 0.10 | 0.11 | 0.47 | 0.19 | 0.86 | 1 | |
0.69 | 0.45 | 0.71 | 0.16 | 0.57 | 0.67 | 0.71 | 0.82 | 0.01 | 0.45 | 0.23 | 0.74 | 0.82 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, A.; Shangguan, D.; Rasool, G.; Khan, A.A.; Butt, A.Q.; Hussain, A.; Mukhtar, M.A. A Localized Evaluation of Surface Water Quality Using GIS-Based Water Quality Index along Satpara Watershed Skardu Baltistan, Pakistan. ISPRS Int. J. Geo-Inf. 2024, 13, 393. https://doi.org/10.3390/ijgi13110393
Muhammad A, Shangguan D, Rasool G, Khan AA, Butt AQ, Hussain A, Mukhtar MA. A Localized Evaluation of Surface Water Quality Using GIS-Based Water Quality Index along Satpara Watershed Skardu Baltistan, Pakistan. ISPRS International Journal of Geo-Information. 2024; 13(11):393. https://doi.org/10.3390/ijgi13110393
Chicago/Turabian StyleMuhammad, Ali, Donghui Shangguan, Ghulam Rasool, Amjad Ali Khan, Asim Qayyum Butt, Ayesha Hussain, and Muhammad Ahsan Mukhtar. 2024. "A Localized Evaluation of Surface Water Quality Using GIS-Based Water Quality Index along Satpara Watershed Skardu Baltistan, Pakistan" ISPRS International Journal of Geo-Information 13, no. 11: 393. https://doi.org/10.3390/ijgi13110393
APA StyleMuhammad, A., Shangguan, D., Rasool, G., Khan, A. A., Butt, A. Q., Hussain, A., & Mukhtar, M. A. (2024). A Localized Evaluation of Surface Water Quality Using GIS-Based Water Quality Index along Satpara Watershed Skardu Baltistan, Pakistan. ISPRS International Journal of Geo-Information, 13(11), 393. https://doi.org/10.3390/ijgi13110393