Spatial Accessibility of Public Electric Vehicle Charging Services in China
<p>Development of EVCSs in China (2006–2021).</p> "> Figure 2
<p>Experimental data. (<b>a</b>) Spatial distribution of public EV charging stations and (<b>b</b>) city-level ownership data of EVs.</p> "> Figure 3
<p>Research framework.</p> "> Figure 4
<p>EV charging stations and piles in each province.</p> "> Figure 5
<p>EV charging stations per 1000 EV cars (<b>a</b>) and their LISA (<b>b</b>).</p> "> Figure 6
<p>City-level spatial accessibility of EVCSs (<b>a</b>) and its LISA in China (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Changes and Growth of EVCSs in China
2.2. Data Collection
3. Methodology
3.1. Research Framework
- (1)
- Preparation of the input datasets, including the public EV charging stations as the supply facilities, the city-level ownership data of EVs in 2021 as the potential demand, and the administrative boundaries of cities in mainland China.
- (2)
- Calculation of the spatial accessibility of EVCSs in mainland China at the city level using the G2SFCA.
- (3)
- (4)
- Proposal of implications and countermeasures for policymakers and urban planners to develop EVCSs based on an analysis of the spatial characteristics of access to EVCSs in mainland China.
3.2. G2SFCA Method
3.3. Spatial Pattern and Equity Methods
4. Results
4.1. Spatial Pattern of EV Charging Stations
4.2. Non-Spatial Accessibility of EVCSs
4.3. Spatial Accessibility of EVCSs
4.4. Spatial Equity of EVCSs
5. Discussion
5.1. Comparison between Non-Spatial and Spatial Accessibility of EVCSs
5.2. Advantages of the Proposed Framework
5.3. Policy Implications for EVCSs
5.4. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGlade, C.; Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2°. Nature 2015, 517, 187–190. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in china: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Duan, H.; Zhou, S.; Jiang, K.; Bertram, C.; Harmsen, M.; Kriegler, E.; van Vuuren, D.P.; Wang, S.; Fujimori, S.; Tavoni, M. Assessing china’s efforts to pursue the 1.5 °c warming limit. Science 2021, 372, 378–385. [Google Scholar] [CrossRef]
- Fang, K.; Li, C.; Tang, Y.; He, J.; Song, J. China’s pathways to peak carbon emissions: New insights from various industrial sectors. Appl. Energy 2022, 306, 118039. [Google Scholar] [CrossRef]
- Zhou, N.; Price, L.; Yande, D.; Creyts, J.; Khanna, N.; Fridley, D.; Lu, H.; Feng, W.; Liu, X.; Hasanbeigi, A. A roadmap for china to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030. Appl. Energy 2019, 239, 793–819. [Google Scholar] [CrossRef]
- IEA. Global Ev Outlook: Accelerating Ambitions Despite the Pandemic. 2021. Available online: https://iea.blob.core.windows.net/assets/ed5f4484-f556-4110-8c5c-4ede8bcba637/GlobalEVOutlook2021.pdf (accessed on 31 December 2022).
- Sun, M.; Shao, C.; Zhuge, C.; Wang, P.; Yang, X.; Wang, S. Uncovering travel and charging patterns of private electric vehicles with trajectory data: Evidence and policy implications. Transportation 2022, 49, 1409–1439. [Google Scholar] [CrossRef]
- Funke, S.Á.; Sprei, F.; Gnann, T.; Plötz, P. How much charging infrastructure do electric vehicles need? A review of the evidence and international comparison. Transp. Res. Part D Transp. Environ. 2019, 77, 224–242. [Google Scholar] [CrossRef]
- Pagany, R.; Ramirez Camargo, L.; Dorner, W. A review of spatial localization methodologies for the electric vehicle charging infrastructure. Int. J. Sustain. Transp. 2019, 13, 433–449. [Google Scholar] [CrossRef]
- Hardman, S.; Jenn, A.; Tal, G.; Axsen, J.; Beard, G.; Daina, N.; Figenbaum, E.; Jakobsson, N.; Jochem, P.; Kinnear, N. A review of consumer preferences of and interactions with electric vehicle charging infrastructure. Transp. Res. Part D Transp. Environ. 2018, 62, 508–523. [Google Scholar] [CrossRef]
- Pan, L.; Yao, E.; Yang, Y.; Zhang, R. A location model for electric vehicle (ev) public charging stations based on drivers’ existing activities. Sustain. Cities Soc. 2020, 59, 102192. [Google Scholar] [CrossRef]
- Hansen, W.G. How accessibility shapes land use. J. Am. Inst. Plan. 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, F.; Lu, Y.; Chen, Z.; Yang, Y. Development history and accessibility evolution of land transportation network in beijing-tianjin-hebei region over the past century. J. Geogr. Sci. 2018, 28, 1500–1518. [Google Scholar] [CrossRef]
- Park, J.; Kang, J.-Y.; Goldberg, D.W.; Hammond, T.A. Leveraging temporal changes of spatial accessibility measurements for better policy implications: A case study of electric vehicle (ev) charging stations in seoul, south korea. Int. J. Geogr. Inf. Sci. 2022, 36, 1185–1204. [Google Scholar] [CrossRef]
- Jin, F.; Wang, C.; Li, X.; Wang, J.E. China’s regional transport dominance: Density, proximity, and accessibility. J. Geogr. Sci. 2010, 20, 295–309. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Y. Regional accessibility of land traffic network in the yangtze river delta. J. Geogr. Sci. 2007, 17, 351–364. [Google Scholar] [CrossRef]
- Chen, X.; Jia, P. A comparative analysis of accessibility measures by the two-step floating catchment area (2sfca) method. Int. J. Geogr. Inf. Sci. 2019, 33, 1739–1758. [Google Scholar] [CrossRef]
- Song, Y.; Tan, Y.; Song, Y.; Wu, P.; Cheng, J.C.; Kim, M.J.; Wang, X. Spatial and temporal variations of spatial population accessibility to public hospitals: A case study of rural–urban comparison. GIScience Remote Sens. 2018, 55, 718–744. [Google Scholar] [CrossRef]
- Huang, J.; Levinson, D.; Wang, J.; Zhou, J.; Wang, Z.-J. Tracking job and housing dynamics with smartcard data. Proc. Natl. Acad. Sci. USA 2018, 115, 12710–12715. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Y.; Wu, G.; Zhang, F.; Zhu, K.; Xia, Z.; Chen, Y. Exploring spatiotemporal accessibility of urban fire services using real-time travel time. Int. J. Environ. Res. Public Health 2021, 18, 4200. [Google Scholar] [CrossRef]
- Mao, K.; Chen, Y.; Wu, G.; Huang, J.; Yang, W.; Xia, Z. Measuring spatial accessibility of urban fire services using historical fire incidents in nanjing, china. ISPRS Int. J. Geo-Inf. 2020, 9, 585. [Google Scholar] [CrossRef]
- McGrail, M.R.; Humphreys, J.S. Measuring spatial accessibility to primary health care services: Utilising dynamic catchment sizes. Appl. Geogr. 2014, 54, 182–188. [Google Scholar] [CrossRef]
- Wang, F. From 2sfca to i2sfca: Integration, derivation and validation. Int. J. Geogr. Inf. Sci. 2021, 35, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Cheng, Y. Modelling the spatial accessibility of the elderly to healthcare services in beijing, china. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1132–1147. [Google Scholar] [CrossRef]
- Wang, J.; Du, F.; Huang, J.; Liu, Y. Access to hospitals: Potential vs. Observed. Cities 2020, 100, 102671. [Google Scholar] [CrossRef]
- Langford, M.; Higgs, G.; Fry, R. Multi-modal two-step floating catchment area analysis of primary health care accessibility. Health Place 2016, 38, 70–81. [Google Scholar] [CrossRef]
- Polzin, P.; Borges, J.; Coelho, A. An extended kernel density two-step floating catchment area method to analyze access to health care. Environ. Plan. B Plan. Des. 2014, 41, 717–735. [Google Scholar] [CrossRef]
- Ni, J.; Liang, M.; Lin, Y.; Wu, Y.; Wang, C. Multi-mode two-step floating catchment area (2sfca) method to measure the potential spatial accessibility of healthcare services. ISPRS Int. J. Geo-Inf. 2019, 8, 236. [Google Scholar] [CrossRef]
- Li, L.; Du, Q.; Ren, F.; Ma, X. Assessing spatial accessibility to hierarchical urban parks by multi-types of travel distance in shenzhen, china. Int. J. Environ. Res. Public Health 2019, 16, 1038. [Google Scholar] [CrossRef]
- Lan, T.; Liu, Y.; Huang, G.; Corcoran, J.; Peng, J. Urban green space and cooling services: Opposing changes of integrated accessibility and social equity along with urbanization. Sustain. Cities Soc. 2022, 84, 104005. [Google Scholar] [CrossRef]
- Hu, L.; Zhao, C.; Wang, M.; Su, S.; Weng, M.; Wang, W. Dynamic healthy food accessibility in a rapidly urbanizing metropolitan area: Socioeconomic inequality and relative contribution of local factors. Cities 2020, 105, 102819. [Google Scholar] [CrossRef]
- Dai, D.; Wang, F. Geographic disparities in accessibility to food stores in southwest mississippi. Environ. Plan. B Plan. Des. 2011, 38, 659–677. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, W.; Duan, X. Understanding accessibility changes from the development of a high-speed rail network in the yangtze river delta, china: Speed increases and distance deductions. Appl. Spat. Anal. Policy 2019, 12, 1011–1029. [Google Scholar] [CrossRef]
- Li, G.; Luo, T.; Song, Y. Spatial equity analysis of urban public services for electric vehicle charging—Implications of chinese cities. Sustain. Cities Soc. 2022, 76, 103519. [Google Scholar] [CrossRef]
- Luo, W.; Wang, F. Measures of spatial accessibility to health care in a gis environment: Synthesis and a case study in the chicago region. Environ. Plan. B Plan. Des. 2003, 30, 865–884. [Google Scholar] [CrossRef] [PubMed]
- Kanuganti, S.; Sarkar, A.K.; Singh, A.P. Evaluation of access to health care in rural areas using enhanced two-step floating catchment area (e2sfca) method. J. Transp. Geogr. 2016, 56, 45–52. [Google Scholar] [CrossRef]
- Xing, L.; Liu, Y.; Wang, B.; Wang, Y.; Liu, H. An environmental justice study on spatial access to parks for youth by using an improved 2sfca method in wuhan, china. Cities 2020, 96, 102405. [Google Scholar] [CrossRef]
- Dai, D. Black residential segregation, disparities in spatial access to health care facilities, and late-stage breast cancer diagnosis in metropolitan detroit. Health Place 2010, 16, 1038–1052. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Song, C.; Pei, T.; Liu, Y.; Ma, T.; Du, Y.; Chen, J.; Fan, Z.; Tang, X.; Peng, Y. Accessibility to urban parks for elderly residents: Perspectives from mobile phone data. Landsc. Urban Plan. 2019, 191, 103642. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—Lisa. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Rogerson, P.A. The gini coefficient of inequality: A new interpretation. Lett. Spat. Resour. Sci. 2013, 6, 109–120. [Google Scholar] [CrossRef]
- Shi, K.; Wu, Y.; Liu, S.; Chen, Z.; Huang, C.; Cui, Y. Mapping and evaluating global urban entities (2000–2020): A novel perspective to delineate urban entities based on consistent nighttime light data. GIScience Remote Sens. 2023, 60, 2161199. [Google Scholar] [CrossRef]
- Long, Y.; Han, H.; Tu, Y.; Shu, X. Evaluating the effectiveness of urban growth boundaries using human mobility and activity records. Cities 2015, 46, 76–84. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, G.; Chen, Y.; Xia, Z. Spatial location optimization of fire stations with traffic status and urban functional areas. Appl. Spat. Anal. Policy 2023, 16, 771–788. [Google Scholar] [CrossRef]
Stations | Piles | Rate of Stations (%) | Rate of Piles (%) | |
---|---|---|---|---|
Eastern region | 22,600 | 217,973 | 69.10 | 66.31 |
Central region | 9481 | 107,186 | 28.99 | 32.61 |
Western region | 623 | 3350 | 1.91 | 1.08 |
In Total | 32,704 | 328,709 | 100 | 100 |
Minimum | Maximum | Mean | Standard Deviation | Coefficient of Variation | |
---|---|---|---|---|---|
Eastern region | 0 | 0.133 | 0.032 | 0.024 | 0.75 |
Central region | 0 | 0.228 | 0.033 | 0.036 | 1.09 |
Western region | 0 | 0.283 | 0.029 | 0.054 | 1.86 |
Whole | 0 | 0.283 | 0.032 | 0.036 | 1.125 |
Very Low | Low | Moderate | High | Very High | |
---|---|---|---|---|---|
Eastern region | 45 | 49 | 22 | 2 | 0 |
Central region | 80 | 57 | 24 | 10 | 4 |
Western region | 35 | 7 | 2 | 6 | 3 |
Whole | 160 | 113 | 48 | 18 | 7 |
Eastern Region | Central Region | Western Region | Whole | |
---|---|---|---|---|
Non-spatial accessibility | 0.4670 | 0.5463 | 0.6930 | 0.5418 |
Spatial accessibility | 0.4011 | 0.5266 | 0.748 | 0.52843 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Chen, Y.; Lu, Y. Spatial Accessibility of Public Electric Vehicle Charging Services in China. ISPRS Int. J. Geo-Inf. 2023, 12, 478. https://doi.org/10.3390/ijgi12120478
Chen Y, Chen Y, Lu Y. Spatial Accessibility of Public Electric Vehicle Charging Services in China. ISPRS International Journal of Geo-Information. 2023; 12(12):478. https://doi.org/10.3390/ijgi12120478
Chicago/Turabian StyleChen, Yu, Yuehong Chen, and Yuqi Lu. 2023. "Spatial Accessibility of Public Electric Vehicle Charging Services in China" ISPRS International Journal of Geo-Information 12, no. 12: 478. https://doi.org/10.3390/ijgi12120478
APA StyleChen, Y., Chen, Y., & Lu, Y. (2023). Spatial Accessibility of Public Electric Vehicle Charging Services in China. ISPRS International Journal of Geo-Information, 12(12), 478. https://doi.org/10.3390/ijgi12120478