Lossless Watermarking Algorithm for Geographic Point Cloud Data Based on Vertical Stability
<p>Changes in mountain peak vertices.</p> "> Figure 2
<p>The relative storage order of the data after deleting or adding: (<b>a</b>) Deleting a data point (<b>b</b>) Adding a data point.</p> "> Figure 3
<p>Demonstration of watermark embedding: (<b>a</b>) When the watermark bit is 0; (<b>b</b>) When the watermark bit is 1.</p> "> Figure 4
<p>Watermark-embedding process.</p> "> Figure 5
<p>Process of determining the longest sequence order.</p> "> Figure 6
<p>Watermark-extraction process.</p> "> Figure 7
<p>Experimental data: (<b>a</b>) Seafloor topography data. (<b>b</b>) Land topography data.</p> "> Figure 8
<p>RST Attack result: (<b>a</b>) Rotation attack. (<b>b</b>) Scaling attack. (<b>c</b>) Translation attack.</p> "> Figure 9
<p>Precision perturbation attack results.</p> "> Figure 10
<p>The results of the projection attacks.</p> "> Figure 11
<p>Random deletion experiments: (<b>a</b>) Original seafloor topography data. (<b>b</b>) A 25% deletion result. (<b>c</b>) A 50% deletion result.</p> "> Figure 12
<p>Random deletion experiments: (<b>a</b>) Original land topography data. (<b>b</b>) A 25% deletion result. (<b>c</b>) A 50% deletion result.</p> "> Figure 13
<p>The results of random deletion attack.</p> "> Figure 14
<p>Experimental data: (<b>a</b>) ENC data (<b>b</b>) Three-dimensional illustration of water depth points.</p> "> Figure 15
<p>Experimental data: Large-scale geospatial point cloud dataset.</p> ">
Abstract
:1. Introduction
- Proposal of two feature invariants, the relative size relationship of vertical attributes and the data storage order, for geographic point cloud data.
- Proposal of a robustness model of blind and lossless embedded watermarking for geographic point cloud data.
2. Preliminaries
2.1. Invariant Features of Geographic Point Cloud Data
2.1.1. Vertical Attribute Stability
2.1.2. Relative Storage Order Stability
2.2. Index Calculation Based on Vertical Partitioning
2.3. Watermark Embedding Rules Based on Storage Direction
2.4. Generation of Watermark
3. Methodology
3.1. Basic Principle
3.2. Watermark-Embedding Process
3.3. Watermark-Extraction Process
4. Experimentation and Analysis
4.1. Experimental Preparation
4.1.1. Experimental Data and Watermark Information
4.1.2. Evaluation Criteria
4.2. Analysis of Losslessness and Invisibility
4.3. Robustness Analysis
4.3.1. The Robustness of RST
4.3.2. The Robustness of Precision Perturbation
4.3.3. The Robustness of Projection Transformation
4.3.4. The Robustness of Random Deletion
5. Discussion
5.1. Discussion on the Applicability of the Algorithm to Small Datasets
5.2. Discussion of Different Data-Grouping Methods during Watermark Embedding
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peng, R.; Dong, J.; Jia, S.; Tang, L.; Wang, F. Research Progress and Prospect of Digital Depth Model Constructing Technology. Acta Geod. Cartogr. Sin. 2022, 51, 1575–1587. [Google Scholar]
- Liu, J.; Zhan, J.; Guo, C.; Li, Y.; Wu, H.; Huang, H. Data Logic Structure and Key Technologies on Intelligent High-precision Map. Acta Geod. Cartogr. Sin. 2019, 48, 939–953. [Google Scholar]
- Zhang, X.; Li, S.; Zhou, Q.; Sun, Y. Logical and Innovative Construction of Digital Twin City. J. Geod. Geoinf. Sci. 2021, 4, 113–120. [Google Scholar]
- Zhu, P.; Hu, J.; Li, X.; Zhu, Q. Using Blockchain Technology to Enhance the Traceability of Original Achievements. IEEE Trans. Eng. Manag. 2021, 70, 1693–1707. [Google Scholar] [CrossRef]
- Hu, D.; Wang, Q.; Yan, S.; Liu, X.; Li, M.; Zheng, S. Reversible Database Watermarking Based on Order-preserving Encryption for Data Sharing. ACM Trans. Database Syst. 2023, 48, 1–25. [Google Scholar] [CrossRef]
- Girdhar, A.; Kumar, V. Comprehensive survey of 3D image steganography techniques. IET Image Process. 2018, 12, 1–10. [Google Scholar] [CrossRef]
- Cui, G.; Liu, J.; Dai, X.; Zhou, Z. Progress of Digital Watermarking Technology for 3D Model. J. Graph. 2013, 34, 1–6. [Google Scholar]
- Wang, G.; Ma, J.; Liu, J. A Digital Watermarking Algorithm for Geographical Point Cloud Data Based on Vertical Stability. Bull. Surv. Mapp. 2020, S1, 227–232. [Google Scholar]
- Ohbuchi, R.; Masuda, H.; Aono, M. Watermarking Three-Dimensional Polygonal Models. In Proceedings of the Fifth Acm International Conference on Multimedia ACM, Seattle, WA, USA, 9–13 November 1997. [Google Scholar]
- Shu, J.; Yue, Q.; Su, C.; Shen, X. A Novel Blind Robust Digital Watermarking on 3D Meshes. In Proceedings of the Workshop on Digital Media & Its Application in Museum & Heritages IEEE, Chongqing, China, 10–12 December 2007. [Google Scholar]
- Qi, K.; Xie, D.; Zhang, D. A Robust Watermarking Scheme for 3D Point Cloud Models using Self-similarity Partition. In Proceedings of the IEEE International Conference on Wireless Communications IEEE, Beijing, China, 25–27 June 2010. [Google Scholar]
- Wang, Y.; Hu, S. A New Watermarking Method for 3D Models Based on Integral Invariants. IEEE Trans. Vis. Comput. Graph. 2009, 15, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yang, Y.; Ma, D.; Wang, Y.; Pan, Z. A Watermarking Method for 3D Models Based on Feature Vertex Localization. IEEE Access 2018, 6, 56122–56134. [Google Scholar] [CrossRef]
- Garg, H.; Agrawal, S.; Varshneya, G. A Non-blind image based Watermarking for 3-D Polygonal Mesh Using Its Geometrical Properties. In Proceedings of the Sixth International Conference on Contemporary Computing IEEE, Noida, India, 8–10 August 2013. [Google Scholar]
- Feng, X. A Watermarking for 3D Point Cloud Model using Distance Normalization Modulation. In Proceedings of the 2015 4th International Conference on Computer Science and Network Technology (ICCSNT) IEEE, Harbin, China, 19–20 December 2015. [Google Scholar]
- Bogdan, L.; Borut, Ž. 3D Convex Hull-Based Registration Method for Point Cloud Watermark Extraction. Sensors 2019, 19, 3268. [Google Scholar]
- Lipuš, B.; Zalik, B. Robust watermarking of airborne LiDAR data. Multimed. Tools Appl. 2018, 21, 77. [Google Scholar] [CrossRef]
- Wu, Y.; Geng, G.; He, Y. Digital Watermark Algorithm Based on DWT for 3D Point Cloud Model. Comput. Eng. 2012, 38, 151–152. [Google Scholar]
- Agarwal, P.; Prabhakaran, B. Robust Blind Watermarking of Point-Sampled Geometry. IEEE Trans. Inf. Forensics Secur. 2009, 4, 36–48. [Google Scholar] [CrossRef]
- Al-Khafaji, H.; Abhayaratne, C. Graph Spectral Domain Blind Watermarking. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) IEEE, Brighton, UK, 12–17 May 2019. [Google Scholar]
- Ferreira, F.; Lima, J. A Robust 3D Point Cloud Watermarking Method Based on the Graph Fourier Transform. Multimed. Tools Appl. 2020, 79, 1921–1950. [Google Scholar] [CrossRef]
- Hou, X.; Min, L.; Yang, H. A Reversible Watermarking Scheme for Vector Maps Based on Multilevel Histogram Modification. Symmetry 2018, 10, 397. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Men, C.; Ji, R. High-capacity Reversible Watermarking Scheme of 2D-vector Data. Signal Image Video Process. 2015, 9, 1387–1394. [Google Scholar] [CrossRef]
- Wang, X.; Shao, C.; Xu, X.; Niu, X. Reversible Data-hiding Scheme for 2D Vector Maps Based on Difference Expansion. IEEE Trans. Inf. Forensics Secur. 2007, 2, 311–320. [Google Scholar] [CrossRef]
- Fridrich, J.; Goljan, M.; Du, R. Lossless Data Embedding—New Paradigm in Digital Watermarking. EURASIP J. Appl. Signal Process. 2002, 2, 185–196. [Google Scholar] [CrossRef] [Green Version]
- You, Z.; Liu, Z.; Gao, T. A lossless self-recovery watermarking scheme with JPEG-LS compression. J. Inf. Secur. Appl. 2021, 58, 102733. [Google Scholar]
- Hu, R.; Xiang, S. Lossless robust image watermarking by using polar harmonic transform. Signal Process. 2021, 179, 107833. [Google Scholar] [CrossRef]
- Mahto, D.K.; Singh, A.K. A survey of color image watermarking: State-of-the-art and research directions. Comput. Electr. Eng. 2021, 93, 107255. [Google Scholar] [CrossRef]
- Luo, H.; Lu, Z.; Pan, J. A Reversible Data Hiding Scheme for 3D Point Cloud Model. In Proceedings of the 2006 IEEE International Symposium on Signal Processing and Information Technology IEEE, Vancouver, BC, Canada, 27–30 August 2006. [Google Scholar]
- Zhou, Q.; Ren, N.; Zhu, C.; Tong, D. Storage Feature-based Watermarking Algorithm with Coordinate Values Preservation for Vector Line Data. KSII Trans. Internet Inf. Syst. 2018, 12, 3475–3496. [Google Scholar]
- Ren, N.; Zhou, Q.; Zhu, C.; Zhu, A.; Chen, W. A Lossless Watermarking Algorithm Based on Line Pairs for Vector Data. IEEE Access 2020, 8, 156727–156739. [Google Scholar] [CrossRef]
- Zhou, Q.; Ren, N.; Zhu, C.; Zhu, A. Blind Digital Watermarking Algorithm against Projection Transformation for Vector Geographic Data. Int. J. Geo-Inf. 2020, 9, 692. [Google Scholar] [CrossRef]
- Hu, P.; Bai, Y.; Hu, H. Elevation Order Isomorphism Characteristics of DEM. Geomat. Inf. Sci. Wuhan Univ. 2009, 34, 352–357. [Google Scholar]
- Abubahia, A.; Cocea, M. Advancements in GIS map copyright protection schemes—A critical review. Multimed. Tools Appl. 2017, 76, 12205–12231. [Google Scholar] [CrossRef] [Green Version]
Data Format | Geographic Types | Number of Vertices | Acquisition Method | Planar Coordinate Accuracy | Data Size |
---|---|---|---|---|---|
TXT | Seafloor topography | 9814 | Multi-beam measurement | Accurate to six decimal places after the decimal point | 384 KB |
TXT | Land topography | 49,943 | Laser scanning | Accurate to six decimal places after the decimal point | 2878 KB |
Experimental Data | CR | RMSE | ||||
---|---|---|---|---|---|---|
Proposed | Liu [11] | Lipuš [15] | Proposed | Liu [11] | Lipuš [15] | |
data (a) | 0 | 0.76 | 0.69 | 0 | 0.0043 | 0.00071 |
data (b) | 0 | 0.73 | 0.64 | 0 | 0.0039 | 0.00065 |
Projection Type | Projection Name | Short Name |
---|---|---|
Equal area projection | Equal-Area Cylindrical Projection | Eqacylin |
Gall Orthographic Projection | Gortho | |
Lambert Azimuthal Equal-Area Projection | Eqaazim | |
Conformal projection | Mercator Projection | Mercator |
Lambert Conformal Conic Projection | Lambert | |
Stereographic Projection | Stereo | |
Equidistant projection | Equidistant Azimuthal Projection | Eqdazim |
Equidistant Cylindrical Projection | Eqdcylin | |
Equidistant Conic Projection | Eqdconic | |
Compromise projection | Robinson Projection | Robinson |
Winkel I Projection | Winkel | |
Aitoff Projection | Aitoff |
Projection Number | Projection Name | Experimental Data | NC | |
---|---|---|---|---|
Proposed | Ren [25] | |||
1 | Eqacylin | data (a) | 1 | 0.81 |
data (b) | 1 | 0.82 | ||
2 | Gortho | data (a) | 1 | 0.77 |
data (b) | 1 | 0.79 | ||
3 | Eqaazim | data (a) | 1 | 0.95 |
data (b) | 1 | 0.94 |
Projection Number | Projection Name | Experimental Data | NC | |
---|---|---|---|---|
Proposed | Ren [25] | |||
4 | Mercator | data (a) | 1 | 1 |
data (b) | 1 | 1 | ||
5 | Lambert | data (a) | 1 | 1 |
data (b) | 1 | 1 | ||
6 | Stereo | data (a) | 1 | 1 |
data (b) | 1 | 1 |
Projection Number | Projection Name | Experimental Data | NC | |
---|---|---|---|---|
Proposed | Ren [25] | |||
7 | Eqdazim | data (a) | 1 | 0.89 |
data (b) | 1 | 0.90 | ||
8 | Eqdcylin | data (a) | 1 | 0.93 |
data (b) | 1 | 0.94 | ||
9 | Eqdconic | data (a) | 1 | 0.82 |
data (b) | 1 | 0.81 |
Projection Number | Projection Name | Experimental Data | NC | |
---|---|---|---|---|
Proposed | Ren [25] | |||
10 | Robinson | data (a) | 1 | 0.85 |
data (b) | 1 | 0.84 | ||
11 | Winkel I | data (a) | 1 | 0.82 |
data (b) | 1 | 0.82 | ||
12 | Aitoff | data (a) | 1 | 0.83 |
data (b) | 1 | 0.82 |
NC | ||||
---|---|---|---|---|
Rotation by 120° | Translation by 50% Scaling | by 0.5 12 Types of | Projection Transformations | 50% Deletion |
1.00 | 1.00 | 1.00 | 1.00 | 0.89 |
Data Format | Geographic Types | Number of Vertices | Acquisition Method | Vertical Coordinate Accuracy | Data Size |
---|---|---|---|---|---|
TXT | Residential area | 9,365,452 | Laser scanning | Accurate to two decimal places after the decimal point | 259,259 KB |
Increase the Search Interval of Grouping by 1 Time | Increase the Search Interval of Grouping by 2 Times | Increase the Search Interval of Grouping by 5 Times | ||||||
---|---|---|---|---|---|---|---|---|
Divide the Data into 1 Group | Divide the data into 5 Groups | Divide the Data into 10 Groups | Divide the Data into 1 Group | Divide the Data into 5 Groups | Divide the Data into 10 Groups | Divide the Data into 1 Group | Divide the Data into 5 Groups | Divide the Data into 10 Groups |
2068.928 | 1401.652 | 1017.431 | 1087.027 | 758.752 | 641.129 | 487.568 | 389.375 | 317.254 |
Increase the Search Interval of Grouping by 1 Time | Increase the Search Interval of Grouping by 2 Times | Increase the Search Interval of Grouping by 5 Times | ||||||
---|---|---|---|---|---|---|---|---|
Divide the Data into 1 Group | Divide the Data into 5 Groups | Divide the Data into 10 Groups | Divide the Data into 1 Group | Divide the Data into 5 Groups | Divide the Data into 10 Groups | Divide the Data into 1 Group | Divide the Data into 5 Groups | Divide the Data into 10 Groups |
2075.356 | 1432.953 | 1079.548 | 1093.631 | 791.641 | 702.417 | 494.425 | 423.662 | 382.473 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Dong, J.; Ren, N.; Guo, S. Lossless Watermarking Algorithm for Geographic Point Cloud Data Based on Vertical Stability. ISPRS Int. J. Geo-Inf. 2023, 12, 294. https://doi.org/10.3390/ijgi12070294
Zhang M, Dong J, Ren N, Guo S. Lossless Watermarking Algorithm for Geographic Point Cloud Data Based on Vertical Stability. ISPRS International Journal of Geo-Information. 2023; 12(7):294. https://doi.org/10.3390/ijgi12070294
Chicago/Turabian StyleZhang, Mingyang, Jian Dong, Na Ren, and Shuitao Guo. 2023. "Lossless Watermarking Algorithm for Geographic Point Cloud Data Based on Vertical Stability" ISPRS International Journal of Geo-Information 12, no. 7: 294. https://doi.org/10.3390/ijgi12070294
APA StyleZhang, M., Dong, J., Ren, N., & Guo, S. (2023). Lossless Watermarking Algorithm for Geographic Point Cloud Data Based on Vertical Stability. ISPRS International Journal of Geo-Information, 12(7), 294. https://doi.org/10.3390/ijgi12070294